Appendix 15-G

Amphibian Baseline Report

NWP COAL CANADA LTD

Amphibian Baseline Report

Crown Mountain Coking Coal Project

Table of Contents

Acronyms, Abbreviations, Definitions

Executive Summary

1.0	Introduc	ction 1
	1.1	Project Overview1
	1.2	Purpose and Objectives of the Baseline Study2
	1.3	Applicable Legislation and Guidelines4
	1.3.1	Federal4
	1.3.2	Provincial4
	1.3.3	Policies and Guidelines5
2.0	Baseline	e Program Overview 8
	2.1	Study Areas8
	2.2	Wetlands and Ephemeral Sites11
	2.3	Amphibians of the LSA
3.0	Method	s 15
	3.1	Wetland Perimeter Searches19
	3.2	Evening Roadside Transect Surveys19
	3.3	Environmental DNA20
	3.4	Emergence Surveys21
	3.5	Tissue and Water Sample Collection
	3.6	Data Analysis22
	3.6.1	Amphibian Community Data22
	3.6.2	Tissue and Water Quality Data23
4.0	Results	24
	4.1	Amphibian Community24
	4.1.1	Wetland Perimeter Searches31
	4.1.2	Evening Roadside Transect Surveys

5.1 5.2 Summa	Amphibian Habitat and Distribution	
5.1	Amphibian Habitat and Distribution	51
Discussi	ion	51
4.3.2	Water Quality at Tissue Sampling Locations	48
4.3.1	Comparison to Tissue Guideline Values	47
4.3	Tissue and Water Sample Collection	46
4.2	Amphibian Habitat and Distribution	34
4.1.4	Emergence Surveys	34
4.1.3	Environmental DNA	33
	4.1.4 4.2 4.3 4.3.1 4.3.2	 4.1.4 Emergence Surveys 4.2 Amphibian Habitat and Distribution 4.3 Tissue and Water Sample Collection 4.3.1 Comparison to Tissue Guideline Values 4.3.2 Water Quality at Tissue Sampling Locations Discussion

Figures

Figure 1: Project Location	3
Figure 2: Amphibian Baseline Program Study Areas	10
Figure 3: Wetlands and Ephemeral Sites in the LSA	12
Figure 4: Amphibian Baseline Surveys	18
Figure 5: Western Toad Survey Observations	27
Figure 6: Columbia Spotted Frog Observations	28
Figure 7: Wood Frog Observations	29
Figure 8: Long-toed Salamander Observations	30
Figure 9: Amphibian Species Richness in the LSA	35
Figure 10. Amphibian Breeding Species Richness in the LSA	36

Tables

Table 2-1: Amphibian Species Potentially Present in the LSA (BC CDC, 2019b)
Table 3-1: Surveys Completed for the Amphibian Baseline Program
Table 4-1: Amphibian Detections in the LSA24
Table 4-2: Amphibian Observations per Survey Site
Table 4-3: Amphibians Observed during Wetland Perimeter Surveys, 2014 and 2017-201931
Table 4-4: Perimeter Search Amphibian Detections
Table 4-5: Western Toad eDNA Results for Wetlands Sampled
Table 4-6: Amphibians Observed during Emergence Surveys, September 201934
Table 4-7: Alexander Creek Watershed Amphibian Survey Results and Habitat Characteristics 38
Table 4-8: Grave Creek Watershed Amphibian Survey Results and Habitat Characteristics40
Table 4-9: Elk River Watershed Amphibian Observations and Habitat Characteristics
Table 4-10: Harmer Creek Watershed Amphibian Observations and Habitat Characteristics45
Table 4-11: Amphibian Tissue and Water Quality Sample Collection
Table 4-12: Amphibian Tissue Concentrations and Guideline Values for Selenium, Chromium, and Vanadium47
Table 4-13: Water Quality Guideline Exceedances at Sampled Wetlands in the LSA

Appendices

- A Wetland and Ephemeral Area Locations
- B eDNA Methods
- C Amphibian Survey Data
- D Amphibian eDNA Data
- E Amphibian Tissue Data
- F Water Quality Data
- G Parameter-Dependent Water Quality Guidelines

Acronyms and Abbreviations

AIR Application Information Requirements

BC British Columbia

BC CDC British Columbia Conservation Data Centre
BC EAA British Columbia Environmental Assessment Act
BC MOE British Columbia Ministry of Environment

BC WQGs British Columbia Approved Water Quality Guidelines
BC WWQGs British Columbia Working Water Quality Guidelines

BEC Biogeoclimatic Ecosystem Classification

BU Beaufort

BV Labs Bureau Veritas Group

CCME Canadian Council of Ministers for the Environment

CEAA Canadian Environmental Assessment Act

COSEWIC Committee on the Status of Endangered Wildlife in Canada

CWQG Canadian Water Quality Guidelines for the Protection of Aquatic Life

DL Detection Limit dw dry weight

EA Environmental Assessment

ECCC Environment and Climate Change Canada

eDNA Environmental DNA

EIS Environmental Impact Statement
ESSF Engelmann Spruce (Subalpine Fir)

ESSFdkp Dry Cool Parkland Engelmann Spruce Subalpine Fir
ESSFdkw Dry Cool Woodland Engelmann Spruce Subalpine Fir
ESSFdk1 Elk Dry Cool Engelmann Spruce Subalpine Fir Elk Dry

EVWQP Elk Valley Water Quality Plan GPS Global Positioning System

ha hectare km kilometer

LSA Local Study Area

m meters

mg/kg milligram per kilogram
mg/L milligram per Liter
MS Montane Spruce

MSdw Dry Warm Montane Spruce NWP NWP Coal Canada Ltd.

RIDC Resource Inventory Standards Committee

RSA Regional Study Area
SARA Species at Risk Act

Teck Resources Limited

TEM Terrestrial Ecosystem Mapping

US EPA United States Environmental Protection Agency

VC Valuable Component

wt wet weight

WQGs Water Quality Guidelines

Executive Summary

NWP Coal Canada Ltd (NWP) is proposing to develop the Crown Mountain Coking Coal Project ("the Project"), an open pit metallurgical coal mine in the Elk Valley coal field of southeastern British Columbia. The proposed Project is situated proximate to existing metallurgical coal mines, including the Teck Resources Limited (Teck) Elkview Operations located 8 km to the southwest and Line Creek Operations located 12 km to the north. The mine is expected to produce approximately 10,150 tonnes per day and up to 4.0 million run-of-mine tonnes per year for 15 years.

The Project is reviewable under both the federal *Canadian Environmental Assessment Act* (2012) and provincial *Environmental Assessment Act* (2002). An amphibian baseline program was conducted in 2014, 2017, 2018, and 2019 to support the Project baseline studies and the development of an environmental assessment. The baseline program focused on collecting information to document amphibian habitat occupancy (presence/non-detect), extent of occurrence and abundance, and amphibian habitat availability and distribution within and surrounding the Project area. This baseline report presents a summary of the information gathered through the amphibian baseline program and provides regional context based on publically-available information. Amphibians are highly susceptible to water quality issues and are often used as indicator species for aquatic health. As such, information gathered for this baseline report will be used to assess potential effects on amphibians and amphibian habitat as a result of proposed Project development and activities.

Based on publically available information, five amphibian species have the potential to occur in the vicinity of the Project: Columbia Spotted Frog (*Rana luteiventris*), Wood Frog (*Lithobates sylvaticus*), Western Toad (*Anaxyrus boreas*), Long-toed Salamander (*Ambystoma macrodactylum*), and Northern Pacific Treefrog (*Pseudacris regilia*). Western Toad is the only at-risk amphibian species suspected to occur in the area; this species is listed as Special Concern under Schedule 1 of the federal *Species at Risk Act* (2002), but is not considered to be sensitive at the provincial level.

Amphibian baseline survey methods included wetland perimeter searches, evening transect and road surveys, environmental DNA (eDNA) collection for Western Toad, tissue collection, and emergence surveys. Thirty-one wetlands and twenty-three ephemeral areas in the Alexander Creek, Elk River, Grave Creek, and Harmer Creek watersheds were visited over the course of the amphibian baseline program. Five wetlands and three ephemeral areas surveyed are located within the Project footprint. Tissue and water quality sampling was conducted at four wetlands where amphibians were observed to be abundant. Nineteen wetlands, two ephemeral areas, and six incidental areas had amphibian occupancy. Survey effort totalled 210 visits and 160 person-hours over the 4 survey years, and 4 of the 5 amphibian species suspected to be present in the LSA were documented: Western Toad, Columbia Spotted Frog, Wood Frog, and Long-toed Salamander. Northern Pacific Treefrog were not observed visually or through auditory surveys, nor were any other amphibian species encountered. A total of 134 Columbia Spotted

Frog, 26 Western Toad, 110 Wood Frog, and 151 Long-toed Salamander were detected in the study area.

Western Toad were the mostly widely distributed species, followed by Wood Frog, Columbia Spotted Frog, and Long-toed Salamander. Western Toad were most frequently documented in the Alexander Creek, Grave Creek, and Elk River watersheds. Columbia Spotted Frog, Wood Frog, and Long-toed Salamander were most frequently documented in the Elk River and Grave Creek watersheds, with limited observations in the Alexander Creek watershed. Only single observations of Long-toed Salamander and Western Toad occurred in the Harmer Creek watershed.

Columbia Spotted Frog, Wood Frog, and Long-toed Salamander egg masses and tadpoles were documented in the Elk River watershed, indicating this area is used as breeding habitat. Western Toad were only observed in the toadlet and adult life stages; however, given known migration distances from breeding to foraging and overwintering habitats, it is likely they are also breeding in the study area.

