Treasury Metals Revised EIS Report Goliath Gold Project April 2018

APPENDIX E

 TRAFFIC STUDY
NOTE TO READER APPENDIX E

In April 2015, Treasury Metals submitted an Environmental Impact Statement (EIS) for the proposed Goliath Gold Project (the Project) to the Canadian Environmental Assessment Agency (the Agency) for consideration under the Canadian Environmental Assessment Act (CEAA), 2012. The Agency reviewed the submission and informed Treasury Metals that the requirements of the EIS Guidelines for the Project were met and that the Agency would begin its technical review of the submission. In June 2015, the Agency issued a series of information requests to Treasury Metals regarding the EIS and supporting appendices (referred to herein as the Round 1 information requests). The Round 1 information requests included questions from the Agency, other federal and provincial reviewers, and members of Indigenous communities, as well as interested stakeholders. As part of the Round 1 information request process, the Agency requested that Treasury Metals consolidate the responses to the information requests into a revised EIS for the Project.

Appendix E to the revised EIS (Traffic Study) presents a review of the existing roadways and traffic activities. The document presents an evaluation of the Project's anticipated impact on traffic volumes and highway function at the Highway 17/Anderson Road intersection. The report also evaluates whether transportation corridor improvements are required to ensure traffic safety is maintained and to mitigate the increased traffic volumes resulting from the Project. The information provided in this appendix was used in the evaluation of alternatives presented in Section 2 and Appendix X, as well as in the Project description (Section 3) used as the basis for the revised EIS. The results of this appendix were also relied on in various locations in the revised EIS where questions are raised regarding changes to traffic volumes and their potential effects (e.g., the assessment of effects for the Social component presented in Section 6.17).

Appendix E to the revised EIS (Traffic Study) includes a revised Figure 4- Proposed Site Plan to reflect the current design of the project.

As part of the process to revise the EIS, Treasury Metals has undertaken a review of the status for the various appendices. The status of each appendix to the revised EIS has been classified as one of the following:

- Unchanged: The appendix remains unchanged from the original EIS, and has been re-issued as part revised EIS.
- Minor Changes: The appendix remains relatively unchanged from the original EIS, and has been re-issued with relevant clarification.
- Major Revisions: The appendix has been substantially changed from the original EIS. A rewritten appendix has been issued as part of the revised EIS.
- Superseded: The appendix is no longer required to support the EIS. The information in the original appendix has been replaced by information provided in a new appendix prepared to support the revised EIS.
- New: This is a new appendix prepared to support the revised EIS.

The following table provides a listing of the appendices to the revised EIS, along with a listing of the status of each appendix and their description.

List of Appendices to the Revised EIS		
Appendix	Status	Description
Appendix A	Major Revisions	Table of Concordance
Appendix B	Unchanged	Optimization Study
Appendix C	Unchanged	Mining Study
Appendix D	Major Revisions	Tailings Storage Facility
Appendix E	Minor Changes	Traffic Study
Appendix F	Major Revisions	Water Management Plan
Appendix G	Superseded	Environmental Baseline
Appendix H	Minor Changes	Acoustic Environment Study
Appendix I	Unchanged	Light Environment Study
Appendix J	Minor Changes	Air Quality Study
Appendix K	Minor Changes	Geochemistry
Appendix L	Superseded	Geochemical Modelling
Appendix M	Minor Changes	Hydrogeology
Appendix N	Unchanged	Surface Hydrology
Appendix O	Superseded	Hydrologic Modeling
Appendix P	Unchanged	Aquatics DST
Appendix Q	Major Revisions	Fisheries and Habitat
Appendix R	Major Revisions	Terrestrial
Appendix S	Major Revisions	Wetlands
Appendix T	Unchanged	Socio-Economic
Appendix U	Minor Changes	Heritage Resources
Appendix V	Major Revisions	Public Engagement
Appendix W	Unchanged	Screening Level Risk Assessment
Appendix X	Major Revisions	Alternatives Assessment Matrix
Appendix Y	Unchanged	EIS Guidelines
Appendix Z	Unchanged	TML Corporate Policies
Appendix AA	Major Revisions	List of Mineral Claims
Appendix BB	Unchanged	Preliminary Economic Assessment

List of Appendices to the Revised EIS		
Appendix	Status	Description
Appendix CC	Unchanged	Mining, Dynamic And Dependable For Ontario's Future
Appendix DD	Major Revisions	Indigenous Engagement Report
Appendix EE	Unchanged	Country Foods Assessment
Appendix FF	Unchanged	Photo Record Of The Goliath Gold Project
Appendix GG	Minor Changes	TSF Failure Modelling
Appendix HH	Unchanged	Failure Modes And Effects Analysis
Appendix II	Major Revisions	Draft Fisheries Compensation Strategy and Plans
Appendix JJ	New	Water Report
Appendix KK	New	Conceptual Closure Plan
Appendix LL	New	Impact Footprints and Effects

Treasury Metals Inc.

Goliath Gold Project

 TRAFFIC IMPACT STUDYApril 2014

EXECUTIVE SUMMARY

Treasury Metals Inc. is presently in the approval and development stage of the Goliath Gold Project located in the Kenora Mining District in northwestern Ontario. The proposed gold mine will be accessed via the existing Anderson Road turn off from Highway 17, approximately 2.5 km west of the village of Wabigoon.

Accordingly, the purpose of this Traffic Impact Study (TIS) is twofold:

1) To evaluate the Project's anticipated impact on traffic volumes and highway function at the Highway 17 / Anderson Road intersection,
2) To evaluate if transportation corridor improvements are required to mitigate the increased volumes and ensure traffic safety is maintained.

In order to evaluate traffic impacts and potential corridor improvements, the following components are discussed within this study:

- Existing Conditions
- Study Area
- Proposed Land Use \& Development Size
- Proposed Site Access
- Parking \& Site Circulation
- Development Stages \& Study Horizon
- Other Development \& Planned Road Improvements
- Traffic Analysis Methodology
- Peak Hour Identification
- Turning Movement Count
- Trip Generation \& Distribution
- Model Existing Traffic Conditions
- Model Background Traffic Conditions
- Model Background + Site Generated Traffic Conditions
- Sight Distances
- Entrance Layout, Geometry \& Signage
- Illumination
- Conclusions \& Recommendations

The primary conclusions and recommendations of this report are as follows:

Conclusions

1) Highway 17 Peak Hours: Based on MTO traffic data collected in 2013, the AM and PM peak hours for Highway 17 were determined to be 11 a.m. - 12 p.m. and 4 p.m. - 5 p.m. respectively.
2) Site Peak Hours: Based on Treasury's anticipated staffing and operations plan, the anticipated AM and PM peak hours for the mine during both construction and operation stages are 5 a.m. - 6 a.m. and 6 p.m. - 7 p.m. respectively.
3) Turning Movement Count: Based on the results of KAL's turning movement count conducted on February 19, 2014, the existing turning volumes at the intersection are very low (only 9 turning movements during the busiest hour)
4) Model Existing Conditions: The intersection level of service (LOS) was evaluated using Synchro 8 modeling software for the present year (2014) during the Highway 17 AM and PM peak hours. The results of the analysis indicate the following:

- All traffic lanes maintain a LOS of ' A '
- All lane volume-to-capacity (V/C) ratios are operating well below capacity
- Control delay is negligible and within LOS ' A ' tolerances for all approaches.
- No geometric improvements or signalization is required to mitigate impacts from existing traffic volumes.

5) Model Background Conditions: The intersection LOS for background traffic volumes was modeled with Synchro 8 for 2015 (Start of Construction), 2017 (Start of Operation), 2020 (5 Year Horizon) and 2027 (10 Year Horizon). A 1\% yearly growth factor was applied to the existing base volumes. Both the Highway 17 and mine peak hours were modeled for each study year. The results of the analysis indicate the following:

- All traffic lanes maintain a LOS of ' A '
- All V/C ratios are operating well below capacity
- Control delay is negligible and within LOS ' A ' tolerances for all approaches.
- No geometric improvements or signalization is required to mitigate impacts from background traffic volumes during any of the study horizons.

6) Model Background + Site Generated Traffic Conditions: Site generated traffic volumes were estimated based on Treasury's staffing, operational and production data for the Goliath Gold Project. The intersection LOS for background + site generated traffic volumes was then modeled with Synchro 8 for 2015 (Start of Construction), 2017 (Start of Operation), 2020 (5 Year Horizon) and 2027 (10 Year Horizon). Both the Highway 17 and mine peak hours were modeled for each study year. The results of the analysis indicate the following:

- All Highway 17 traffic lanes maintain a LOS of 'A' during all horizons
- Anderson Road maintains a LOS of 'B' or better during all horizons.
- Overall intersection LOS of 'A' during all horizons.
- All V/C ratios are operating well below capacity
- On Highway 17, control delay is negligible and is well within LOS ' A ' tolerances. On Anderson Road, control delay is well within LOS 'B' tolerances.

7) Sight Distances: The Approach Sight Distance and Turning Movement Sight Distance were evaluated for the intersection with the following findings:

- Regarding Approach Sight Distance, sight triangles for the intersection were established. Review of aerial photography at the intersection indicates that there may be some tree clearing and bank height adjustments within the identified sight triangles. It is a recommendation of this study that the Proponent remove any shrubbery, trees or soil mounds that fall within the sight triangles and cause a visual obstruction of oncoming traffic.
- Regarding Turning Movement Sight Distance, the actual provided sight distance for vehicles stopped at Anderson Road to approaching vehicles on Highway 17 exceeds the minimum required sight distance.

8) Entrance Design: The existing Anderson Road 'T' intersection with Highway 17 was evaluated with the following findings:

- At present, the Anderson Road intersection forms part of a snow plough turnaround which provides two access points to Highway 17. Once mine construction and operation commences, it is not recommended from a traffic safety standpoint to have two access points within 70 m of each other. The northerly access point should be closed to highway traffic prior to the start of mine construction.
- Once mine construction and operations begin, there will be an increase in heavy truck traffic that uses the Anderson Road turnoff. Accordingly, it is necessary to provide adequate entrance geometry to safely accommodate heavy trucks turning off or merging with Highway 17. Accordingly, the existing geometry of the Anderson Road entrance should be surveyed in snow free conditions to determine if it meets the requirements of the MTO's CSAS-23 entrance standard. If the entrance does not meet this standard, then it should be upgraded accordingly. The MTO's CSAS-23 entrance standard is capable of accommodating WB-15 design vehicles and larger (tractor-semitrailer combination).

9) Entrance Signage: The existing intersection signage was inventoried and evaluated. Based on the results of the Synchro 8 model analysis, dedicated turn lanes or traffic signals are not required to maintain an acceptable LOS of ' A ' on Highway 17 during all study horizons. Accordingly, the existing signage that is in place will remain applicable for the stop sign control intersection. Additional regulatory signage is not anticipated unless requested by the MTO.
10) Illumination: Illumination requirements for the intersection were assessed in accordance with MTO Directive PLNG-B-05 which provides warrant criteria based on various traffic and geometry factors. Based on the warrant analysis, partial illumination is warranted for the intersection. Accordingly, a minimum of
two luminaries are required for partial illumination in accordance with Directive PLNG-B-05. The luminaries, pole design, locations and setback distances must conform with MTO standards.

Recommended Intersection Improvements

1) Clearing of any shrubbery, trees, soil mounds, etc. that fall within the sight triangles identified in Section 12.1 which cause a visual obstruction between vehicles on Anderson Road and Highway 17.
2) Anderson Road presently has two access points as part of a snow plough turn around. Implement one of the following options:

- Option 1 - Close the north access point and create a snow plough turnaround area immediately off of the south access point.
- Option 2 - Break the loop between south and north access points. The north access point would function as a snow plough turnaround only, without allowing access to Anderson Road.
- Option 3 - Close the north access point and operate without a snow plough turn around.