Most amphibian observations were recorded in marshes and shallow water wetlands with habitat characteristics such organic surface substrates, emergent vegetation cover, and warm temperatures. Western Toad adults and toadlets were found in wetlands, ephemeral areas, and forested areas throughout the LSA. Amphibian were commonly identified in the Alexander Creek (wetland survey sites WL4), Grave Creek (wetland survey sites WL11.1 and WL11.2), and Elk River (wetland survey sites WL13, WL15, WL16, and WL17) watersheds, with evidence of breeding commonly observed at wetland survey site WL4 in the Alexander Creek watershed and sites WL16 and WL17 in the Elk River watershed.

Selenium, chromium, and vanadium concentrations were not elevated in amphibian tissues collected when compared to guideline and reference values. Water quality at amphibian tissue sampling locations in the LSA showed single exceedances of three parameters (i.e., ammonia, fluoride, iron) above the long-term Canadian Water Quality Guidelines and only one exceedance of the short-term British Columbia Water Quality Guideline for dissolved iron.

Introduction

Project Overview 1.1

1.0

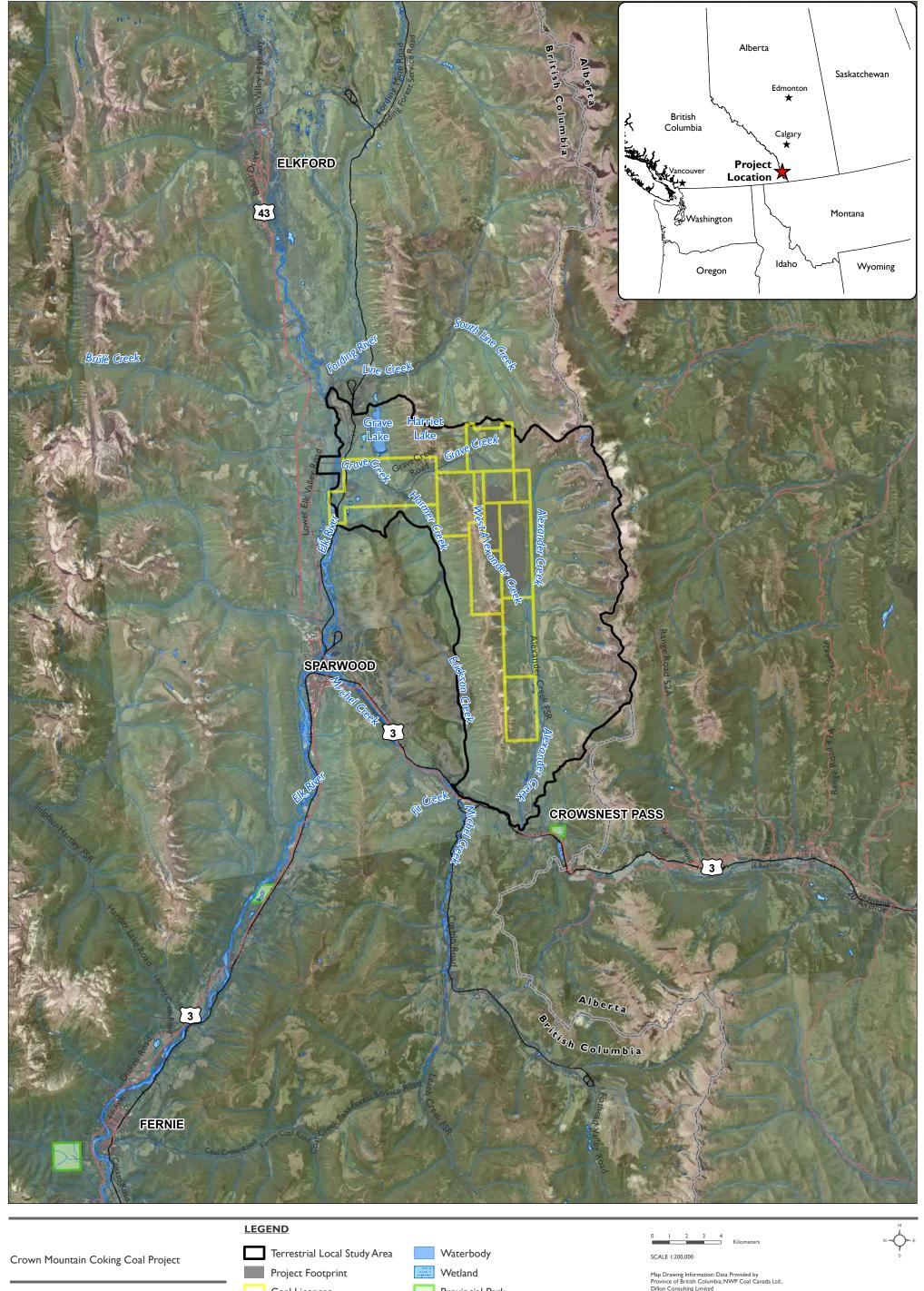
NWP Coal Canada Ltd (NWP) is proposing to develop the Crown Mountain Coking Coal Project (the Project), which is intended as an open pit metallurgical coal mine located within the Elk Valley coal field in the East Kootenay Region of southeastern British Columbia (BC; Figure 1). NWP is a jointly owned subsidiary of Jameson Resources Limited and Bathurst Resources Limited (Canada). The Project comprises ten coal licenses as shown on Figure 1. The Project is located between several existing metallurgical coal mines in the Elk Valley and Crowsnest coal fields, with Teck Resources Limited's (Teck) Elkview mine located approximately 8 kilometres (km) southwest of the Project area and their Line Creek mine located approximately 12 km north of the Project area. The Project area is located approximately 30 km by road from Sparwood, BC and is accessible by several Forest Service Roads, including Grave Creek Road in the northwest and Alexander Creek Road from the south.

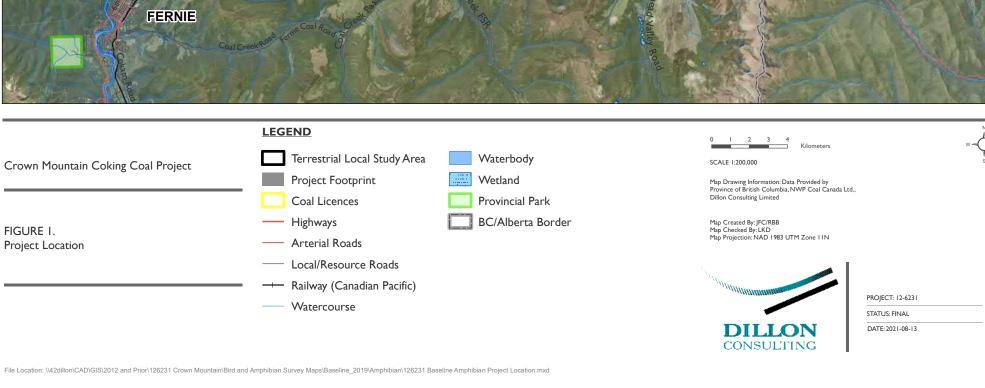
The anticipated production capacity of the Project is up to 4.0 million run-of-mine tonnes per annum for a production duration of approximately 15 years. This equates to a coal production capacity of approximately 10,150 tonnes per day. Exploration activities have indicated that the coal at the Project site is typical of coking coals produced from existing mines in the Elk Valley. The high quality metallurgical coal would be transported via railway to coastal BC, where it would be shipped overseas to be used in steelmaking.

Key components of the proposed Project include, but are not limited to:

- Surface extraction areas (3 pits north pit, east pit, and south pit);
- Waste rock management areas;
- Plant area (includes raw coal stockpile area, a processing plant, and site support facilities);
- Clean coal transportation route (via an overland conveyor and haul road);
- Rail load-out facility and rail siding (includes various auxiliary facilities);
- Power supply;
- Natural gas supply;
- Explosives storage;
- Fuel storage;
- Sewage treatment; and
- Water supply.

Purpose and Objectives of the Baseline Study


1.2


The Project is subject to both the Canadian Environmental Assessment Act (CEAA) 2012 and the British Columbia Environmental Assessment Act (BC EAA) 2002. Provincially, the Project is considered a Reviewable Project given that the production capacity of the mine will be greater than 250,000 tonnes per year of clean coal and will result in a disturbance greater than 750 hectares (ha) that was not previously permitted for disturbance (BC EAA, 2002). Federally, the Project is considered a Designated Project under the CEAA (2012) Regulations Designating Physical Projects, as the mine will have a production capacity of more than 3,000 tonnes per day. Project-specific terms of reference were developed for the provincial environmental assessment (EA) process (EAO, 2018) and the federal EA process (CEAA, n.d.).

Under the project-specific provincial Application Information Requirements (AIR; EAO, 2018) for the Project's EA, amphibians are identified as a Valued Component (VC) and as such, an understanding of amphibian occurrence and distribution in the Project area is required to adequately assess potential effects on this wildlife group as a result of Project activities. The specific amphibian VCs identified in the AIR (EAO, 2018) included Western Toad (Anaxyrus boreas) and Columbia Spotted Frog (Rana Iuteiventris). The Environmental Impact Statement (EIS) Guidelines (CEAA, n.d.) identify species at risk as a VC, which includes the listed Western Toad.

The key objective of the amphibian baseline program was to determine and describe existing amphibian species within and surrounding the Project. Specific to this, the baseline program focused on collecting information to document amphibian habitat occupancy (presence/non-detect), extent of occurrence and abundance, and amphibian habitat availability and distribution. This report presents a summary of amphibian baseline program results and includes relevant publically-available information on the amphibians at a regional level.

Applicable Legislation and Guidelines

Amphibians and their habitat are protected under several pieces of federal and provincial legislation, including the federal Species at Risk Act (SARA; 2002), the provincial Wildlife Act (1996), and the provincial Forest and Range Practices Act (2002).

1.3.1 Federal

1.3

The purpose of CEAA (2012) is to protect components of the environment that are within federal legislative authority from significant adverse environmental effects caused by a designated project. The CEAA (2012) ensures that proposed projects are considered in a careful and precautionary manner in order to avoid significant adverse environmental effects. This process helps in planning and decision making and allows for the prediction of adverse environmental effects and the development of mitigation measures, as well as the understanding of cumulative effects on the landscape (Government of Canada, 2019).

The SARA (2002) provides legislative protection to specific listed species and their critical habitat in Schedule 1 of the Act. Schedule 1 of SARA (2002) is the official list of species at risk in Canada. Species are recommended to be designated on Schedule 1 by the Committee on the Status of Endangered Wildlife in Canada (COSEWIC). As per Section 34 (1) of SARA (2002), all SARA-listed species of fish and migratory birds are protected on any lands within Canada, while other listed species are only protected under SARA (2002) if they occur on federal lands or waters.

The purpose of SARA (2002) is to prevent wildlife species from being extirpated or becoming extinct. SARA explicitly states that:

"No person shall kill, harm, harass, capture or take an individual of a wildlife species that is listed as an extirpated species, an endangered species or a threatened species" (SARA 2002, s. 32(1)).

In addition to individual protection for listed species, the habitat and residences of listed species are also protected:

"No person shall damage or destroy the residence of one or more individuals of a wildlife species that is listed as an endangered species or a threatened species" (SARA 2002, s. 33).

Definitions of residences are also provided for some species at risk.

Provincial 1.3.2

The BC EAA (2002) allows for the review of major projects in order to assess their potential impacts to the environment (EAA, 2002). These projects are reviewed to ensure they meet environmental, economic, and social sustainability goals. Projects that fall under the EAA (2002) are assessed for

adverse environmental, economic, social, heritage, and health effects that have the potential to result throughout the duration of the project (EAA, 2002).

The BC Wildlife Act (1996) provides legislative protection from harm and harassment to all wildlife, with the exception of those activities permitted by regulations, such as hunting and trapping (Wildlife Act, 1996).

The BC Forest and Range Practices Act (2002) outlines how resource-based activities can be conducted on Crown land in BC, while ensuring protection of everything in and on them, such as plants, animals, and ecosystems (Forest and Range Practices Act, 2002). Broad habitat and species protection measures in the Forest and Range Practices Act provide direction for the protection of amphibians during activities such as clearing and road-building by forest and range licensees. Under the Act, habitats such as riparian areas and wetlands require special management and mitigation measures.

Policies and Guidelines 1.3.3

The B.C. Conservation Data Centre (BC CDC) assists in the conservation of BC's biodiversity by collecting and sharing scientific data and information about wildlife and ecosystems in BC (BC CDC, 2019a). The primary functions of the CDC are to:

- Compile a list of species and ecosystems that occur in BC;
- Assess conservation status ranks;
- Map known locations (element occurrences); and,
- Make data and information available to the public.

The BC CDC assigns conservation status ranks to BC's species and ecosystems according to the level of risk of being lost. Based on that, the CDC assigns a provincial Conservation Status Rank (red, blue, or yellow) that can be used to set conservation priorities. Red-listed species and ecosystems are at risk of being lost (extirpated, endangered or threatened); blue-listed species and ecosystems are of special concern; and yellow-listed species and ecosystems are at the least risk of being lost (BC CDC, 2019a).

A guideline relevant to the protection of amphibians and their habitat includes the *Develop with Care* 2014 Environmental Guidelines for Urban and Rural Development (Government of British Columbia, 2014). The guidelines mainly apply to private land development, but include a terms of reference for conducting biological inventories (Biolinx Environmental Research Ltd., 2014) that was used to guide the amphibian baseline program.

1.3.3.1 **Amphibian Tissue Guidelines**

Amphibian tissue guidelines have been developed for selenium, chromium, and vanadium (Janz et al., 2010; BC MOE, 2014; Windward et al., 2014; Golder Associates, 2015b). Guidelines for other metals in amphibian tissues have not been developed, nor are reference amphibian tissue concentration data readily available at the provincial or federal level. In some cases, guidelines developed for fish and/or

bird tissue are used as surrogate criteria where appropriate for sensitive wildlife, including amphibians, such as the BC MOE (2014) guideline for selenium in bird eggs.

Guidelines for selenium in bird eggs are typically used as a surrogate for amphibians and reptiles because the physiological response of egg development to selenium exposure is believed to be similar, and therefore guidelines derived for bird eggs are generally protective of other sensitive wildlife (Nagpal and Howell, 2001; BC MOE, 2014). The BC MOE (2014) guideline for selenium in bird eggs as a surrogate for reptiles and amphibians, including amphibian eggs, is 6 mg/kg dry weight (dw). A whole-body guideline is not available for amphibians.

Guidelines developed by the United States Environmental Protection Agency (US EPA) for selenium in fish tissue (egg and whole body) in the 2016 Aquatic Life Ambient Water Quality Criterion for Selenium – Freshwater are also intended to protect the entire aquatic community, including amphibians (egg masses and tadpoles; US EPA, 2016). Note that these guidelines are instantaneous measurements that are not to be exceeded.

Reference concentrations have been developed for chromium and vanadium because they were identified as contaminants of potential concern in the Elk Valley (Windward et al., 2014). The reference concentrations for the Elk Valley are 12.7 mg/kg dw chromium and 6.5 mg/kg dw vanadium (Windward et al., 2014). These concentrations were used as benchmarks to compare to amphibian egg mass tissue results collected as part of the amphibian baseline program.

1.3.3.2 Water Quality Guidelines

The Canadian Council of Ministers for the Environment (CCME) have developed Canadian Water Quality Guidelines for the Protection of Aquatic Life (CWQG; CCME, 1999, updated 2007). Guidelines exist for short- and long-term exposures. The Protocol for the Derivation of Water Quality Guidelines for the Protection of Aquatic Life (CCME, 2007) state that:

"Short-term exposure quidelines are meant to estimate severe effects and to protect most species against lethality during intermittent and transient events (e.g., spill events to aquaticreceiving environments, infrequent releases of short-lived/non-persistent substances). In contrast, long-term exposure quidelines are meant to protect against all negative effects during indefinite exposures" (Part I-6).

Water quality guidelines approved by the province (BC Water Quality Guidelines [BC WQG]) must be considered in decision-making that affects water quality in the province. The BC MOE have developed the British Columbia Approved Water Quality Guidelines (BC WQGs): Aquatic Life, Wildlife & Agriculture (BC MOE, 2019). Similar to the CWQGs, the BC MOE have established short-term maximum and longterm average guidelines. The Long-Term Average vs. Short-Term Maximum Water Quality Guidelines (BC MOE, 2016) define short-term maximum guidelines as levels that should never be exceeded in order to

1.0 Introduction

meet the intended protection of the most sensitive species and life stages over a short-term exposure period.

Short-term maximum WQGs are intended to assess risks associated with infrequent exposure events such as spills. Long-term chronic average guidelines are intended to protect the most sensitive species and life stages against sub-lethal and lethal effects for indefinite exposures (BC MOE, 2016). The averaging approach allows concentrations of a substance to fluctuate above and below the guideline, provided that the short-term maximum is never exceeded and the long-term average is met over the specific averaging period (e.g., 5 samples in 30 days). The *Guidance for the Derivation and Application of Water Quality Objectives in British Columbia* (BC MOE, 2013) was referenced during the derivation of water quality guidelines for this baseline report.

Teck was required to develop the Elk Valley Water Quality Plan (EVWQP) in 2015, which is an area-based water quality management plan to ensure the health of the watershed while allowing for continued sustainable mining. As part of the EVWQP, baseline conditions of nitrate, sulphate, selenium, and cadmium were evaluated in the Elk River, Fording River, Lake Koocanusa, and tributaries. Selenium and nitrate were two main constituents observed to most frequently exceed the BC WQG. The purpose of the EVWQG was to identify a strategy and implement mitigation to address increasing selenium and nitrate water concentrations within the Elk Valley (Teck Resources Limited, 2015). A site-specific long-term water quality target of 0.019 mg/L was identified for selenium in the Elk River from Fording River to Michel Creek. Nitrate, sulphate, and cadmium targets within this reach of the Elk River are the same as the BC WQG and CWQG guidelines.

Baseline Program Overview

Study Areas 2.1

2.0

The Project is located approximately 30 km by road from Sparwood, British Columbia at 114°43.6'W and 49°48.4'N (Figure 1). The Project is situated in an area of steep topography of the Front Ranges Rocky Mountains of BC and accessed by several Forest Service Roads, including Grave Creek Forest Service Road from the west and Alexander Creek Road from the south. The Project is in the Elk River, Erickson Creek, Harmer Creek, Grave Creek, and Alexander Creek watersheds. Alexander Creek flows south from the Project area and subsequently joins Michel Creek. Michel Creek eventually discharges to the Elk River, which flows generally southwest and discharges to Lake Koocanusa, a lake which partially occurs in the State of Montana. Grave Creek flows in a westerly direction from the upper extent of the Project area and discharges to the Elk River. Harmer Creek, a tributary to Grave Creek, flows from the south to the north and joins Grave Creek east of the Elk River.