3) Upgrade the Anderson Road entrance to the MTO's CSAS-23 standard (if verified deficient).
4) Provide two luminaries for partial illumination of the intersection as defined by PLNG-B-05. Provide detailed illumination design to the MTO for review and approval prior to installation.

In conclusion, it is forecast that the intersection will continue to perform at a LOS ' A ' during mine construction and operation without the need for turning lanes or traffic signals. The recommended improvements will increase sight distances, illumination and turning radii; improving the overall level of safety at the intersection once mine operations begin.

KEEWATIN-ASKI LTD.

consulting engineers \& architect
<Original signed by>

Joe Cospito, P.Eng.

Table of Contents

1 INTRODUCTION 1
1.1 Study Purpose 1
1.2 Project Description 1
1.3 Traffic Impact Study Components 3
2 EXISTING CONDITIONS 4
2.1 Existing Land Use 4
2.2 Existing Road Infrastructure 4
3 STUDY AREA 6
3.1 Study Area Boundaries 6
4 PROPOSED DEVELOPMENT 8
4.1 Proposed Land Use \& Development Size 8
4.2 Proposed Site Access 9
4.3 Parking \& Site Circulation 11
4.4 Development Stages \& Study Horizon. 12
4.5 Other Development \& Planned Road Improvements 12
5 TRAFFIC ANALYSIS METHODOLOGY. 13
5.1 Methodology 13
5.2 Modeling Approach 14
6 PEAK HOUR IDENTIFICATION 16
6.1 Highway 17 Peak Hours 16
6.2 Site Peak Hours 17
7 TURNING MOVEMENT COUNT 18
8 MODEL EXISTING TRAFFIC CONDITIONS 20
8.1 Evaluation of Impacts 22
9 MODEL BACKGROUND TRAFFIC CONDITIONS 23
9.1 Evaluation of Impacts 29
10 TRIP GENERATION \& DISTRIBUTION 30
10.1 Trip Generation 30
10.2 Trip Distribution 32
11 MODEL BACKGROUND + SITE GENERATED TRAFFIC CONDITIONS 36
11.1 Evaluation of Impacts 42
12 SIGHT DISTANCES 43
12.1 Approach Sight Distance 43
12.2 Turning Movement Sight Distance 45
13 ENTRANCE DESIGN 47
13.1 Entrance Layout 47
13.2 Entrance Geometry 49
13.3 Entrance Signage 51
14 ILLUMINATION 53
15
CONCLUSIONS \& RECOMMENDATIONS 56
APPENDIX 'A' - MTO Highway 17 Traffic Count Data
APPENDIX 'B’ - Synchro 8 Model Reports
APPENDIX 'C’ - Drawings
APPENDIX 'D' - MTO Form 3 Non-Freeway Intersection Illumination (PLNG-B-05)
List of Tables
Table 1 - Development Stages 12
Table 2 - HCM LOS Criteria 14
Table 3 - Highway 17 AM \& PM Peak Hours 16
Table 4 - Anticipated Site Peak Hours 17
Table 5 - Highway 17 \& Site Peak Hours 17
Table 6 - Turning Movement Count: Anderson Road \& Highway 17 19
Table 7 - LOS for Existing Traffic Conditions 22
Table 8 - LOS for Background Traffic Volumes: All Horizons 28
Table 9 - Goliath Gold Project Trip Generation 31
Table 10 - Site Generated Peak Hour Volumes 32
Table 11 - Trip Distribution Assumptions 33
Table 12 - LOS for Total Traffic Volumes: All Horizons 41
Table 13 - Turning Movement Sight Distance 46
Table 14 - Existing Intersection Signage 51

List of Figures

Figure 1 - Goliath Gold Project Location Plan .. 2
Figure 2 - Existing Road Network .. 5
Figure 3 - Study Area Boundary .. 7
Figure 4 - Proposed Site Plan.. 8
Figure 5 - Aerial View of Anderson Road \& Highway 17 Intersection............................... 10
Figure 6 - Site Circulation .. 11
Figure 7 - Study Horizons .. 12
Figure 8 - Existing Highway 17 Traffic Volumes (2014)... 21
Figure 9 - Background Traffic: Start of Construction (2015) ... 24
Figure 10 - Background Traffic: Start of Operation (2017) ... 25
Figure 11 - Background Traffic: Start of Construction (2015) ... 26
Figure 12 - Background Traffic: 10 Year Horizon (2027) .. 27
Figure 13 - Site Generated Traffic: Construction (2015-2017) 34
Figure 14 - Site Generated Traffic: Operation (2017-2027).. 35
Figure 15 - Total Traffic: Start of Construction (2015) .. 37
Figure 16 - Total Traffic: Start of Operation (2017)... 38
Figure 17 - Total Traffic: 5 Year Horizon (2022) .. 39
Figure 18 - Total Traffic: 10 Year Horizon (2027) .. 40
Figure 19 - GDM Table E3-3: Minimum Property Requirements at 90° Intersections for Approaches with Stop Control ... 43
Figure 20 - Highway 17 \& Anderson Road Sight Triangles .. 44
Figure 21 - GDM Figure E3-6: Sight Distance Requirements for Stopping, Crossing and Turning Movements.. 45
Figure 22 - Existing Anderson Road Entrance Layout.. 48
Figure 23 - MTO CSAS-23 Truck Access .. 50
Figure 24 - MTO Form 3 Evaluation Criteria for Partial Illumination 53
Figure 25 - Suggested Locations for Partial Illumination .. 55

1 INTRODUCTION

1.1 Study Purpose

Treasury Metals Inc. (Treasury) is presently in the approval and development stage of the Goliath Gold Project located in the Kenora Mining District in northwestern Ontario. The proposed gold mine will be accessed via the existing Anderson Road turn off from Highway 17, approximately 2.5 km west of the village of Wabigoon.

Accordingly, the purpose of this Traffic Impact Study (TIS) is twofold:
3) To evaluate the Project's anticipated impact on traffic volumes and highway function at the Highway 17 / Anderson Road intersection,
4) To evaluate if transportation corridor improvements are required to mitigate the increased volumes and ensure traffic safety is maintained.

1.2 Project Description

The proposed Goliath Gold Mine is located approximately 8 km northwest of the village of Wabigoon, 2 km north of the Trans Canada Highway (Highway 17). The mine will be accessed via Anderson Road off of Highway 17, approximately 2.5 km west of Wabigoon. The coordinates of the proposed Project are approximately centered on $49^{\circ} 45^{\prime} 25^{\prime \prime} \mathrm{N}$ by $92^{\circ} 36^{\prime} 30^{\prime \prime}$ W. Figure 1 illustrates the location plan for the Goliath Gold Project.

The Goliath Gold Project is a recently discovered gold resource of 1.6 million ounces of gold with an additional 5 million ounces of silver by-product. The Project entails the development, construction, operation and closure of a gold mine that would process 2,500 tonnes per day of gold bearing rock. The processing method will be a front end gravity circuit followed by a carbon in leach circuit. In total, the footprint of the Project will be approximately 300 hectares. The physical works of the project will include the following components:

- Open Pit Mining - $130-180 \mathrm{~m}$ in depth, 1.5 km on strike
- Underground Mining
- Ore Stockpiles - 62,500 m^{2} footprint
- Waste Rock Storage Area - 675,000 m² footprint
- Processing Plant Site - 18,000 m^{2} footprint
- Tailing Storage Facility - 600,000 m^{2} footprint
- Explosives Manufacturing and Storage Facility
- Makeup Water Intake and Pipeline
- Site Power
- Project Access Road - Tree Nursery Road via Anderson Road via Highway 17

1.3 Traffic Impact Study Components

The following components will be discussed within this study:

- Existing Conditions
- Study Area
- Proposed Land Use \& Development Size
- Proposed Site Access
- Parking \& Site Circulation
- Development Stages \& Study Horizon
- Other Development \& Planned Road Improvements
- Traffic Analysis Methodology
- Peak Hour Identification
- Turning Movement Count
- Trip Generation \& Distribution
- Model Existing Traffic Conditions
- Model Background Traffic Conditions
- Model Background + Site Generated Traffic Conditions
- Sight Distances
- Entrance Layout, Geometry \& Signage
- Illumination
- Conclusions \& Recommendations

2 EXISTING CONDITIONS

2.1 Existing Land Use

The Goliath Gold Project is based approximately 8km northwest of the village of Wabigoon within the Eagle-Wabigoon-Manitou greenstone belt and 2km north of Trans-Canada Highway 17.

The Project property includes a total area of approximately 4,976 hectares which is presently forested with a mixture of both coniferous and deciduous trees and exhibits the typical rolling Canadian Shield topography of the area. Treasury holds the entire Project property, including the former MNR tree nursery property located on Anderson road.

Presently, the existing property is undeveloped and is suitable for mine development pending the completion of the Class Environmental Assessment process and other provincial permitting currently being undertaken by Treasury.

2.2 Existing Road Infrastructure

The existing road infrastructure linking the mine site to Highway 17 includes Tree Nursery Road, Anderson Road and Highway 17:

- Highway 17 is part of the Trans Canada Highway and is operated by the MTO. At the intersection location, Highway 17 has two lanes with a posted speed of $90 \mathrm{~km} / \mathrm{hr}$.
- Anderson Road and Tree Nursery Road are municipally controlled, two lane rural roads. Both roads are unpaved with no posted speed limit.

The intersection of Anderson Road and Highway 17 is an unsignalized 'T' intersection with stop sign control on Anderson Road. There are no signalized entrances located on Highway 17 in the area of the development.

Figure 2 provides an aerial view of the existing road network between Highway 17 and the mine site.

3 STUDY AREA

3.1 Study Area Boundaries

The focal point of this TIS is the Anderson Road intersection with Highway 17, which will serve as the access point to the mining development. This stretch of Highway 17 is located within primarily undeveloped, forested land with sparse rural residential development which radiates outwards from Wabigoon and Dryden. There are no signalized intersections or other significant intersections with major roads / highways located in the immediate vicinity. To the east, the nearest rural road intersection is Maggrah Road which is approximately 2 km from the intersection. To the west, the nearest rural road intersection is East Thunder Lake Road, which is approximately 1.9 km from the intersection. Accordingly, the study area boundaries will be limited to the intersection and a short distance (approximately 450 m) along Highway 17 to account for sight distance calculations and geometric improvement considerations.

Figure 3 illustrates the proposed study boundaries for this TIS.

GOLIATH GOLD PROJECT DRYDEN, ONTARIO, CANADA		SCALE: 5000	$\stackrel{N}{\sim} \underbrace{0.100}_{\text {Meees }} \underbrace{150}$		TREASURY METALS
		TREASURY METALS INC.			
STUDY AREA BOUNDARY			REFERENCE Projection: NAD83 UTM Zone 15N GIS: Treasury Metals Inc.		
FIGURE: 3	REV. 00				

4 PROPOSED DEVELOPMENT

4.1 Proposed Land Use \& Development Size

The proposed land use of the Goliath Gold Project is an industrial gold mining operation. In total, the footprint of the Project will be approximately 300 hectares. The physical works of the project will include the following components:

- Open Pit Mining - 130-180m in depth, 1.5 km on strike
- Underground Mining
- Ore Stockpiles $-62,500 \mathrm{~m}^{2}$ footprint
- Waste Rock Storage Area - 675,000 m^{2} footprint
- Tailing Storage Facility - 600,000 m^{2} footprint
- Explosives Manufacturing and Storage Facility
- Makeup Water Intake and Pipeline
- Site Power
- Processing Plant Site - $18,000 \mathrm{~m}^{2}$ footprint

The mine site will be located approximately 2 km north of Highway 17, and will be accessed via Tree Nursery Road off of Anderson Road. Figure 4 illustrates the proposed mine site plan, indicating structures, mining operation areas and site circulation.

4.2 Proposed Site Access

Access to the mine will be from Tree Nursery Road via the Anderson Road turnoff on Highway 17, approximately 2.5 km west of the village of Wabigoon. The final 2.5 km northern section of Tree Nursery Road will be closed to public use at the mine entrance security gate.