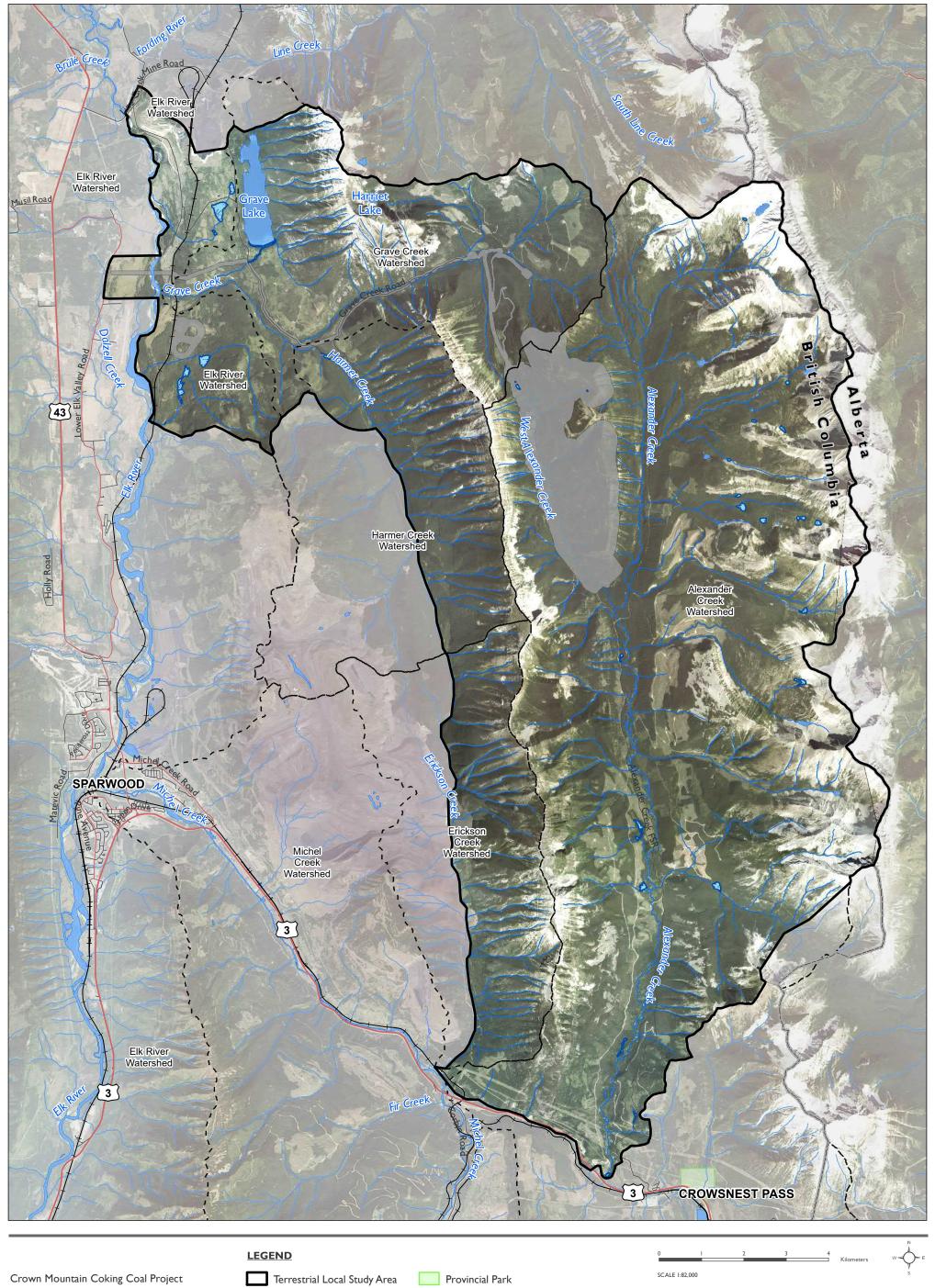
Three spatial boundaries were developed for the assessment of the Project on amphibians and are presented in the EA Application. The spatial boundaries include the Project footprint, the Local Study Area (LSA), and the Regional Study Area (RSA). Project-specific surveys conducted at the LSA scale are presented in this report, while the evaluation of amphibians at the RSA level is presented in a separate technical report. This baseline report will help inform the EA Application and focuses on characterizing the amphibian community and habitat within the LSA.

The Project footprint covers approximately 1,300 ha (Figure 2) and includes all anticipated Project components, such as the active mining area, waste rock management areas piles, and associated infrastructure following the Grave Creek Forest Service Road west to the Elk River.

The LSA covers approximately 24,100 ha (Figure 2). Rationale for selecting the LSA boundaries is as follows:

- Includes the Project footprint and areas that may experience potential direct and indirect impacts as a result of Project activities;
- Includes terrestrial habitat that may experience changes at an ecosystem level as well as changes to connectivity between ecosystems and landscapes;
- Includes watersheds that have the immediate potential to be directly or indirectly impacted by the Project, including Grave Creek, West Alexander Creek, and Alexander Creek; and
- Encompasses landscape features and known migration routes/movement corridors (e.g., Grave Creek Canyon).

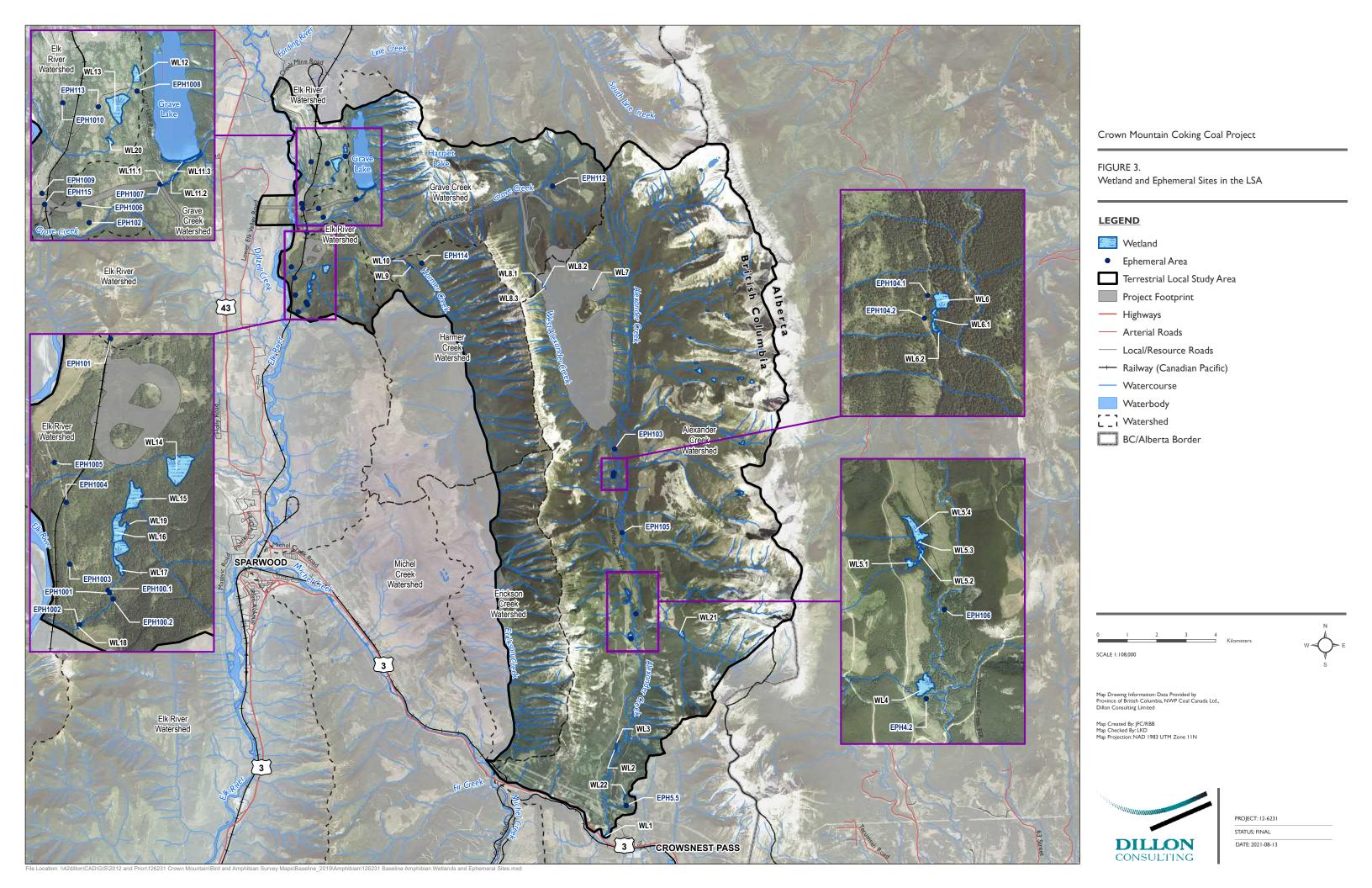
The west side of the LSA is characterized by steep-sided ridges and subdued mountains, while those on the east are rugged with many cirques and U-shaped valleys. Elevations in the LSA range from 1,170



meters (m; 3,838 feet [ft]) along the Elk River west of Grave Lake up to almost 2,500 m (8,200 ft) along Erickson Ridge. The dominant wildlife habitat in the LSA consists of riparian habitat along Alexander and Grave Creeks and their tributaries, mature and immature conifer forest (including regenerating cutblocks), non-forested or sparsely forested areas on steep slopes dominated by grasses, forbs and shrubs created primarily by avalanches, and alpine grasslands.