Anderson Road is a municipally controlled, unpaved, two lane road. The road also provides access to a handful of residences, the Wabigoon waste disposal site and the former MNR tree nursery (now owned by Treasury). However, Anderson Road is not the sole point of access for the few residences or waste disposal site, which are accessed more directly from Wabigoon by other municipal roads.

The intersection of Anderson Road and Highway 17 is an unsignalized ' T ' intersection with stop sign control on Anderson Road. The intersection also forms part of a truck turn around, with two access points to Highway 17. A later recommendation of this report will be to close the north entrance of the truck turn around so that the intersection only has one access point from Highway 17. Entrance design elements are evaluated in Section 13.

Figure 5 provides an aerial view of the existing Highway 17 / Anderson Road intersection which is the primary focal point of this TIS.

4.3 Parking \& Site Circulation

Various building infrastructure will be located on the mine site as illustrated in Figure 6; suitably sized parking areas will be established around these buildings.

Figure 6 also illustrates the site circulation road network. The most significant site circulation roads include two mine access roads, approximately 2.5 km each, which will encompass the tailings storage area and open pit.

Figure 6 - Site Circulation
The final 2.5 km northern section of Tree Nursery Road will be closed to the public at the mine entrance security gate. This effectively eliminates public use of the site circulation road network. Consequently, neither parking nor the internal site circulation road network are expected to impact Highway 17 operation.

4.4 Development Stages \& Study Horizon

It is critical to establish the development stages of the Goliath Gold Project in order to identify the study horizon over which to evaluate the traffic growth and the subsequent impacts on Highway 17. Treasury provided the following planned development stages, based on the mine plan of operations:

Development Stage	Description	Time Frame
Stage 1-Construction	Involves clearing, grubbing, construction of access roads and mine infrastructure including machinery buildings, warehouses, laydown areas, tailings storage facilities, electrical substation, sewage waste management facility and underground portal construction.	2 years $(2015-2017)$
Stage 2- Operation	Involves open pit and underground mining operations as well as reclamation upon mine closure.	10 years $(2017-2027)$

Table 1 - Development Stages

Accordingly, this TIS will evaluate traffic impacts over the following study horizon:

| Start of
 Construction: 2015 | 5 Year
 Horizon:
 2022 |
| :---: | :---: | :---: |
| Start of Operations: | |
| 2017 | |

Figure 7 - Study Horizons

4.5 Other Development \& Planned Road Improvements

To our knowledge, there are no other developments within the study area that are under construction, are approved or are in the approval process that will impact Highway 17 and create synergies with traffic generated by the Goliath Gold Project. There are currently no corridor improvements in progress within the vicinity of the Anderson Road turn off.

5 TRAFFIC ANALYSIS METHODOLOGY

5.1 Methodology

In order to determine the impact and necessity for improvements to the Highway 17 corridor, the peak hour volumes (PHV) and distribution for both Highway 17 and the Goliath Gold Project must first be determined. The following methodology is used to determine the peak hour volumes for each of the study horizons:

-Peak Hour Determination

Step 1 •Detemine the Highway 17 and site peak generation hours

-Turning Movement Counts

- Evaluate existing turning movement data at the Anderson Road / Highway 17

Step 2 intersection.

- Model Existing Traffic Conditions

Step 3

- Model existing Highway 17 traffic conditions during the identified peak hours

- Model Background Traffic Conditions

-Determine background traffic growth and model the volumes over the study horizons

-Trip Generation \& Distribution

-Determine site generated traffic volumes and distribution for each development stage using mine production data and plan of operations.

- Model Background + Site Generated Traffic Conditions
- Model the total traffic volume, comprised of background traffic plus site generated traffic, over the study horizons

-Evaluation of Impacts

- Identify any capacity, level of service (LOS) or safety issues and propose suitable geometric improvements.

5.2 Modeling Approach

The capacity analysis for the intersection will be modeled for existing conditions, background growth and background growth + site generated traffic over the identified study horizons. The capacity analysis was completed using the traffic software package Synchro 8 which utilizes the methodology outlined in the Highway Capacity Manual 2010 (HCM) to evaluate the capacity of both unsignalized and signalized intersections.

In the HCM, operating conditions are commonly described in terms of a Level of Service (LOS). LOS is a qualitative measurement describing operating conditions in terms of V / C ratio ${ }^{1}$, vehicle delay, freedom to maneuver, interruptions and driver comfort. There are six defined levels of service ranging from A to F, with LOS ' A ' representing optimal operating conditions and LOS ' F ' representing failing operating conditions. Table 2 provides the HCM's definitions for each LOS.

(LOS)		Delay (sec)	
A	$0-0.6$	$0-10$	Free flow conditions with no delays. Traffic flows at or above the posted speed limit and motorists have complete mobility between lanes. Average vehicle spacing is about 550 ft or 27 car lengths.
B	$0.61-0.70$	$>10-15$	Reasonably free flow with only slight traffic stream restrictions. Average vehicles spacing is about 330 ft or 16 car lengths.
C	$0.71-0.80$	$>15-25$	Stable flow, at or near free flow, posted speed is maintained. Ability to maneuver through lanes is noticeably restricted and lane changes require more driver awarenes. Minimum vehicle spacing is about 220 ft or 11 car lengths. This is the target LOS for most rural highways.
D	$0.81-0.90$	$>25-35$	Approaching unstable flow. Speeds slightly decrease as traffic volumes slightly increase. Ability to maneuver within traffic stream is limited and driver comfort level decreases. Vehicles are spaced about 160 ft or 8 car lengths.
E	$0.91-1.00$	$>35-50$	Unstable flow, operating at capacity. Flow becomes irregular and speed varies rapidly because there are virtually no usable gaps to maneuver in the traffic stream and speeds rarely reach the posted limit. Vehicle spacing is about 6 car lengths. Drivers' comfort level is poor.
F	>1.00	>50	Forced or breakdown flow. Every vehicle moves in lockstep with the vehicle in front of it, with frequent slowing required.

Table 2 - HCM LOS Criteria
${ }^{1} \mathrm{~V} / \mathrm{C}$ ratio is the ratio of volume to capacity for a roadway element.

In this study, the target performance level for all intersection movements is LOS A through C (V/C ratio of $0-0.80$. Unacceptable performance is considered LOS D through F (V/C ratio greater than 0.81). In the General Guidelines for the Preparation of Traffic Impact Studies, December 2009, the MTO recommends that movements with a V/C ratio of 0.85 or greater be given consideration for geometric improvements. Accordingly this study will consider geometric improvements such as dedicated turn lanes or traffic signals if a V/C ratio of 0.80 is exceeded or if an acceptable LOS A-C is not maintained.

6 PEAK HOUR IDENTIFICATION

6.1 Highway 17 Peak Hours

In order to determine the existing AM and PM peak hours for Highway 17, the MTO was contacted for recent traffic count data in the vicinity of the Anderson Road turnoff. The MTO provided traffic count data for Highway 17, approximately 8 km east of the Anderson Road turnoff, which was collected in March, July, and September of 2013. This existing traffic data is included in Appendix 'A'. Table 3 summarizes the peak hour data identified for each season's traffic count.

	Spring Data		Summer Data		Fall Data	
	AM PH	PM PH	AM PH	PM PH	AM PH	PM PH
Sunday	$\begin{gathered} 11 \mathrm{am}-12 \mathrm{pm} \\ (221 \mathrm{vph}) \end{gathered}$	$\begin{gathered} 4 \mathrm{pm}-5 \mathrm{pm} \\ (224 \mathrm{vph}) \end{gathered}$	$\begin{gathered} 11 \mathrm{am}-12 \mathrm{pm} \\ (320 \mathrm{vph}) \end{gathered}$	$\begin{gathered} \text { 4pm - 5pm } \\ (304 \mathrm{vph}) \end{gathered}$	$\begin{gathered} 11 \mathrm{am}-12 \mathrm{pm} \\ (299 \mathrm{vph}) \end{gathered}$	$\begin{gathered} 4 \mathrm{pm}-5 \mathrm{pm} \\ (254 \mathrm{vph}) \end{gathered}$
Monday	$\begin{gathered} 11 \mathrm{am}-12 \mathrm{pm} \\ (170 \mathrm{vph}) \end{gathered}$	$\begin{gathered} 4 \mathrm{pm}-5 \mathrm{pm} \\ (179 \mathrm{vph}) \end{gathered}$	$\begin{gathered} 11 \mathrm{am}-12 \mathrm{pm} \\ (298 \mathrm{vph}) \end{gathered}$	$\begin{gathered} 4 \mathrm{pm}-5 \mathrm{pm} \\ (274 \mathrm{vph}) \end{gathered}$	$\begin{gathered} 11 \mathrm{am}-12 \mathrm{pm} \\ (186 \mathrm{vph}) \end{gathered}$	$\begin{gathered} 4 \mathrm{pm}-5 \mathrm{pm} \\ (267 \mathrm{vph}) \end{gathered}$
Tuesday	$\begin{gathered} 11 \mathrm{am}-12 \mathrm{pm} \\ (169 \mathrm{vph}) \end{gathered}$	$\begin{gathered} 4 \mathrm{pm}-5 \mathrm{pm} \\ (210 \mathrm{vph}) \end{gathered}$	$\begin{gathered} 11 \mathrm{am}-12 \mathrm{pm} \\ (244 \mathrm{vph}) \end{gathered}$	$\begin{gathered} 4 \mathrm{pm}-5 \mathrm{pm} \\ (242 \mathrm{vph}) \end{gathered}$	$\begin{gathered} 11 \mathrm{am}-12 \mathrm{pm} \\ (251 \mathrm{vph}) \end{gathered}$	$\begin{gathered} 4 \mathrm{pm}-5 \mathrm{pm} \\ (298 \mathrm{vph}) \end{gathered}$
Wednesday	$\begin{gathered} \text { 11am }-12 \mathrm{pm} \\ (192 \mathrm{vph}) \end{gathered}$	$\begin{gathered} 4 \mathrm{pm}-5 \mathrm{pm} \\ (239 \mathrm{vph}) \end{gathered}$	$\begin{gathered} \text { 11am-12 pm } \\ (301 \mathrm{vph}) \end{gathered}$	$\begin{gathered} 4 \mathrm{pm}-5 \mathrm{pm} \\ (290 \mathrm{vph}) \end{gathered}$	$\begin{gathered} 11 \mathrm{am}-12 \mathrm{pm} \\ (272 \mathrm{vph}) \end{gathered}$	4pm - 5pm (286 vph)
Thursday	$\begin{gathered} 11 \mathrm{am}-12 \mathrm{pm} \\ (215 \mathrm{vph}) \end{gathered}$	4pm - 5pm (197 vph)	$\begin{gathered} 11 \mathrm{am}-12 \mathrm{pm} \\ (293 \mathrm{vph}) \end{gathered}$	$\begin{gathered} 4 \mathrm{pm}-5 \mathrm{pm} \\ (310 \mathrm{vph}) \end{gathered}$	$\begin{gathered} 11 \mathrm{am}-12 \mathrm{pm} \\ (255 \mathrm{vph}) \end{gathered}$	$\begin{gathered} 4 \mathrm{pm}-5 \mathrm{pm} \\ (274 \mathrm{vph}) \end{gathered}$
Friday	$\begin{gathered} 11 \mathrm{am}-12 \mathrm{pm} \\ (206 \mathrm{vph}) \end{gathered}$	$\begin{gathered} 4 \mathrm{pm}-5 \mathrm{pm} \\ (198 \mathrm{vph}) \end{gathered}$	$\begin{gathered} 11 \mathrm{am}-12 \mathrm{pm} \\ (333 \mathrm{vph}) \end{gathered}$	$\begin{gathered} 4 \mathrm{pm}-5 \mathrm{pm} \\ (352 \mathrm{vph}) \end{gathered}$	$\begin{gathered} 11 \mathrm{am}-12 \mathrm{pm} \\ (275 \mathrm{vph}) \end{gathered}$	$\begin{gathered} 4 \mathrm{pm}-5 \mathrm{pm} \\ (298 \mathrm{vph}) \end{gathered}$
Saturday	$\begin{gathered} 11 \mathrm{am}-12 \mathrm{pm} \\ (228 \mathrm{vph}) \end{gathered}$	$\begin{gathered} 4 \mathrm{pm}-5 \mathrm{pm} \\ (243 \mathrm{vph}) \end{gathered}$	$\begin{gathered} 11 \mathrm{am}-12 \mathrm{pm} \\ (316 \mathrm{vph}) \end{gathered}$	4pm-5pm (274 vph)	$\begin{gathered} 11 \mathrm{am}-12 \mathrm{pm} \\ (250 \mathrm{vph}) \end{gathered}$	$4 \mathrm{pm}-5 \mathrm{pm}$ (260 vph)

Table 3 - Highway 17 AM \& PM Peak Hours
Review of the data reveals that all three seasons share the same AM peak hour of 11 a.m. - 12 p.m. and the same PM peak hour of 4 p.m. - 5 p.m. However, the summer data exhibits the highest overall peak hour volumes and therefore will be referenced as the existing volume profile for conservative purposes.