The LSA consists of the Montane Spruce (MS) and Engelmann Spruce-Subalpine Fir (ESSF) Biogeoclimatic Ecosystem Classification zones. MS is represented solely by the Dry Warm Montane Spruce (MSdw) subzone at elevations below 1,600 m. This area is dominated by Douglas-fir (Pseudotsuga menziesii). The majority of the wetlands in the LSA are located in the MSdw subzone (Keefer Ecological Services Limited, 2020). The higher elevation ESSF BEC subzone comprises the rest of the study area. The ESSF zone is dominated by Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa; British Columbia Ministry of Forests, 1991) and has three subzones that occur in the LSA:

- The Elk Dry Cool Engelmann Spruce Subalpine Fir Elk Dry (ESSFdk1) subzone, which occurs adjacent to and above the MSdw to about 1900 m;
- The Dry Cool Woodland Engelmann Spruce Subalpine Fir (ESSFdkw) subzone, which occurs above the ESSdk1; and
- The Dry Cool Parkland Engelmann Spruce Subalpine Fir (ESSFdkp) subzone, which occurs at elevations greater than 2,100 m.


Wetlands and Ephemeral Sites

2.2

Most amphibians in BC require a wetland for some or all of their entire lifecycle (Biolinx Environmental Research Ltd., 2014). Wetlands such as fens, marshes, and swamps can provide suitable amphibian habitat (Royal BC Museum, 1999). A total of 36 wetland survey sites were classified, constituting approximately 41 ha or 0.17% of the LSA (Figure 3). Wetlands in the LSA were generally observed in flat areas, valleys, and bowls with many wetlands forming in basins, depression, and obstructions along drainage ways (e.g., presence of beaver dams). Many of the wetland observed within the LSA form wetland complexes of two or more distinct wetland association. Marshes occupied the greatest area of all wetland types in the LSA, followed by swamp, marsh-fen (transitional), shallow water, fen, and bog. Flood associations, although non-wetland ecosystems, were also observed in the LSA. Additional information on wetlands observed within the LSA is provided in Dillon Consulting Limited (2020) Wetland Ecosystem Baseline Report.

Ephemeral areas occur across the LSA (Figure 3) and can also provide temporary wetted habitat for amphibians. Ephemeral areas can include roadside ditches, tire ruts, and natural shallow depressions in the ground, among others, where water can pool and warm up quickly (British Columbia Ministry of Forests, Lands, and Natural Resources Operations, 2015). These areas can provide ideal habitat for breeding amphibians and tadpoles as they are typically fish-free (British Columbia Ministry of Forests, Lands, and Natural Resources Operations, 2015). Ephemeral areas are often seasonal and can change locations between years (British Columbia Ministry of Forests, Lands, and Natural Resources Operations, 2015) and it is expected that these areas change across the LSA from year to year.

Amphibians of the LSA

2.3

Amphibians range throughout BC and can be difficult to detect, as they are inconspicuous and secretive (Ministry of Environment, Lands and Parks Resources Inventory Branch, 1998). Amphibians use both aquatic and terrestrial environments throughout their lifecycles, with aquatic environments providing essential habitat for breeding, foraging, and/or overwintering, and terrestrial environments providing migration, foraging, and overwintering habitat (Ministry of Environment, Lands and Parks Resources Inventory Branch, 1998). Amphibians have highly permeable skin and are therefore dependent on water, as they require a source of moisture to avoid drying out (Biolinx Environmental Research Ltd., 2014). Their permeable skin renders them highly susceptible to water quality issues and are often used as indicator species for aquatic health (Biolinx Environmental Research Ltd., 2014). Amphibians are ectothermic (cold-blooded) species and derive their body heat from the environment; therefore, most amphibian species in BC become dormant and hibernate in the cold season and are less active in relatively high temperatures (Biolinx Environmental Research Ltd., 2014). Amphibians typically have a relatively small home range, with the exception of migrations between overwintering, breeding, and foraging habitats (Biolinx Environmental Research Ltd., 2014).

Within BC there are ten species of frogs, two species of toads, and six species of salamanders (Government of British Columbia, 2019). The BC CDC iMAP database indicates that Columbia Spotted Frog, Wood Frog (Lithobates sylvaticus), Western Toad, Long-toed Salamander (Ambystoma macrodactylum), and Northern Pacific Treefrog (Pseudacris regilia) have been documented within the LSA (BC CDC, 2019b). These species are listed in Table 2-1 along with their conservation status. Western Toad is the only at-risk amphibian species suspected to occur in the LSA; this species is listed as Special Concern under Schedule 1 of SARA (2002), but is provincially yellow-listed (Table 2-1).

Table 2-1: Amp	hibian Species	Potentially	v Present in t	he LSA	(BC CDC	, 201 9b)	
----------------	----------------	-------------	----------------	--------	---------	------------------	--

Species Common Name	Species Latin Name	SARA Status	COSEWIC Status	BC Conservation Status Rank
Columbia Spotted Frog	Rana luteiventris	-	Not at Risk	Yellow
Northern Pacific Treefrog	Pseudacris regilla	-	-	Yellow
Western Toad	Anaxyrus boreas	Schedule 1, Special Concern	Special Concern	Yellow
Wood Frog	Lithobates sylvaticus	-	-	Yellow
Long-toed Salamander	Ambystoma macrodactylum	-	Not at Risk	Yellow

The Rocky Mountain Tailed Frog (Ascaphus montanus) has the potential to occur in the LSA (BC CDC, 2019c), but this species is known to occur in the extreme southeast of BC with populations restricted to the Flathead River and Yahk River watersheds (Environment Canada, 2015), approximately 50 km south of the Project. Rocky Mountain Tailed Frog are highly site-specific and typically do not disperse more than 20 m per year (Environment Canada, 2015), suggesting that this species is unlikely to be present in the Project's LSA.

The Northern Leopard Frog (Lithobates pipiens) was previously present in the area, but is presumed to be locally extirpated since the 1980s (BC CDC, 2019d). The National Recovery Strategy for the Northern Leopard Frog suggests only two populations of this species exist in the Rocky Mountains: in the Creston Valley, and in the Upper Kootenay floodplain (Bummer's Flats north of Cranbrook, BC; Environment and Climate Change Canada [ECCC], 2017). The Northern Leopard Frog typically migrates 5 to 10 km between habitat types (ECCC, 2017); given these populations are approximately 70 to 150 km from the LSA, it is unlikely that this species is present in the LSA.

Baseline surveys were conducted to obtain information on amphibian habitat occupancy, extent of occurrence and abundance, and habitat availability and distribution within the LSA. Between 2014, 2017, 2018, and 2019, 210 surveys were completed across the LSA. Thirty-one (31) wetlands and twenty-three (23) ephemeral areas were targeted to assess amphibian occupancy and habitat characteristics. Accessible wetlands and ephemeral areas in the LSA were surveyed within the Alexander Creek, Grave Creek, Harmer Creek, and Elk River watersheds. Biogeoclimatic Ecosystem Classification (BEC) subzones were considered in the characterization of aquatic habitat over the course of the survey years and survey types. The majority of wetlands (27) surveyed for amphibians were in the MSdw subzone, 3 were in ESSFdk1, and 1 was in ESSFdkw. Further details for each wetland and ephemeral area, including BEC subzone, total area, and wetland class (where applicable) are presented in **Appendix A**.

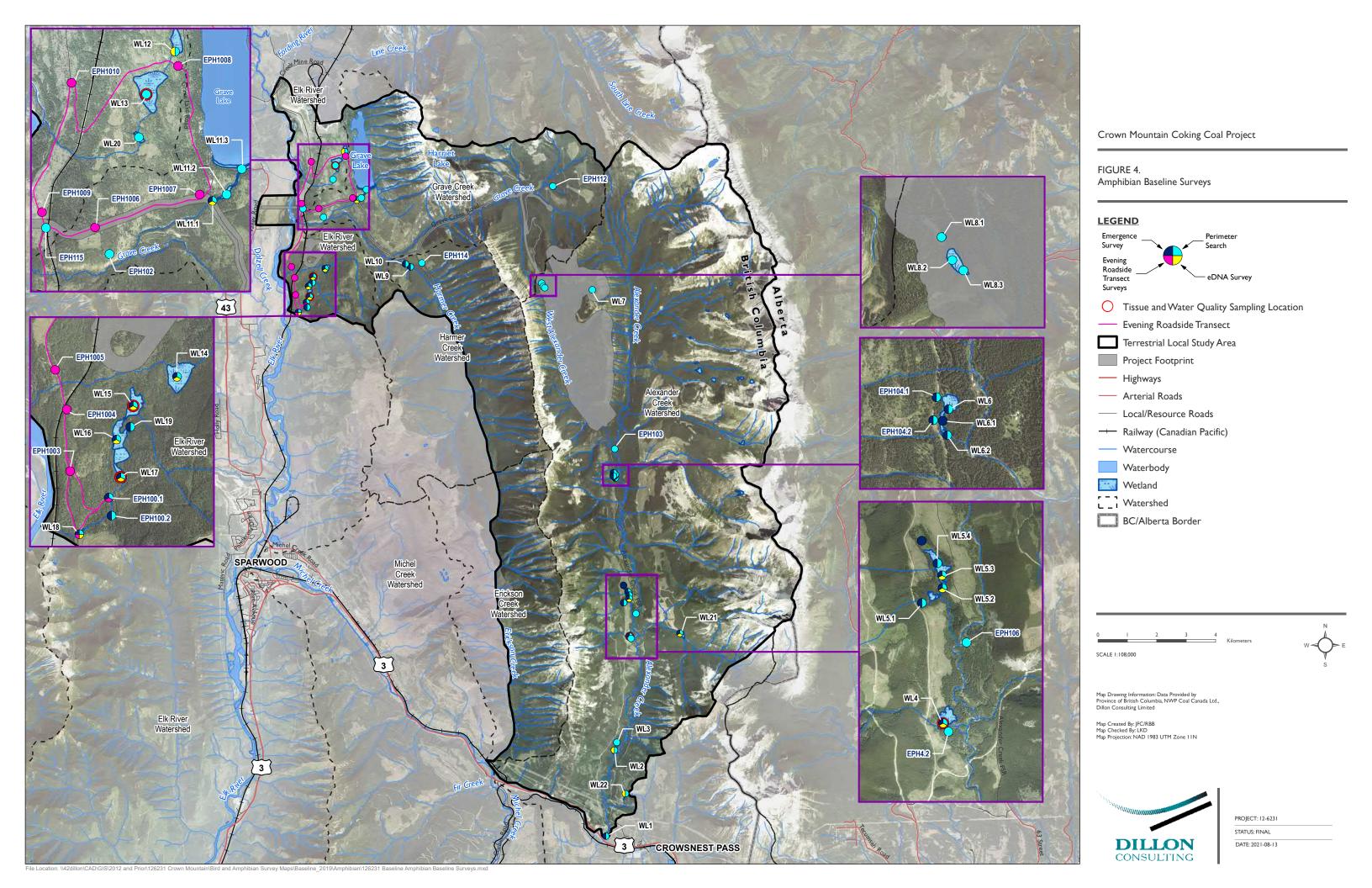
All surveys were conducted by a team of two experienced biologists and targeted a wide range of habitat types, elevations, slopes, and stand ages throughout the LSA. Multiple types of amphibian surveys were conducted and were selected based on the study objectives and the behaviour of the target species (e.g., Western Toad and Columbia Spotted Frog). The amphibian surveys completed as part of the baseline program include the following:

- Wetland perimeter searches;
- Evening roadside transect surveys;
- Environmental DNA (eDNA);
- Emergence surveys, and
- Tissue collection.

Completed surveys of the amphibian baseline program are outlined in **Table 3-1** and survey locations are shown in **Figure 4.** Amphibians were also recorded incidentally during other baseline surveys (e.g., wetland and breeding bird surveys).

Table 3-1: Surveys Completed for the Amphibian Baseline Program

Survey Type	Survey Year	Survey Dates	Wetlands and Ephemeral Survey Sites	Total Effort (person-hours)	Target Species
		June 5 – June 11	WL4; WL6.2; WL11.1; WL11.2; EPH4.2; EPH106		
Wetland Perimeter Searches	2014	June 29 – July 4	WL1; WL5.3; WL5.4; field north of WL5.4; WL11.1; WL11.2; WL13; WL17; EPH100.1; EPH112	127.8	



Survey Type	Survey Year	Survey Dates	Wetlands and Ephemeral Survey Sites	Total Effort (person-hours)	Target Species
	2017	June 6 – June 9	WL1; WL4; WL5.1; WL5.2; WL5.3; WL6; WL11.1; WL11.2; WL13; WL17; WL18; EPH103; EPH104.1		
		June 30 – July 6	WL4.1; WL6; WL6.2; WL9; WL11.1; WL13; WL17; EPH104		
		April 22 – April 28	WL1; WL4; WL5.1; WL5.2; WL5.3; WL9; WL11.1; WL11.2; WL11.3; WL13		
	2018	May 3 – May 9	WL1; WL4; WL5.1; WL5.3; WL10; WL13; WL15; WL16; WL17; EPH102; EPH114; EPH115		
Wetland		July 1 – July 5	WL1; WL7; WL8.1; WL8.2; WL8.3; WL9; WL11.1; WL13; WL14; WL15; WL17		Columbia
Perimeter Searches,		July 26 – July 30	WL1; WL3; WL6; WL8.1; WL8.2; WL8.3; WL13		Spotted Frog
Cont'd		May 7 – May 9	WL2; WL3; WL4; WL5.1; WL5.2; WL5.3; WL6; WL9; WL12; WL13; WL14; WL15; WL16; WL17; WL19		Salamander; Northern Pacif Treefrog;
		May 22 – Ma	May 22 – May 25	WL1; WL4; WL9; WL11.1; WL11.2; WL11.3; WL12; WL13; WL14; WL16; WL17; WL18; EPH100.1; EPH100.2	
	2019	July 4 – July 11	WL2; WL3; WL4; WL5.1; WL5.2; WL5.3; WL6; WL8.1; WL8.2; WL8.3; WL9; WL11.1; WL11.2; WL11.3; WL12; WL13; WL14; WL15; WL16; WL17; WL18; WL20; WL21; WL22; EPH4.2; EPH100.1; EPH100.2		
		July 25, 2019	WL16		

Survey Type	Survey Year	Survey Dates	Wetlands and Ephemeral Survey Sites	Total Effort (person-hours)	Target Species
Evening Roadside Transects	2018	May 6	WL18; EPH100.1; EPH1003; EPH1004; EPH1005; EPH1006; EPH1007; EPH1008; EPH1009; EPH1010	1.3	Western Toad; migrating adult amphibians
Tissue and	2017	July 6	WL4; WL17		Columbia
Water	2018	May 5 – May 9	WL4; WL13; WL15; WL17		Spotted Frog;
Sample	2010	July 4	WL15	-	Long-toed
Collection	2019	May 9	WL15; WL17		Salamander;
Concension		May 22	WL4		Wood Frog
eDNA	2019	July 5 – July 10	WL2; WL4; WL5.2; WL5.3; WL11; WL12; WL14; WL15; WL16; WL17; WL18; WL21; WL22	-	Western Toad
Emergence Surveys	2019 '		WL1; WL4; WL5.1; WL5.2; WL5.3; WL5.4; field north of WL5.4; WL6, WL6.1; WL6.2; WL9; WL10; WL11.1; WL14; WL15; WL16; WL17; WL18; WL19; WL21; EPH100.1; EPH100.2; EPH104.1; EPH104.2	31.0	Western Toad Toadlets

Wetland Perimeter Searches

3.1

Wetland perimeter searches were conducted to determine the presence or non-detection of amphibian species within the LSA. Perimeter searches were conducted in accordance with the Inventory Methods for Pond-breeding Amphibians and Painted Turtle (Version 2.0) systematic survey methods for amphibians in wetlands or riparian areas (Ministry of Environment, Lands and Parks Resources Inventory Branch, 1998). One-hundred-fifty-seven (157) wetland perimeter searches were completed in 2014, 2017, 2018, and 2019 in thirty (30) wetlands and thirteen (13) ephemeral areas (Figure 4). The wetland perimeter searches entailed two experienced biologists walking the shoreline and the forested perimeter of a wetland, when accessible, and documenting visual encounters of any amphibian species. Surveys were conducted on days with a wind speed less than 5 on the Beaufort (BU) scale. When observed, amphibian species were identified, documented, geo-located by GPS waypoint, photographed, and habitat features were noted.

Information recorded for all wetlands and ephemeral areas surveyed as part of the wetland perimeter searches included:

- Wetland classification;
- Presence and dominance of submergent and emergent vegetation;
- Substrate type;
- Fish presence and beaver activity;
- Enumeration and classification of snags and coarse woody debris; and
- *In-situ* water parameters (pH, temperature, dissolved oxygen, salinity, and conductivity).

Evening Roadside Transect Surveys 3.2

Evening roadside transect surveys were conducted to target the calling population of Western Toad and migrating adults of all other amphibian species potentially present within the LSA. Surveys were conducted in accordance with the Ministry of Environment, Lands and Parks Resources Inventory Branch (1998) Inventory Methods for Pond-breeding Amphibians and Painted Turtles (Version 2.0). Evening roadside transect surveys are most successful during the breeding season when mass migration occurs, and prove to be useful when migrating amphibians move away from or toward a pond after a heavy rainfall event. As such, road surveys were completed by two experienced biologists in early May 2018. Transects were driven along Grave Creek Road and Grave Lake Road (Figure 4) at a speed under 20 km/hour with high beam lights on to look for moving toads where suitable habitat was visually present. A total of 12 call survey stations where suitable habitat was observed were visited once each along the transects (Figure 4). Surveys were completed 30 minutes after dusk and continued no later than midnight in conditions with a wind speed no more than 5 on the BU scale. Surveys were completed one to two days after a heavy rainfall event, when possible. If an amphibian was encountered, the species and age class were identified and the individual was documented, georeferenced with GPS, and photographed.

The environmental DNA (eDNA) approach is generally used to determine presence/non-detection of species by sampling the physical media of their environments (i.e., water, soil) and testing for the presence of their DNA. This method has proven to be a cost effective and non-invasive way to determine presence/non-detection for cryptic and/or low-density species such as Western Toad (Hobbs et al., 2019). As such, eDNA was used as part of the amphibian baseline program to document the presence of Western Toad within the LSA. Bureau Veritas Group (BV Labs; formerly Maxxam Analytics) has a Western Toad DNA assay (2019) that has been developed, tested, and applied using a three part process similar to the process in Veldhoen et al. (2016) to minimize the rate of false negative and false positive results. The technical specifications of the assay are provided in **Appendix B**.

The Western Toad assay was developed for application across the species' range. As an additional positive control measure, a site of confirmed Western Toad presence was sampled to verify that the eDNA test elicited a positive test result for the local population (WL21). The Western Toad eDNA surveys were completed as per the BC MOE (2017a) *Environmental DNA Protocol for Freshwater Aquatic Ecosystems (Version 2.2)*. Samples were collected from wetlands within the LSA where Western Toad were suspected to occur but presence was unknown during the breeding season when Western Toad are most active and eDNA is likely most abundant. A total of 13 sites across the LSA were sampled for Western Toad using eDNA (**Figure 4**). Triplicate biological replicates (three samples from one location in each wetland), one negative control (field-filtered deionized water), and one positive control (confirmed Western Toad observation in water) were collected. During these surveys, incidental amphibian observations and associated habitat features were also recorded.

The collected eDNA water samples were filtered (0.45 µm cellulose nitrate) and the DNA was preserved through silica desiccation. BV labs completed the eDNA testing, which included testing for viable DNA in the sample using the IntegritE-DNA™ test and eight technical replicates (the test was performed on the same sample eight times) for the target species. Only samples that passed (4/4) the InegritE-DNA™ test were assessed for the target species. In consultation with the University of Victoria and BV Labs, Dillon interpreted the eDNA test results using the methodology from Hobbs et al. (2019), which considers a sample "positive" if more than two (of eight) technical replicates returns a positive result. A sample is considered "suspected" if one of eight technical replicates returns a positive result. A site was considered positive if more than one (of three) biological replicates were positive or if more than two biological replicates were suspected. A site was considered suspected if only one of the biological replicates was classified as suspected. For the purposes of this report, any sites resulting in suspected Western Toad detections were considered positive as a conservative approach.

3.4 Emergence Surveys

3.5

Forty-three (43) surveys for emerging Western Toad toadlets were conducted throughout the LSA in early September 2019. Wetlands and drainages where Western Toad had previously been observed were targeted (**Figure 4**). Surveys followed the methods outlined in Bull (2009) on Western Toad dispersal of new mesomorphs. Surveys were conducted during daylight hours when temperatures were above 5°C and winds were less than 5 on the BU scale, and some surveys were conducted during rainy periods. Surveys were conducted by two experienced biologists, one walking in or immediately adjacent to the stream or wetland and the other 5 to 20 m parallel with the stream or wetland. Surveys kept a slow pace (approximately 2 km/hr) and vegetation was gently pushed aside while surveyors walked the sites.

Tissue and Water Sample Collection

Co-located tissue and water quality sample collection was conducted to characterize baseline metal concentrations in amphibians and their environment to support the Project's Human Health and Ecological Risk Assessment. Tissue collection included sampling egg masses and tadpole tissues of Columbia Spotted Frog, Wood Frog, and Long-toed Salamander in 2017, 2018, and 2019. Appropriate permits were obtained prior to collection of any amphibian tissues. A General Wildlife Permit (CB17-273619) was obtained from the BC Ministry of Forests, Lands, and Natural Resource Operations in 2017 for the collection of Columbia Spotted Frog, Wood Frog, and Long-toed Salamander eggs and tadpoles. A permit was obtained from the BC Ministry of Forests, Lands, and Natural Resource Operations and Rural Development in 2018 (Permit No. CB18-301015) and 2019 (Permit No. CB19-475260) to collect, temporarily possess, and transport Columbia Spotted Frog, Wood Frog, and Long-toed Salamander egg masses and tadpoles. To limit impacts on the amphibian populations in the LSA, tissue sample collection was limited to 10 samples per species per permit year.

Tissue collection was completed in tandem with other amphibian baseline surveys in 2017, 2018, and 2019 at wetlands where these species were known to be abundant. All surveys were conducted by two experienced biologists walking the perimeter of each wetland and listening for calling adults to find spawning locations and tadpoles. To find egg masses, snow free and accessible wetlands were searched in the spring of 2018 and 2019 during the amphibian breeding season in April and May. Not all amphibians breed at the same time, but attempts were made to time surveys when egg masses would be the most abundant. Seven egg mass samples were collected from WL4, WL13, WL15, and WL17 in May 2018 and 2019 (Figure 4). To find tadpoles, accessible wetlands were searched in July of 2017 and 2018. Three tadpoles were collected from WL4, WL15, and WL17 in July 2017 and 2018 (Figure 4).

Egg masses or portions of egg masses were collected by hand using nitrile gloves and tadpoles were captured with a small dip net and placed into a clear Plexiglas viewer or sample bag for species identification. Each tadpole was identified to ensure that the correct species were sampled and that non-permitted species (i.e., Western Toad) were not collected. Egg masses were identified by close

examination *in situ*, as well as examination of individual eggs. Once identification was confirmed, the capture location was obtained with a handheld GPS. Egg masses and tadpoles were weighed on site, as sample sizes were required to be a minimum of five grams each. Tadpole samples were humanly euthanized via concussion, and all samples were immediately placed on ice for transport from the field and later frozen (Close et al., 1986). The collected egg masses and tadpoles were transported by air to ALS Environmental in Burnaby, BC for analysis.

While handling live specimens, the following safety protocols were adhered to:

- Disposable nitrile gloves were worn during all tissue sampling and the biologists did not wear lotions, perfumes, insect repellent, or any other potentially harmful substances;
- Tadpoles were processed separately, where possible, to prevent the spread of disease and/or predation;
- Equipment, waders, and boots were disinfected between wetlands and watersheds to prevent the spread of potential disease or infection;
- Handling of amphibians was avoided and no adults were handled; and
- Collection of tadpoles was completed quietly and gently to prevent any undue stress or impact.

Co-located surface water quality samples were collected at WL4, WL13, and WL17 in May 2018, at WL15 in May and July 2018, and at WL4, WL15, and WL17 in May 2019. Surface water samples collected from each of the 12 sampling stations were analysed for the following parameters:

- Physical tests (general chemistry);
- Anions and nutrients;
- Total and dissolved organic carbon;
- Total and dissolved metals; and
- Polycyclic aromatic hydrocarbons (PAHs).

Grab samples were collected at each sampling location into clean, pre-labelled bottles supplied by the laboratory. Standard protocols were followed regarding sample handling and storage, holding times, test validity, and controls. Field personnel wore nitrile gloves, faced upstream, and submerged the sample bottles until they were full. Preservatives were used for total/dissolved metals, total/dissolved organic carbon, and PAHs. Samples were shipped to BV Labs in Burnaby, BC in 2017 and 2018, and to ALS Environmental in Burnaby, BC in 2019.

3.6 Data Analysis

3.6.1 Amphibian Community Data

For all amphibian species encountered as part of the baseline survey, the number of adults, juveniles, and egg masses recorded over the four years across all survey types were summed per wetland and grouped by watershed. Statistical analyses could not be completed because multi-year detections at the

same locations were uncommon. Species richness, the number of species detected per survey or wetland, was determined by summing the total number of species observed. Breeding species richness, the number of species known to be breeding at a given survey location, was determined by summing the number of species for which signs of breeding (i.e., egg masses, tadpoles) were observed at a survey location over the four survey years. Survey effort (person-hours) was determined for each survey and survey location over the years by multiplying the length of each survey by two to account for the effort expended by both biologists.

Tissue and Water Quality Data 3.6.2

Amphibian tissues and co-located surface water samples were collected at four locations in 2018 and 2019 to determine the existing amphibian tissues and water quality conditions to support future bioaccumulation and risk assessment modelling.

Summary statistics (minimum, maximum, geometric mean, and standard deviation) for the results of tissue analyses were calculated, and concentrations were converted to dry weight (dw) from wet weight (wt) using laboratory-determined percent moisture content for each sample to compare with reference and guideline concentrations. Tissue concentrations were considered by sample type (i.e., tadpole or egg mass) and concentrations were compared to relevant guidelines for chromium, selenium, vanadium, as discussed in **Section 1.3.3**.

Summary statistics (minimum, maximum, geometric mean, and standard deviation) for all parameters detected in the co-located water quality samples were calculated and derivations for parameterdependent guidelines were completed. Results were compared to both federal (CWQG) and provincial (BC WQG) long-term and short-term surface water guidelines that apply to the Project in order to identify potential effects to aquatic life, in addition to target concentrations identified in the Elk Valley Water Quality Plan (Teck Resources Limited, 2015).

4.0 Results

4.1

Four of the five amphibian species suspected to be present in the LSA were documented during the amphibian baseline program surveys conducted in 2014, 2017, 2018, and 2019: Western Toad; Columbia Spotted Frog; Wood Frog; and Long-toed Salamander. Within the LSA, a total of 31 wetlands and 23 ephemeral areas were surveyed as part of the amphibian baseline program (**Figure 3**). Northern Pacific Treefrog were not observed visually or aurally during any surveys, and no other amphibian species were observed during the surveys. Raw data for all surveys completed is presented in **Appendix C**. Results from the amphibian baseline program are presented as follows:

- Section 4.1 describes the overall amphibian community in the LSA and details results for each survey type;
- Section 4.2 describes amphibian habitat and distribution across the LSA; and
- Section 4.3 describes the co-located tissue and water quality sampling results.

Amphibian Community

A total of 412 amphibian detections were recorded in the LSA during the amphibian baseline surveys (**Table 4-1**): 18 Western Toad (13 adults; 5 toadlets); 134 Columbia Spotted Frog (37 adults; 39 tadpoles; 58 egg masses); 109 Wood Frog (40 adults; 3 tadpoles; 66 egg masses); and 151 Long-toed Salamander (0 adults; 43 tadpoles; 108 egg masses). In addition, 16 unidentified adult frogs and 48 tadpoles were observed (**Appendix C**); however, these data have been excluded from the report as the species could not be confirmed. In addition to the 412 amphibian detections during the baseline surveys, 5 adult and 3 toadlet Western Toad and 1 adult Wood Frog were observed incidentally between survey locations and during breeding bird surveys (**Appendix C**).