Highway 17 Peak Hours:

AM Peak Hour: 11 a.m. - 12 p.m.
PM Peak Hour: 4 p.m. - 5 p.m.

6.2 Site Peak Hours

It is important to determine the site generated peak hours to determine if there is overlap with the Highway 17 peak hours. Treasury provided KAL with information on the staffing and operational times of the mine for both Stage 1-Construction and Stage 2 - Operation. This information is summarized in the table below.

Development Stage	Staffing Volume	Shift Change	Anticipated Site Peak Hours
Stage 1 Construction	250 employees on site each day.	Day Shift: 6 a.m. - 6 p.m. No Night Shift	AM PH: 5 a.m. - 6 a.m. PM PH: 6 p.m. -7 p.m.
Stage 2 Operation	200 employees with $1 / 3$ working day shift, $1 / 3$ working night shift and $1 / 3$ on time off	Day shift: 6 a.m. - 6 p.m. Night Shift: 6 p.m. - 6 a.m.	AM PH: 5 a.m. - 6 a.m. PM PH: 6 p.m. -7 p.m.

Table 4 - Anticipated Site Peak Hours

It is worthy to note that Stage 1 and Stage 2 are expected to have the same AM and PM peak hours based on shift start and end times. The table below compares the existing Highway 17 peak hours to the anticipated site peak hours:

Existing Highway 17 Peak Hours	Forecast Site Peak Hours	
AM Peak Hour	11 a.m. -12 p.m.	5 a.m. -6 a.m.
PM Peak Hour	4 p.m. -5 p.m.	6 p.m. -7 p.m.

Table 5 - Highway 17 \& Site Peak Hours
As illustrated in Table 5, the mine's peak hours are not expected to overlap with Highway 17's peak hours. Accordingly, each of the four peak hours will be evaluated for each horizon to determine the impact on Highway 17 traffic flow.

7 TURNING MOVEMENT COUNT

A turning movement count was conducted by Keewatin-Aski Ltd. at the Highway 17 / Anderson Road intersection on February 19, 2014, over a twelve hour period from 7 a.m. to 7 p.m. Table 6 presents the existing turning movement data collected at the Highway 17 / Anderson Road intersection on February 19, 2014.

	NB = Northbound; SB = Southbound; RT = Right Turn; LT = Left Turn										
	Time Interval		Highway 17				Anderson Road				Vehicles Per Hour (VPH)
	From	To	NB RT on Anderson	SB LT on Anderson	Total		$\begin{gathered} \text { RT } \\ \text { on Hwy } \\ 17 \end{gathered}$	LT on Hwy 17	Total		
	$\begin{aligned} & \text { 7:00 } \\ & \text { a.m. } \end{aligned}$	$\begin{aligned} & 8: 00 \\ & \text { a.m. } \end{aligned}$	0	6	6	0\%	2	0	3	33\%	9
	Trucks		0	0			1	0			
	$\begin{aligned} & 8: 00 \\ & \text { a.m. } \end{aligned}$	$\begin{aligned} & 9: 00 \\ & \text { a.m. } \end{aligned}$	0	0	0	0\%	2	1	4	25\%	4
	Trucks		0	0			1	0			
	$\begin{aligned} & \text { 9:00 } \\ & \text { a.m. } \end{aligned}$	$\begin{aligned} & \text { 10:00 } \\ & \text { a.m. } \end{aligned}$	1	1	2	0\%	1	0	1	0\%	3
	Trucks		0	0			0	0			
	$\begin{gathered} 10: 00 \\ \text { a.m. } \end{gathered}$	$\begin{aligned} & \text { 11:00 } \\ & \text { a.m. } \end{aligned}$	0	2	2	0\%	1	0	1	0\%	3
	Trucks		0	0			0	0			
$\begin{aligned} & \text { Hwy } \\ & 17 \mathrm{PH} \end{aligned}$	$\begin{gathered} \text { 11:00 } \\ \text { a.m. } \end{gathered}$	$\begin{aligned} & \text { 12:00 } \\ & \text { p.m. } \end{aligned}$	0	0	0	0\%	2	0	2	0\%	2
	Trucks		0	0			0	0			
	$\begin{aligned} & \text { 12:00 } \\ & \text { p.m. } \end{aligned}$	$\begin{aligned} & 1: 00 \\ & \text { p.m. } \end{aligned}$	0	0	0	0\%	0	0	1	100\%	1
	Trucks		0	0			1	0			
	$\begin{aligned} & \text { 1:00 } \\ & \text { p.m. } \end{aligned}$	$\begin{aligned} & \text { 2:00 } \\ & \text { p.m. } \end{aligned}$	0	2	2	0\%	2	0	3	33\%	5
	Trucks		0	0			1	0			
	$\begin{aligned} & \text { 2:00 } \\ & \text { p.m. } \end{aligned}$	$\begin{aligned} & 3: 00 \\ & \text { p.m. } \end{aligned}$	3	0	4	25\%	3	0	3	0\%	7
	Trucks		1	0			0	0			
	$\begin{aligned} & \text { 3:00 } \\ & \text { p.m. } \end{aligned}$	$\begin{aligned} & 4: 00 \\ & \text { p.m. } \end{aligned}$	0	1	1	0\%	2	1	3	0\%	4
	Trucks		0	0			0	0			
$\begin{aligned} & \text { Hwy } \\ & 17 \mathrm{PH} \end{aligned}$	$\begin{aligned} & 4: 00 \\ & \text { p.m. } \end{aligned}$	$\begin{aligned} & 5: 00 \\ & \text { p.m. } \end{aligned}$	0	2	2	0\%	6	0	6	0\%	8
			0	0			0	0			
	$\begin{aligned} & \text { 5:00 } \\ & \text { p.m. } \end{aligned}$	$\begin{aligned} & \text { 6:00 } \\ & \text { p.m. } \end{aligned}$	1	1	2	0\%	0	0	0	0\%	2

Table 6 - Turning Movement Count: Anderson Road \& Highway 17
Review of the data presented in Table 6 illustrates that the existing turning movement volumes utilizing the Anderson Road intersection are quite small. The busiest hour for the intersection was 7 a.m. - 8 a.m. with 9 vehicles.

These low turning volumes appear to match the present level of low development on Anderson Road. The former MNR Tree Nursery is no longer operational, and that property is now owned by Treasury. KAL counted approximately four (4) private dwelling driveways along Anderson Road up to the intersection with Tree Nursery Road. It is also possible some of these vehicles originated in Wabigoon as Anderson Road eventually merges with the Municipal road network.

These existing AM and PM peak hour turning volumes will be accounted for in the analysis of background growth and total aggregate volumes over the study horizon.

8 MODEL EXISTING TRAFFIC CONDITIONS

The MTO provided 2013 traffic count data for Highway 17, approximately 8 km east of the Anderson Road turnoff. As discussed in Section 6, the summer traffic count data will be used as it exhibits the highest peak hour volumes throughout the seven day count. Review of the MTO's 2013 summer traffic count data in Section 6 indicates that the busiest day in the seven day count was Friday. Accordingly, the traffic volume data for a summer Friday will be used to determine the existing peak hour volume on Highway 17 as this is the conservative scenario.

Since the MTO's traffic data was collected in 2013, a yearly growth factor of $1 \%^{2}$ is applied to both northbound and southbound traffic to forecast the current 2014 Highway 17 traffic volumes. The turning movement data collected by KAL was added to the MTO's data to determine the existing traffic volumes at the Anderson Road intersection. Figure 8 illustrates the existing movement volumes at the intersection.

[^0]
$$
\frac{\text { FIGURE 8- EXISTING HWY } 17 \text { TRAFFIC }}{\text { VOLUMES (2014) }}
$$

consulting engineers \& architect		PROJECT		DESIGN JC
		GOLIATH GOLD PROJECT		DRAWN AK
		TRAFFIC IMPACT STUDY		CHECKED JC
				SCALE N.T.S.
				DATE MAR. 2014
		EXISTING HWY 17 TRAFFIC VOLUMES (2014)	PROJECT NUMBER	DRAWING NUMBER
web: www.keewatin-aski.on.ca			14006	FIGURE 8

An evaluation of the existing traffic volumes for the present year (2014) was completed using the Synchro 8 software package. The LOS and V/C ratio for each movement during the Highway 17 AM and PM peak hours is presented in the table below. The detailed Synchro 8 model output is included in Appendix ' B '.

Traffic Lane	AM Peak Hour			PM Peak Hour		
	LOS	VIC	Delay	Los	V/C	Delay
Hwy. 17 Northbound	A	0.11	0	A	0.09	0
Hwy. 17 Southbound	A	0.00	0	A	0.00	0.1
Anderson Road	A	0.00	9.2	A	0.01	9.1
Overall Intersection LOS	A			A		

Table 7 - LOS for Existing Traffic Conditions

8.1 Evaluation of Impacts

The results of the model analysis for existing traffic conditions indicate the following:

- All traffic lanes maintain a LOS of ' A '
- All V/C ratios are operating well below capacity
- Control delay is negligible and within LOS 'A' tolerances for all approaches.

Accordingly, no geometric improvements or signalization is required to mitigate impacts from existing traffic volumes.

9 MODEL BACKGROUND TRAFFIC CONDITIONS

Over the study horizons, it is anticipated that the background vehicle usage of Highway 17 will increase. This background growth must be estimated for each of the study horizons during both Highway 17's and the mine's unique peak hours.

A yearly growth factor of 1% is applied to the MTO's base 2013 traffic data and KAL's turning movement volumes in order to forecast the background traffic volumes for each of the following study horizons:

- Construction: 2015
- Start of Operations: 2017
- 5 Year Horizon: 2022
- 10 Year Horizon: 2027

Figures 9 through 12 illustrate the forecast background traffic volumes for each study horizon during both Highway 17's and the mine's unique peak hours.

FIGURE 9 - BACKGROUND TRAFFIC :
START OF CONSTRUCTION (2015)

LEGEND	
$\Rightarrow \quad x x$ VPH	DURING HWY 17 AM PH (11am-12pm)
($\mathrm{x} \times$) VPH	DURING HWY 17 PM PH (4pm-5pm)
$\Longrightarrow x x v$	DURING MINE AM PH (5am-6am)
(xx) VPH	DURING MINE PM PH (6pm-7pm)

KEEW ATIN-ASKI LTD. consulting engineers \& architect	clent	PRoJECT		DESIGN JC
		GOLIATH GOLD PROJECT		DRAWN AK
		TRAFFIC IMPACT STUDY		CHECKED Jc
				SCALE N.T.S.
		drawing tite		DATE MAR 2014
		BACKGROUND TRAFFIC	Project number	drawing number
		START OF CONSTRUCTION 2015	14006	FIGURE 9

FIGURE 10 - BACKGROUND TRAFFIC:
START OF OPERATION (2017)

LEGEND	
$\Rightarrow x x$ VPH	DURING HWY 17 AM PH (11am-12pm)
(xx) VPH	DURING HWY 17 PM PH (4pm-5pm)
$\Longleftrightarrow x x$ VPH	DURING MINE AM PH ($5 a m-6 a m$)
(xx) VPH	DURING MINE PM PH (6pm-7pm)

FIGURE 11 - BACKGROUND TRAFFIC:
5 YEAR HORIZON (2022)

FIGURE 12 - BACKGROUND TRAFFIC: 10 YEAR HORIZON (2027)

Synchro 8 was used to evaluate the background traffic volumes for each of the study horizons. The LOS and V/C ratio for each movement during both the AM and PM peak hours is presented in the following tables for each horizon. The detailed Synchro 8 model output is included in Appendix 'B'.

Study Horizon	Traffic Lane	Highway 17 Peak Hours						Mine Peak Hours					
		$\begin{gathered} \text { AM PH } \\ 11 \text { a.m. - } 12 \text { p.m. } \end{gathered}$			$\begin{gathered} \text { PM PH } \\ 4 \text { p.m. }-5 \text { p.m. } \\ \hline \end{gathered}$			$\begin{gathered} \text { AM PH } \\ 5 \mathrm{a} . \mathrm{m} .-6 \mathrm{a} . \mathrm{m} . \end{gathered}$			$\begin{gathered} \text { PM PH } \\ 6 \text { p.m. }-7 \text { p.m. } \\ \hline \end{gathered}$		
		LOS	V/C	Delay (s)	LOS	V/C	Delay (s)	LOS	V/C	Delay (s)	LOS	V/C	Delay (s)
Start of Construction (2015)	Hwy. 17 Northbound	A	0.11	0	A	0.10	0	A	0.03	0	A	0.09	0
	Hwy. 17 Southbound	A	0.00	0	A	0.00	0.1	A	0.00	0	A	0.00	0.1
	Anderson Road	A	0.00	9.2	A	0.01	9.1	A	0.00	0	A	0.00	0
	Overall Intersection LOS	A			A			A			A		
Start of Operations (2017)	Hwy. 17 Northbound	A	0.11	0	A	0.10	0	A	0.03	0	A	0.10	0
	Hwy. 17 Southbound	A	0.00	0	A	0.00	0.1	A	0.00	0	A	0.00	0.1
	Anderson Road	A	0.00	9.2	A	0.01	9.1	A	0.00	0	A	0.00	0
	Overall Intersection LOS	A			A			A			A		
5 Year Horizon (2022)	Hwy. 17 Northbound	A	0.03	0	A	0.10	0	A	0.11	0	A	0.10	0
	Hwy. 17 Southbound	A	0.00	0	A	0.00	0.1	A	0.00	0	A	0.00	0.1
	Anderson Road	A	0.00	9.3	A	0.00	9.2	A	0.00	0	A	0.01	0
	Overall Intersection LOS	A			A			A			A		
10 Year Horizon (2027)	Hwy. 17 Northbound	A	0.12	0	A	0.11	0	A	0.03	0	A	0.11	0
	Hwy. 17 Southbound	A	0.00	0	A	0.00	0.1	A	0.00	0	A	0.00	0.1
	Anderson Road	A	0.00	9.3	A	0.01	9.2	A	0.00	0	A	0.00	0
	Overall Intersection LOS	A			A			A			A		

Table 8 - LOS for Background Traffic Volumes: All Horizons

9.1 Evaluation of Impacts

The results of the model analysis for background traffic volumes indicate the following:

- All traffic lanes maintain a LOS of ' A '
- All V/C ratios are operating well below capacity
- Control delay is negligible and within LOS 'A' tolerances for all approaches.

Accordingly, no geometric improvements or signalization is required to mitigate impacts from background traffic volumes during any of the study horizons.

10 TRIP GENERATION \& DISTRIBUTION

10.1 Trip Generation

The proposed Goliath Gold Project will generate traffic volumes entering and exiting the site at the Anderson Road turnoff and consequently will increase traffic volumes on Highway 17. Ultimately, these site generated volumes will be added to the background volumes, the sum of which will be evaluated by Synchro 8 to determine if an acceptable LOS is maintained or if improvements are required.

Typically, the Trip Generation Manual (TGM) published by the Institute of Transportation Engineers is used to forecast site generated traffic for proposed new developments. The TGM presents trip generation data collected across North America for completed commercial, institutional, industrial and recreational facilities. The relevant data pool is then adjusted to fit the proposed development, typically by square footage or number of employees. This allows for a reasonable estimate of site generated traffic based on a wide sample size of similar type developments.

Upon review of the TGM's land use data, mining industries are not specifically covered by either the light industrial or heavy industrial land use definitions. However, discussions with Treasury provided specific staffing, operational and production information used to establish the following trip generation rates unique to the Goliath Gold Project:

Generator	Description	Construction Stage		Operation Stage	
		Trip Count	Frequency	Trip Count	Frequency
EMPLOYEES	$\frac{\text { Construction Stage: }}{-250 \text { employees }}$ - Day shift only for all employe - 20\% of workforce assumed to Operation Stage: 200 employees 1/3 on Day Shift, 1/3 on Nigh 20\% of shift workforce assum	arpool hift, 1/3 to car	Time Off.		
Employees Trips	Employee vehicle trips	440	Daily	250	Daily
Gold Transport	Removal of gold product from site	0	Daily	4	Weekly
SUPPLIES					
Office	Deliveries and supplies for the mine site office.	10	Daily	10	Daily
Warehouse	Deliveries and supplies for the mine site warehouse.	10	Weekly	10	Weekly
CHEMICALS					

Generator	Description	Construction Stage		Operation Stage	
		$\begin{aligned} & \text { Trip } \\ & \text { Count } \end{aligned}$	Frequency	Trip Count	Frequency
Ore Processing	Assumed based on similar mine TIS's	2	Daily	2	Daily
Explosives	Assumed based on similar mine TIS's	2	Daily	2	Daily
Dust Suppression	Assumed	2	Weekly	2	Weekly
Water Purification	Assumed	4	Monthly	4	Monthly
FUEL					
Back-up Generators	Assumed based on similar mine TIS's	2	Weekly	2	Weekly
Fuel Related Vehicle Trips	Assumed	4	Daily	4	Daily
WASTE					
Waste Disposal	Trips to landfill	2	Daily	4	Daily
INFRASTRUCTURE					
Maintenance	Assumed	2	Monthly	2	Monthly
Repairs	Assumed	2	Monthly	2	Monthly
Inspection	Assumed	2	Annually	6	Annually
CONSTRUCTION					
Construction Deliveries	Goliath project construction operations plan	2000	Annually	0	Annually
Construction Removals from Site	Goliath project construction operations plan	600	Annually	0	Annually
TOTALS	Total Annual Trips	171326	per year	100464	per year
	Total Daily Trips	469	per day	275	per day
	PEAK HOUR VOLUME (Occurs at Shift Start / End)	200	per hour	119	per hour
	AVERAGE NON-PEAK HOUR VOLUME (Safety Factor of 5)	35	per hour	19	per hour

Table 9 - Goliath Gold Project Trip Generation

The peak hour volumes for both the construction and operation stages are comprised of employee trips at the shift start and end times of 5-6 a.m. and 6-7 p.m. The non-employee related trips were used to forecast the average non-peak hour volumes which will overlap with the Highway 17 peak hour volumes during 11 a.m. - 12 p.m. and 4 p.m. -5 p.m. The mine's staffing volume is not expected to change significantly over the duration of operations.

Accordingly, the site generated peak hour traffic volumes are forecast as follows:

	AM PHV (5 a.m. -6 a.m.)	PM PHV (6 p.m. -7 p.m.)	Average Non-Peak Hour Volume
Construction Phase $(2015-2016)$	200	200	35
Operational Phase $(2016-2026)$	119	119	19

Table 10 - Site Generated Peak Hour Volumes

10.2 Trip Distribution

The site generated volumes identified in Table 10 must be distributed to the road network before the volumes can be added to the background growth volumes. Trip distribution is the analysis of the road network that vehicles will take to enter and exit the site and assigning proportionate volumes to those roads.

Typically, a new development generates two major categories of vehicles trips which are distributed differently:

1) Primary Trips: These are trips generated by the site where the site is the primary destination.
2) Pass-by Trips: These are trips generated by the site where the site is only a temporary, intermediate stop made by a vehicle on the way to a final destination.

Commercial establishments such as restaurants and shopping centers typically have a mix of these two trip types which may be distributed to the road network differently. However, in the case of the Goliath Gold Mine, the majority of trips are expected to be generated by employee traffic where the mine site is the primary destination. The site will not offer commercial or retail services and accordingly, pass-by trips of visiting vehicles is expected to be very limited by comparison. Accordingly, for the purposes of this TIS, it will be assumed that all of the site generated traffic are primary trips.

The primary access route to the mine site is Tree Nursery Road via Anderson Road via Highway 17. Accordingly, it will be assumed that all mine traffic accesses the site via Highway 17 at the Anderson Road turnoff.

Discussions with Treasury indicate that 80% of the work force and deliveries are expected to originate from Dryden and the remaining 20% from Wabigoon and further eastwards. This split is expected for both the construction and operation stages of the mine. Accordingly, the following trip distribution percentages are assumed:

Construction Stage Trip Distribution		
Peak Hour	Split	Description
Mine AM Peak Hour (5 a.m. - 6 a.m.	- 80% arrive via SB Hwy. 17 and 20\% via NB Hwy. 17	Trips associated with arrival of the work crew.
Hwy. 17 AM Peak Hour (11 a.m. - 12 p.m.)	- 40% of site traffic arrive via SB Hwy. 17 and 10% via NB Hwy. 17 - 40% of site traffic depart via NB Hwy. 17 and 10% via SB Hwy. 17	Trips associated with non-peak hour site traffic.
Hwy. 17 PM Peak Hour (4 p.m. - 5 p.m.)		
Mine PM Peak Hour (6 p.m. - 7 p.m.	- 80% depart via NB Hwy. 17 and 20\% via SB Hwy. 17	Trips associated with departure of the work crew.
Operations Stage Trip Distribution		
Peak Hour	Split	Description
Mine AM Peak Hour (5 a.m. - 6 a.m.	- 80% of day crew arrive via SB Hwy. 17 and 20\% via NB Hwy. 17 - 80% of night crew depart via NB Hwy. 17 and 20% via SB Hwy. 17	Trips associated with arrival of day crew and departure of night crew
Hwy. 17 AM Peak Hour (11 a.m. - 12 p.m.)	- 40% of site traffic arrive via SB Hwy. 17 and 10% via NB Hwy. 17 - 40% of site traffic depart via NB Hwy. 17 and 10% via SB Hwy. 17	Trips associated with non-peak hour site traffic
Hwy. 17 PM Peak Hour (4 p.m. - 5 p.m.)		
Mine PM Peak Hour (6 p.m. - 7 p.m.	- 80% of night crew arrive via SB Hwy. 17 and 20% via NB Hwy. 17 - 80% of day crew depart via NB Hwy. 17 and 20\% via SB Hwy. 17	Trips associated with arrival of night crew and departure of day crew

Table 11 - Trip Distribution Assumptions
Figures 13 and 14 illustrate the site generated peak hour volumes on the road network with the above distribution percentages applied.

FIGURE 13 - SITE GENERATED TRAFFIC: CONSTRUCTION (2015-2017)

LEGEND	
$\Rightarrow x x \mathrm{VPH}$	DURING HWY 17 AM PH (11am-12pm)
(xx) VPH	DURING HWY 17 PM PH (4pm-5pm)
$\Longrightarrow x x \mathrm{VPH}$	DURING MINE AM PH ($5 a m-6 a m$)
(xx) VPH	DURING MINE PM PH ($6 \mathrm{pm}-7 \mathrm{pm}$)

KEEWATIN-ASKI LTD. consulting engineers \& architect	clent	PRoject		DESIGN JC
		GOLIATH GOLD PROJECT		DRAWN AK
		TRAFFIC IMPACT STUDY		CHECKED Jc
				SCALE N.T.S.
		drawing tite		DATE MAR. 2014
		SITE GENERATED TRAFFIC :	PROUECT NUMBER	drawing number
		CONSTRUCTION (2015-2017)	14006	FIGURE 13

FIGURE 14 - SITE GENERATED TRAFFIC : OPERATION (2017-2027)

LEGEND	
$\Rightarrow \mathrm{xxVPH}$	DURING HWY 17 AM PH (11am-12pm)
(xx) VPH	DURING HWY 17 PM PH (4pm-5pm)
$\Longleftrightarrow x x$ VPH	DURING MINE AM PH ($5 \mathrm{am}-6 \mathrm{am}$)
(xx) VPH	DURING MINE PM PH ($6 \mathrm{pm}-7 \mathrm{pm}$)

11 MODEL BACKGROUND + SITE GENERATED TRAFFIC CONDITIONS

The total traffic volumes for the Highway 17 / Anderson Road intersection is forecast by adding the site generated traffic for each study horizon to the corresponding background traffic for that same year.

The total traffic volumes for each study horizon during both the Highway and Mine AM and PM peak hours are illustrated in Figures 15 through 18. These figures illustrate the combined volumes of the background traffic determined in Section 9 and the site traffic determined in Section 10.

FIGURE 15 - TOTAL TRAFFIC :
START OF CONSTRUCTION (2015)

LEGEND	
$\Rightarrow x x$ VPH	DURING HWY 17 AM PH (11am-12pm)
($\mathrm{x} \times$) VPH	DURING HWY 17 PM PH ($4 \mathrm{pm}-5 \mathrm{pm}$)
$\rightleftarrows \mathrm{xx} \mathrm{VP}$	DURING MINE AM PH ($5 \mathrm{am}-6 \mathrm{am}$)
(xx) VPH	DURING MINE PM PH (6pm-7pm)

FIGURE 16 - TOTAL TRAFFIC : START OF OPERATION (2017)

LEGEND	
$\Rightarrow x x$ VPH	DURING HWY 17 AM PH (11am-12pm)
(xx) VPH	DURING HWY 17 PM PH (4pm-5pm)
$\Longleftrightarrow x x$ VPH	DURING MINE AM PH ($5 \mathrm{am}-6 \mathrm{am}$)
(xx) VPH	DURING MINE PM PH (6pm-7pm)

KEEWATIN-ASKI LTD. consulting engineers \& architect		PROJECT		DESIGN JC	
		GOLIATH GOLD PROJECT		DRAWN AK	
		TRAFFIC IMPACT STUDY		CHECKED JC	
				SCALE N.T.S.	
				Date MAR 2014	
		TOTAL TRAFFIC : START OF OPERATION 2017	PROJECT NUMBER	DRAWING NUMBER E\\| R I F	
web: www.keewatin-aski.on.ca			14006	FIGURE 16	

FIGURE 17 - TOTAL TRAFFIC: 5 YEAR HORIZON (2022)

	END VPH DURING HWY 17 VPH DURING HWY 17 VPH DURING MINE AM VPH DURING MINE PM	(11am-1 $(4 p m-5 p$ (5m-6am) pm-7pm)	
PROJECT GOLIATH GOLD PROJECT TRAFFIC IMPACT STUDY			
			Crickeo Jc
DRAWING TITLE TOTAL TRAFFIC 5 YEAR HORIZON - 2022			SOLE NTS.
		$\begin{array}{\|r\|} \hline \text { PRoIECT Numer } \\ 14006 \\ \hline \end{array}$	FIGURE 17

FIGURE 18 - TOTAL TRAFFIC:
10 YEAR HORIZON (2027)

Synchro 8 was used to evaluate the total traffic volumes for each of the study horizons illustrated in the previous figures. The LOS and V/C ratio for each movement during both the AM and PM peak hours is presented in the following tables for each horizon. The detailed Synchro 8 model output is included in Appendix 'B'.

Study Horizon	Traffic Lane	Highway 17 Peak Hours						Mine Peak Hours					
		$\begin{gathered} \text { AM PH } \\ 11 \text { a.m. - } 12 \text { p.m. } \end{gathered}$			$\begin{gathered} \text { PM PH } \\ 4 \text { p.m. }-5 \text { p.m. } . \end{gathered}$			$\begin{gathered} \text { AM PH } \\ 5 \mathrm{a} . \mathrm{m} .-6 \mathrm{am} . \end{gathered}$			$\begin{gathered} \text { PM PH } \\ 6 \text { p.m. }-7 \text { p.m. } \end{gathered}$		
		LOS	V/C	Delay (s)	LOS	V/C	$\begin{gathered} \hline \text { Delay } \\ \text { (s) } \end{gathered}$	LOS	v/c	$\begin{gathered} \hline \text { Delay } \\ (s) \end{gathered}$	LOS	V/C	Delay (s)
Start of Construction (2015)	Hwy. 17 Northbound	A	0.11	0	A	0.10	0	A	0.05	0	A	0.09	0
	Hwy. 17 Southbound	A	0.01	0.7	A	0.01	0.7	A	0.12	6.7	A	0.00	0.1
	Anderson Road	B	0.03	10	A	0.03	9.9	A	0.00	0	B	0.26	10.8
	Overall Intersection LOS	A			A			A			A		
Start of Operations (2017)	Hwy. 17 Northbound	A	0.11	0	A	0.10	0	A	0.04	0	A	0.10	0
	Hwy. 17 Southbound	A	0.01	0.4	A	0.01	0.4	A	0.04	5	A	0.03	2
	Anderson Road	A	0.02	9.8	A	0.02	9.7	A	0.06	9	B	0.09	10
	Overall Intersection LOS	A			A			A			A		
5 Year Horizon (2022)	Hwy. 17 Northbound	A	0.12	0	A	0.10	0	A	0.04	0	A	0.11	0
	Hwy. 17 Southbound	A	0.01	0.4	A	0.01	0.4	A	0.04	4.9	A	0.03	1.9
	Anderson Road	A	0.02	9.9	A	0.02	9.8	A	0.06	9.1	B	0.09	10.1
	Overall Intersection LOS	A			A			A			A		
10 Year Horizon (2027)	Hwy. 17 Northbound	A	0.12	0	A	0.11	0	A	0.04	0	A	0.11	0
	Hwy. 17 Southbound	A	0.01	0.4	A	0.01	0.4	A	0.04	4.8	A	0.03	1.9
	Anderson Road	A	0.02	10	A	0.02	A	A	0.06	9.1	B	0.09	10.2
	Overall Intersection LOS	A			A			A			A		

Table 12 - LOS for Total Traffic Volumes: All Horizons

11.1 Evaluation of Impacts

The results of the model analysis for total traffic conditions indicate the following:

- All Highway 17 traffic lanes maintain a LOS of ' A ' during all horizons
- Anderson Road maintains a LOS of 'B' or better during all horizons.
- Overall intersection LOS of 'A' during all horizons.
- All V/C ratios are operating well below capacity
- On Highway 17, control delay is negligible and is well within LOS 'A' tolerances. On Anderson Road, control delay is well within LOS 'B' tolerances.

Accordingly, no geometric improvements or signalization is required to mitigate impacts from total traffic volumes during any of the study horizons.

12 SIGHT DISTANCES

The following sight distances were evaluated for this intersection:

1) Approach Sight Distance. Vehicles on Highway 17 must be provided with sufficient sight distance to the intersection in case a vehicle on Anderson Road violates the stop sign. This is established by minimum sight triangles.
2) Turning Movement Sight Distance. Vehicles stopped at Anderson Road waiting to merge with Highway 17 must have sufficient sight distance to approaching vehicles in order to turn and assume highway operating speed before being overtaken.

12.1 Approach Sight Distance

The MTO's Geometric Design Manual (GDM) provides the calculation methodology for determining sight triangles for stop control intersections. The sight triangle is defined by the line of sight from a vehicle on the side road to the vehicle approaching on the highway, and is a function of highway speed, number/width of lanes and right-of-way width. The area within these minimum sight triangles must be free of visual obstructions. The GDM's Table E3-3, shown below, identifies the minimum required sight triangle legs given Highway 17's design speed of $110 \mathrm{~km} / \mathrm{hr}$ and right-of-way width of 32 m on the north side of Highway 17.

Design speed on Highway	Approach Distance 'a' based on 3 s	Visibility Triangle: X \& Y											
		Highway Right of Way (m)											
		20		26		30		35		40		45	
km / h	m	X	Y	X	Y	X	Y	x	Y	x	Y	X	Y
40	30	8	7	5	4	2	2	-	-	-	-	-	-
50	40	15	10	10	7	7	5	3	2	-	-	-	-
60	50	22	11	16	8	12	6	7	4	2	1	-	-
70	60	29	12	22	9	17	7	11	5	5	2	-	-
80	65	32	12	24	9	19	7	13	5	6	2	-	-
90	75	39	14	30	10	24	8	17	6	9	3	2	1
100	85	46	14	36	10	29	8	20	6	12	3	3	1
110	95	53	14	41	11	34	9	24	6	15	4	5	1

Figure 19 - GDM Table E3-3: Minimum Property Requirements at 90° Intersections for Approaches with Stop Control

Figure 20 illustrates the minimum required sight triangles defined by the parameters provided in GDM Table E3-3. Any objects within these triangles that obstruct line of sight are to be removed. A visual obstruction is defined as an object that appears in the cone of vision of the side road driver's eye height $(1.05 \mathrm{~m})$ to the top of the approaching vehicle on the main road (1.3 m height).

Figure 20 - Highway 17 \& Anderson Road Sight Triangles
The approach distances of 100 m and 116 m indicated in the figure above are the minimum distances required by highway traffic to perform an avoidance maneuver should a vehicle on Anderson Road violate the stop sign.

Review of aerial photography at the intersection indicates that there may be some tree clearing and bank height adjustment within the identified sight triangles. It is a recommendation of this report that the Proponent remove any shrubbery, trees or soil mounds that exist within the sight triangles between a height of 1.05 m (car on side road) and 1.3 m (car on Highway 17) and cause a visual obstruction of oncoming traffic.

12.2 Turning Movement Sight Distance

Vehicles stopped at Anderson Road waiting to merge with Highway 17 must have sufficient sight distance to approaching vehicles in order to turn and assume highway operating speed before being overtaken by an approaching vehicle traveling in the same direction. The GDM's Figure E3-6, shown below, identifies this minimum required sight distance to be 330 m , based on Highway 17's design speed of $110 \mathrm{~km} / \mathrm{hr}$.

Figure 21 - GDM Figure E3-6: Sight Distance Requirements for Stopping, Crossing and Turning Movements

A comparison of the actual approach sight distance and minimum required turning sight distance is provided in the table below.

Anderson Road Turning Movement	Actual Approach Sight Distance on Highway 17	Minimum Required Sight Distance
Right Turn on Highway 17 (Northbound)	900 m	432 m
Left Turn on Highway 17 (Southbound)	490 m	432 m

Table 13 - Turning Movement Sight Distance

As illustrated in Table 13, the actual provided sight distance for vehicles stopped at Anderson Road to approaching vehicles on Highway 17 exceeds the minimum required sight distance.

13 ENTRANCE DESIGN

The Anderson Road entrance from Highway 17 was evaluated to determine the following:

1) To determine if the present layout promotes traffic safety given the anticipated increase in traffic volumes which will use the entrance.
2) To determine if the entrance geometric characteristics are in accordance GDM requirements for a truck access entrance.

13.1 Entrance Layout

The intersection of Anderson Road and Highway 17 is an unsignalized ' T ' intersection with stop sign control on Anderson Road. The intersection also forms part of a truck turnaround which provides two access points to Highway 17. Existing signage on the turnaround identifies that it is used as a snow plough turnaround. Figure 22 illustrates the existing intersection layout.

At present, the low traffic volumes using Anderson Road have a choice of which entrance to use depending on which direction the vehicle is approaching on Highway 17. However, once mine construction begins, the volume of traffic on Anderson Road will increase significantly. It is not desirable from a traffic safety standpoint to have two stop sign controlled access points to the same road within 70 m of each other. Accordingly, it is the recommendation of this TIS to close Access Point \#2 to general highway traffic.

Regarding a turnaround for snow ploughs at this intersection, three options are possible:

- Option 1 - Close Access Point \#2 and create a snow plough turnaround area immediately off of Access Point \#1. This would be a cul-de-sac type turnaround with a radius of at least 15 m to satisfy the GDM's minimum turning radius for the Single Unit Truck Design Type vehicle (Table E5-3 in the GDM).
- Option 2 - Break the loop between Access Point \#1 and \#2. Access Point \#2 would function as a snow plough turnaround only, without allowing access to Anderson Road.
- Option 3 - Close Access Point \#2 and operate without a snow plough turnaround.

Whichever option is selected for the snow plough turn around, this TIS recommends that Access Point \#2 is closed to highway traffic prior to the start of mine construction.

13.2 Entrance Geometry

Once mine construction and operations begin, there will be an increase in heavy truck traffic that uses the Anderson Road turnoff. Accordingly, it is necessary to provide adequate entrance geometry to provide a safe access point that can accommodate heavy trucks turning off or merging with Highway 17. According to the MTO's Commercial Site Access Policy \& Standard Designs Manual (CSAS), detail CSAS-23 is provided which specifies the geometric parameters for a side road intersecting with a main road which can accommodate service trucks and buses. Detail CSAS-23 is illustrated below and is also included in Appendix 'C' of this TIS.

Figure 23 - MTO CSAS-23 Truck Access
Detail CSAS-23 is capable of accommodating WB- 15^{3} design vehicles and larger. This is the maximum vehicle size anticipated which would be associated with mine construction and operations.

It is the recommendation of this TIS that Access Point \#1 meet the CSAS-23 standard. This will require a survey in snow free conditions to verify if the existing entrance geometry meets this standard. If the entrance does not meet this standard, then it should be upgraded accordingly.

[^1]
13.3 Entrance Signage

The following existing signage is presently in place at the Highway 17 / Anderson Road intersection:

Sign			
Ra-101 Stop Sign	Stop sign control on Anderson Road		
WA-8B T-Intersection			
Checkerboard Sign		\quad	South side of Highway 17,
:---			
directly facing traffic stopped at			
Anderson Road.			

Table 14 - Existing Intersection Signage

Based on the results of the Synchro 8 model analysis, dedicated turn lanes or traffic signals are not required to maintain an acceptable LOS of 'A' on Highway 17 during all study horizons. Accordingly, the existing signage that is in place will remain applicable for the stop sign control intersection; additional regulatory signage is not anticipated unless requested by the MTO.

14 ILLUMINATION

Illumination requirements for a highway as a result of a proposed development are assessed in accordance with MTO Directive PLNG-B-05.

Directive PLNG-B-05 provides warrant criteria for partial illumination of an intersection on a nonfreeway highway (Form 3). The warrant criteria considers various traffic and geometry factors which are scored using the MTO's rating system. If the sum total of the category scores is 62 points or higher, then partial illumination is warranted. The following intersection criteria were evaluated and scored according to the Directive PLNG-B-05:

Figure 24 - MTO Form 3 Evaluation Criteria for Partial Illumination

The MTO Form 3 illumination scorecard taken from PLNG-B-05 is included in Appendix 'D'. The sum total of points scored for the Highway 17 / Anderson Road intersection is 64.6 points. Since this exceeds the minimum warrant score of 62 points, partial illumination is warranted for the intersection.

Aside from Form 3, good engineering judgment suggests that illumination should be provided for the intersection, since the mine's peak traffic hours are anticipated to occur during low light hours (5-6 am and 6-7 pm).

Directive PLNG-B-05 stipulates that a minimum of two luminaires is required for partial illumination of an intersection where warranted. The luminaires used must conform to the MTO Luminaire Photometric List and the lighting pole design / setback distances must conform with MTO standards. It is recommended that Treasury seek a detailed design for the illumination layout and intensity and submit the design to the MTO for review and approval. The suggested locations for partial illumination lighting is illustrated in Figure 25. These locations were selected based on the partial illumination layout presented in Figure 1 of Directive PLNG-B-05.

15 CONCLUSIONS \& RECOMMENDATIONS

This study has evaluated the impacts that the Goliath Gold Project is forecast to have on traffic volumes and highway function at the intersection of Highway 17 and Anderson Road. The primary conclusions and recommendations of this study are as follows:

Conclusions

1) Highway 17 Peak Hours: Based on MTO traffic data collected in 2013, the AM and PM peak hours for Highway 17 were determined to be 11 a.m. -12 p.m. and 4 p.m. -5 p.m. respectively.
2) Site Peak Hours: Based on Treasury's anticipated staffing and operation plan, the anticipated AM and PM peak hours for the mine during both construction and operation stages are 5 a.m. - 6 a.m. and 6 p.m. - 7 p.m. respectively.
3) Turning Movement Count: Based on the results of KAL's turning movement count conducted on February 19, 2014, the existing turning volumes at the intersection are very low (only 9 turning movements during the busiest hour)
4) Model Existing Conditions: The intersection LOS was evaluated using Synchro 8 modeling software for the present year (2014) during the Highway 17 AM and PM peak hours. The results of the model analysis indicate the following:

- All traffic lanes maintain a LOS of ' A '
- All V/C ratios are operating well below capacity
- Control delay is negligible and within LOS ' A ' tolerances for all approaches.
- No geometric improvements or signalization is required to mitigate impacts from existing traffic volumes.

5) Model Background Conditions: The intersection LOS for background traffic volumes was modeled with Synchro 8 for 2015 (Start of Construction), 2017 (Start of Operation), 2020 (5 Year Horizon) and 2027 (10 Year Horizon). A 1\% yearly growth factor was applied to the existing base volumes. Both the Highway 17 and mine peak hours were modeled for each study year. The results of the model analysis indicate the following:

- All traffic lanes maintain a LOS of ' A '
- All V/C ratios are operating well below capacity
- Control delay is negligible and within LOS 'A' tolerances for all approaches.
- No geometric improvements or signalization is required to mitigate impacts from background traffic volumes during any of the study horizons.

6) Model Background + Site Generated Traffic Conditions: Site generated traffic volumes were estimated based on Treasury's staffing, operational and production data for the Goliath Gold Project. The intersection LOS for background + site generated traffic volumes was then modeled with Synchro 8 for 2015 (Start of Construction), 2017 (Start of Operation), 2020 (5 Year Horizon) and 2027 (10 Year Horizon). Both the Highway 17 and mine peak hours were modeled for each study year. The results of the analysis indicate the following:

- All Highway 17 traffic lanes maintain a LOS of 'A' during all horizons
- Anderson Road maintains a LOS of 'B' or better during all horizons.
- Overall intersection LOS of 'A' during all horizons.
- All V/C ratios are operating well below capacity
- On Highway 17, control delay is negligible and is well within LOS 'A' tolerances. On Anderson Road, control delay is well within LOS 'B' tolerances.

7) Sight Distances: The Approach Sight Distance and Turning Movement Sight Distance were evaluated for the intersection with the following findings:

- Regarding Approach Sight Distance, sight triangles for the intersection were established. Review of aerial photography at the intersection indicates that there may be some tree clearing and bank height adjustment within the identified sight triangles. It is a recommendation of this study that the Proponent remove any shrubbery, trees or soil mounds that fall within the sight triangles and cause a visual obstruction of oncoming traffic.
- Regarding Turning Movement Sight Distance, the actual provided sight distance for vehicles stopped at Anderson Road to approaching vehicles on Highway 17 exceeds the minimum required sight distance.

8) Entrance Design: The existing Anderson Road 'T' intersection with Highway 17 was evaluated with the following findings:

- At present, the Anderson Road intersection forms part of a snow plough turnaround which provides two access points to Highway 17. Once mine construction and operation commences, it is not recommended from a traffic safety standpoint to have two access points within 70 m of each other. The north access point should be closed to highway traffic prior to the start of mine construction.
- Once mine construction and operations begin, there will be an increase in heavy truck traffic that uses the Anderson Road turnoff. Accordingly, it is necessary to provide adequate entrance geometry to safely accommodate heavy trucks turning off or merging with Highway 17. Accordingly, the existing geometry of the Anderson Road entrance should be surveyed in snow free conditions to determine if it meets the requirements of the MTO's CSAS-23 entrance standard. If the entrance does not meet this standard, then it should be upgraded accordingly. The MTO's CSAS-23 entrance standard is capable of accommodating WB-15 design vehicles and larger (tractor-semitrailer combination).

9) Entrance Signage: The existing intersection signage was inventoried and evaluated. Based on the results of the Synchro 8 model analysis, dedicated turn lanes or traffic signals are not required to maintain an acceptable LOS of 'A' on Highway 17 during all study horizons. Accordingly, the existing signage that is in place will remain applicable for the stop sign control intersection. Additional regulatory signage is not anticipated unless requested by the MTO.
10) Illumination: Illumination requirements for the intersection were assessed in accordance with MTO Directive PLNG-B-05 which provides warrant criteria based on various traffic and geometry factors. Based on the warrant analysis, partial illumination is warranted for the intersection. Accordingly, a minimum of two luminaries are required for partial illumination in accordance with Directive PLNG-B-05. The luminaries, pole design, locations and setback distances must conform with MTO standards.

Recommended Intersection Improvements

1) Clearing of any shrubbery, trees, soil mounds, etc. that fall within the sight triangles identified in Section 12.1 which cause a visual obstruction between vehicles on Anderson Road and Highway 17.
2) Anderson Road presently has two access points as part of a snow plough turn around. Implement one of the following options:

- Option 1-Close the north access point and create a snow plough turnaround area immediately off of the south access point.
- Option 2 - Break the loop between south and north access points. The north access point would function as a snow plough turnaround only, without allowing access to Anderson Road.
- Option 3 - Close the north access point and operate without a snow plough turnaround.

3) Upgrade the Anderson Road entrance to the MTO's CSAS-23 standard (if verified deficient).
4) Provide two luminaries for partial illumination of the intersection in accordance with PLNG-B-05. Provide detailed illumination design to the MTO for review and approval prior to installation.

In conclusion, it is forecast that the intersection will continue to perform at a LOS 'A' during mine construction and operation without the need for turning lanes or traffic signals. The recommended improvements will increase sight distances, illumination and turning radii; improving the overall level of safety at the intersection once mine operations begin.

We trust the foregoing report satisfies Treasury's requirements for forecasting the impact that the new Goliath Gold Project will have on the performance of the Highway 17 / Anderson Road intersection.

Should you require additional information pertaining to this report, please do not hesitate to call.

KEEWATIN-ASKI LTD.

consulting engineers \& architect
<Original signed by>

Joe Cospito, P.Eng.

MTO HIGHWAY 17 TRAFFIC COUNT DATA

Ministry of Transportation Engineering Office

Traffic Section
Northwestern Region
615 South James Street
Thunder Bay, Ontario
P7E 6P6
PH: 807-473-2138
FAX: 807-473-2168

Ministère des Transports
Bureau de genie

Section de la circulation routière 615 rue James
3ieme étage
Thunder Bay (Ontario) P7E 6P6
Tél: (807) 473-2061
Télé: (807) 473-2168

January 29, 2014

Mr. Joe Cospito
Keewatin-Aski Ltd.
Box 510
61 Queen Street
Sioux Lookout, Ontario
P8T 1A8

Re: Traffic Information Request Hwy 17, Near Anderson Lake Rd

This is further to your request of January 28, 2014, enclosed are unofficial 2013 (spring, summer, fall) traffic data on Highway 17, 3.2 km W of Hwy 72 (approximately 8 km E of Anderson Lake Rd)

If you require clarification, pls contact me at your convenience.
Yours truly,
<Original signed by>

Nancy Chu-McKercher
Traffic Supervisor
attach

(T) rathe E nginevring (5) oftare		Weekly Volume Summary					Wed, Jan 29, 2014	
Location: 3.2 KM W OF HWY 72								
LHRS/Offset:	: 22030 /			North	west			
Pattern Type:	: Low To				Hwy.	S\#: 177		
Count Direction:	NB		Report Dates:		Jul 15, 2013	to Jul 21, 2013		
Hour Interval	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon
	13/07/15	16	17	18	19	20	21	22
0:00-1:00		24	24	27	18	24	16	19
1:00-2:00		20	25	26	16	23	16	13
2:00- 3:00		30	29	17	30	25	14	6
3:00-4:00		17	22	37	21	19	18	17
3:00- 4:00		17	32	17	24	34	14	34
5:00-6:00		33	46	43	42	27	32	38
5:00- 6:00		63	82	88	59	56	46	46
7:00-8:00		95	122	111	81	89	57	92
8:00-9:00		123	133	132	96	130	72	86
9:00-10:00		108	118	112	143	140	101	120
10:00-11:00		128	117	113	154	130	118	126
11:00-12:00		123	146	144	164	148	123	118
AM Total	0	781	896	867	848	845	627	715
12:00-13:00	141	131	142	151	168	129	136	
13:00-14:00	152	146	121	149	187	148	126	
14:00-15:00	142	146	148	151	160	153	137	
15:00-16:00	171	135	132	142	150	172	155	
16:00-17:00	131	119	142	148	147	151	139	
17:00-18:00	129	124	146	132	166	132	122	
18:00-19:00	126	90	94	123	144	111	122	
19:00-20:00	69	71	87	79	94	97	94	
20:00-21:00	66	72	62	67	97	59	71	
21:00-22:00	51	59	44	72	75	48	65	
22:00-23:00	30	36	50	43	66	56	45	
23:00-24:00	28	27	40	36	58	37	27	
PM Total	1,236	1,156	1,208	1,293	1,512	1,293	1,239	0
24 Hr . Total	1,236	1,937	2,104	2,160	2,360	2,138	1,866	715
Noon - Noon	2,017		2,052	2,075	2,141	2,357	1,920	1,954
Page 1 of 3								

SYNCHRO 8 MODEL REPORTS

Total Traffic - Start of Operations 2017
Highway 17 \& Anderson Road

	\cdots	+	k	5	近	\%	
Movement	SEL	SET	NWT	NWR	SWL	SWR	
Lane Configurations		\uparrow	个		*		
Volume (veh/h)	44	147	150	11	13	52	
Sign Control		Free	Free		Stop		
Grade		0\%	0\%		0\%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	48	160	163	12	14	57	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type		None	None				
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC , conflicting volume	175				424	169	
$\mathrm{vC1}$, stage 1 conf vol							
vC 2 , stage 2 conf vol							
vCu , unblocked vol	175				424	169	
tC , single (s)	4.1				6.4	6.2	
$\mathrm{tC}, 2$ stage (s)							
tF (s)	2.2				3.5	3.3	
p0 queue free \%	97				98	94	
cM capacity (veh/h)	1401				566	875	
Direction, Lane \#	SE 1	NW 1	SW 1				
Volume Total	208	175	71				
Volume Left	48	0	14				
Volume Right	0	12	57				
cSH	1401	1700	789				
Volume to Capacity	0.03	0.10	0.09				
Queue Length 95th (m)	0.8	0.0	2.4				
Control Delay (s)	2.0	0.0	10.0				
Lane LOS	A		B				
Approach Delay (s)	2.0	0.0	10.0				
Approach LOS B							
Intersection Summary							
Average Delay			2.5				
Intersection Capacity Utilization			32.7\%		ICU Level o	Service	A
Analysis Period (min)			15				

Total Traffic - 5 Year Horizon 2022
Highway 17 \& Anderson Road

Total Traffic - 5 Year Horizon 2022

	\cdots	-	k	5	$\underline{4}$	\%	
Movement	SEL	SET	NWT	NWR	SWL	SWR	
Lane Configurations		*	个		*		
Volume (veh/h)	44	154	157	12	13	52	
Sign Control		Free	Free		Stop		
Grade		0\%	0\%		0\%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	48	167	171	13	14	57	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type		None	None				
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	184				440	177	
$\mathrm{vC1}$, stage 1 conf vol							
vC 2 , stage 2 conf vol							
vCu , unblocked vol	184				440	177	
tC , single (s)	4.1				6.4	6.2	
tC, 2 stage (s)							
tF (s)	2.2				3.5	3.3	
p0 queue free \%	97				97	93	
cM capacity (veh/h)	1391				555	866	
Direction, Lane \#	SE 1	NW 1	SW 1				
Volume Total	215	184	71				
Volume Left	48	0	14				
Volume Right	0	13	57				
cSH	1391	1700	778				
Volume to Capacity	0.03	0.11	0.09				
Queue Length 95th (m)	0.9	0.0	2.4				
Control Delay (s)	1.9	0.0	10.1				
Lane LOS	A		B				
Approach Delay (s)	1.9	0.0	10.1				
Approach LOS			B				
Intersection Summary							
Average Delay			2.4				
Intersection Capacity Utilization			33.5\%		CU Level o	Service	A
Analysis Period (min)			15				

DRAWINGS

MNISTRY OF TRANSPOM,ATION ONTARIO

CSAS - 23

TRUCK ACCESS

ALL TRUCK DESIGN VEHICLES

DATE: 1994-01 REV:
\square AREA TO BE PAVED

NOTES:

Loyout and curve offsets shown represent design without taper: For design with taper these values have to be calculoted.

The compound curve is based on the manaeuvre of a WB-15 design vehicle. However the entrance will occommodote all larger design vehicles.

TAPER LENGTH					
Eased Design km / h 60 70 80 90 100 Taper. m 50 60 70	75	80			

MTO FORM 3 NON-FREEWAY INTERSECTION ILLUMINATION (PLNG-B-05)

FORM 3
NON-FREEWAY - INTERSECTION ILLUMINATION
Highway:_Highway 17 WP No.: KAL Project 14006
Location: \qquad Highway 17 at Anderson Road Name:_Goliath Gold Project TIS

Date: March 2014

CLASSIFICATIONFACTOR	RATING (i)					UNLIT WEIGH T (A)	$\begin{array}{\|c} \text { LIGHT } \\ \text { ED } \\ \text { WEIGH } \\ \text { T } \\ \text { (B) } \end{array}$	$\begin{aligned} & \text { DIFF. } \\ & (\mathrm{A}-\mathrm{B}) \end{aligned}$	$\begin{aligned} & \text { SCORE } \\ & \text { [RATING } \\ & \mathrm{X}(\mathrm{~A}-\mathrm{B})] \end{aligned}$
	1	2	3	4	5				
Geometric Factors Number of Legs		3	4	5	6 or more (including traffic circles)	3.0	2.5	0.5	1
Approach Lane Width (m)	3.75	3.50	3.25	3.00	<3.00	3.0	2.5	0.5	0.5
Turn Lanes	no turn lanes	left turn lanes on major legs	left turn lanes on all legs, right turn lanes on major legs	left and right turn lanes on major legs	left and right turn lanes on all legs	2.0	1.0	1.0	1
Approach Sight Distance (m)	> 210	151-210	91-150	60-90	< 60	2.0	1.8	0.2	0.2
Grades on Approach Streets	< 3%	3.0-3.9\%	4.0-4.9\%	5.0-6.9\%	7\%	3.2	2.8	0.4	0.4
Curvature on Approach Legs m (deg.)	$\begin{gathered} >600 \\ \left(<3.0^{\circ}\right) \end{gathered}$	$\begin{gathered} 600-290 \\ \left(3.0-6.0^{\circ}\right) \end{gathered}$	$\begin{gathered} 289-220 \\ \left(6.1-8.0^{\circ}\right) \end{gathered}$	$\begin{gathered} 219-170 \\ \left(8.1-10.0^{\circ}\right) \end{gathered}$	$\begin{aligned} & <170 \\ & \left(>10^{\circ}\right) \end{aligned}$ (Anderson Road Approach)	13.0	5.0	8.0	40
Parking in Vicinity of Intersection	prohibited both sides	loading zones only	off-peak only	permitted one side only	permitted both sides	0.2	0.1	0.1	0.1
							Geom To	etric al	43.2
Operational Factors Operating Speed on Approach Legs (km/hr)	40 or less	50	55	65	70 or greater	1.0	0.2	0.8	4
Type of Control	traffic signal control (always partial illumination)			4-way stop control	stop control to minor legs or no control	3.0	2.0	1.0	5
Level of Service (ii) (any dark hour)	A	B	C	D	E, F	1.2	0.2	1.0	1
Total Pedestrian Volume (peds/night crossing)	0-10	11-50	51-100	101-200	> 200	1.5	0.5	1.0	1
							Opera To	ional al	11

FORM 3
NON-FREEWAY - INTERSECTION ILLUMINATION
Highway:_Highway 17 WP No.: KAL Project 14006
Location: \qquad Name: \qquad Date: March 2014

CLASSIFICATION FACTOR	RATING (i)					$\begin{gathered} \text { UNLIT } \\ \text { WEIGH } \\ T \\ \text { (A) } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { LIGHT } \\ \text { ED } \\ \text { WEIGH } \\ \text { T } \\ \text { (B) } \\ \hline \end{array}$	$\begin{aligned} & \text { DIFF. } \\ & (\mathrm{A}-\mathrm{B}) \end{aligned}$	SCORE [RATING $X(A-B)]$
	1	2	3	4	5				
Environmental Factors Adjacent Development	none	1 quad	2 quad	3 quad	4 quad	0.5	0.3	0.2	0.2
Type of Development near Intersection	undeveloped	residential	50\% residential 50\% industrial or commercial	industrial or commercial	strip industrial or commercial	0.5	0.3	0.2	0.2
Illumination adjacent to intersection	none	1 quad	2 quad	3 quad	4 quad	3.0	1.0	2.0	2.0
							Environmental Total		2.4
Accidents \% of Night-to-Total Accidents (3 yr. avg.) (iii)	$\begin{gathered} <20 \% \\ \text { (Assumed) } \end{gathered}$	20-30\%	31-40\%	41-50\%	> 50\%	10.0	2.0	8.0	8
							Acciden	ts Total	8

Benefit Cost Ratio (B/C)

i. A rating of between 1 and 5 shall be assigned for each factor in the FORM depending on the conditions that are encountered by motorists on the roadway. The higher the rating, the more critical the need for illumination with regard to that particular factor.
ii. Use LOS methodology approved by the MTO. If not available for unsignalized intersection, use Level of Service C.
iii. For night-to-total accident ratio, accidents during darkness are used (including dusk/dawn).
Iv. The number of points for the warranting condition is based on 50% of the total points attainable, if all factors were rated 5 .

Note: Worst case scenarios should be considered when assigning the ratings. For example, a section of roadway could have rush hour volumes during the hours of darkness in wintertime.
Partial illumination is always installed at signalized intersections.
Full illumination of intersection is installed when mainline has continuous illumination.

[^0]: ${ }^{2}$ Highway 17 yearly growth rate of 1% provided by Nancy Chu-McKercher, Traffic Supervisor, Ministry of Transportation, March 4, 2014 email.

[^1]: ${ }^{3}$ Per Table E5-1 of the GDM a WB-15 vehicle is a tractor-semitrailer combination vehicle with a wheel base of 15.2 m .