Table 4-1: Amphibian Detections in the LSA

Charles	Number Observed During Surveys						
Species	Adult	Toadlet	Tadpole	Egg Mass	Total		
Columbia Spotted Frog	37	-	39	58	134		
Long-toed Salamander	0	-	43	108	151		
Western Toad	13	5	0	0	18		
Wood Frog 40		-	- 3		109		
Total		1	•	•	412		

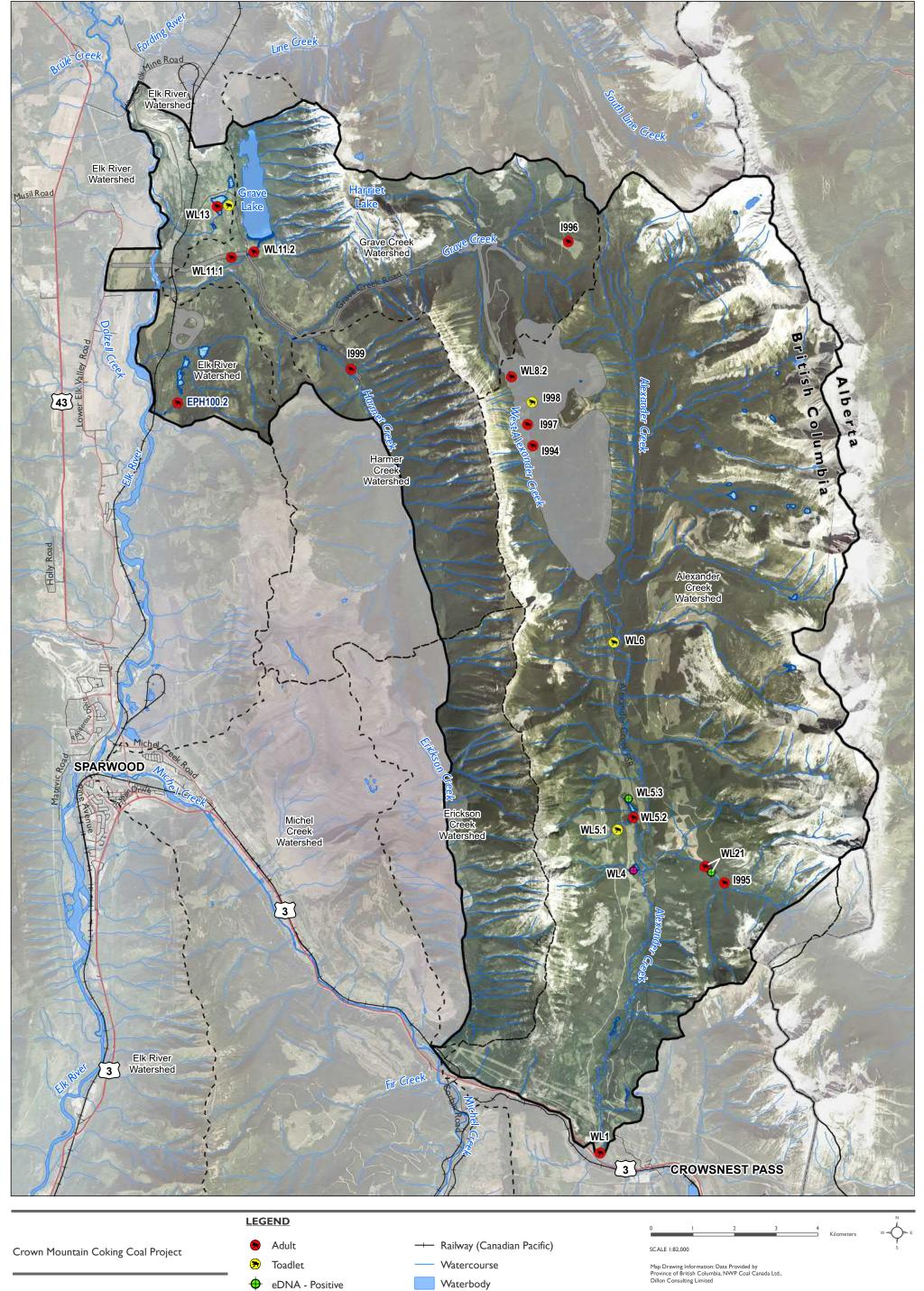
During the amphibian baseline program, 210 visits to 31 wetlands and 23 ephemeral survey sites in the LSA were conducted over approximately 160.1 person-hours throughout the 2014, 2017, 2018, and 2019 survey years (**Table 4-2**; **Appendix C**). Amphibians were detected at 18 wetland survey sites and 2 ephemeral areas during the baseline surveys, as well as incidentally at sites WL5.1, WL6, and WL13 (**Appendix C**).

Survey sites with the greatest number of observations included: WL17, WL16, WL15, WL18, and WL13 (138, 82, 32, 30, and 24 detections, respectively) in the Elk River watershed; WL4 (57 detections) in the Alexander Creek watershed; and survey sites WL11.1 and WL11.2 (14 and 10 detections, respectively) in the Grave Creek watershed (**Table 4-2**). The only two ephemeral areas at which amphibians were detected were EPH100.1 and EPH100.2 (four detections each) in the Elk River watershed (**Table 4-2**).

There were 12 wetland survey sites at which amphibians were not detected: WL3, WL5.3, WL5.4, WL6.1, WL7, WL8.1, and WL8.3 in the Alexander Creek watershed; WL10 in the Harmer Creek watershed; WL11.3 in the Grave Creek watershed; and WL19, WL20, and WL22 in the Elk River watershed. One adult frog was detected at survey site WL14 in the Elk River watershed, but the species could not be confirmed. Of the 23 ephemeral areas observed, no amphibians were detected at 21 locations: EPH4.2, the field north of WL5.4; EPH103, EPH104.1, EPH104.2, EPH105, EPH106 in the Alexander Creek watershed; EPH112 in the Grave Creek watershed EPH114 in the Harmer Creek watershed; and EPH101, EPH102, EPH113, EPH115, EPH1003, EPH1004, EPH1005, EPH1006, EPH1007, EPH1008, EPH1009, and EPH1010 in the Elk River watershed (**Appendix C**).

Table 4-2: Amphibian Observations per Survey Site

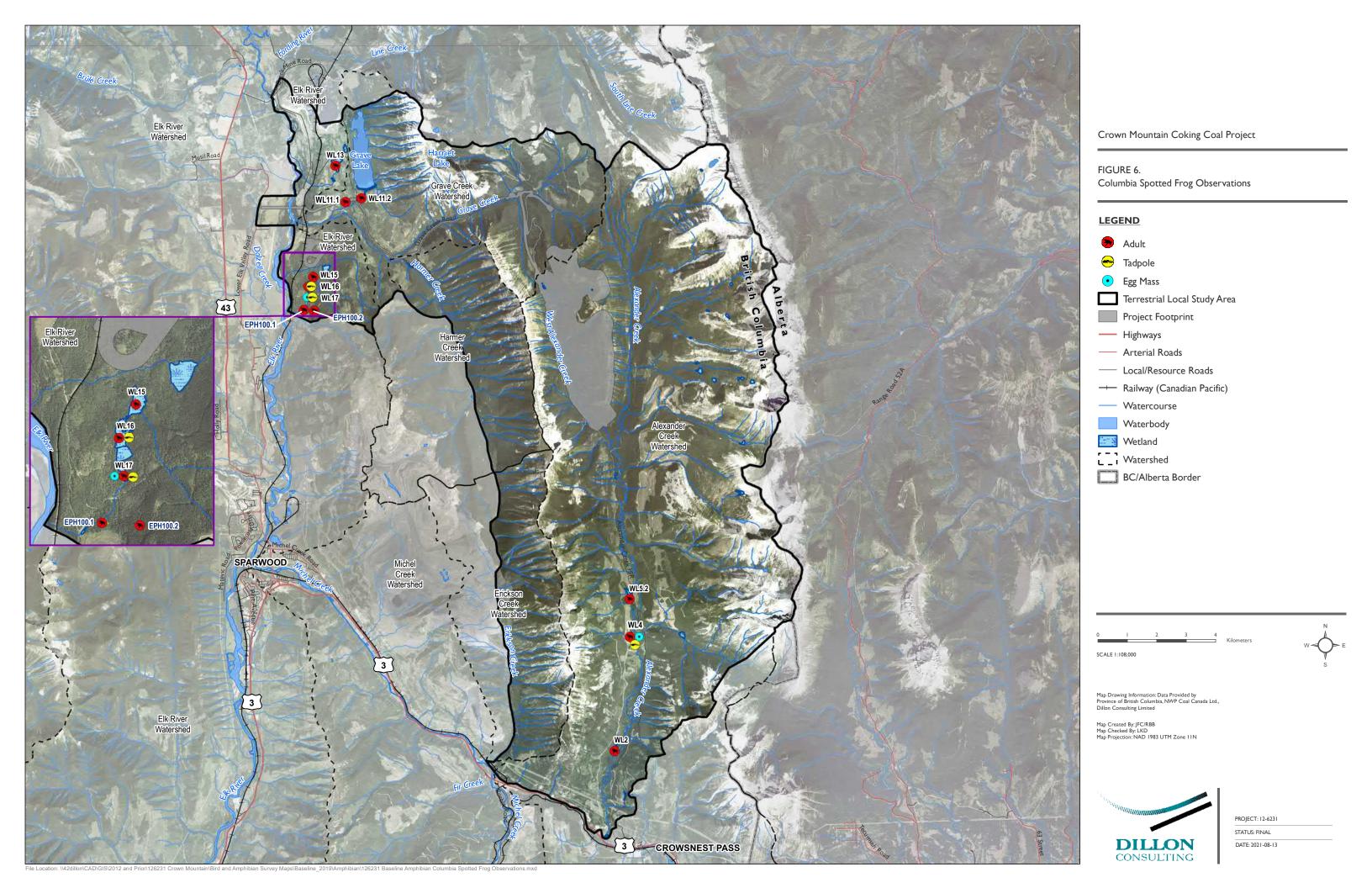
Location	Columbia Spotted Frog			Long-toed Salamander		Western Toad		Wood Frog			
	Adult	Tadpole	Egg Mass	Tadpole	Egg Mass	Adult	Toadlet	Adult	Tadpole	Egg Mass	Total
WL1	0	0	0	0	0	1	0	1	0	0	2
WL2	1	0	0	0	0	0	0	0	0	0	1
WL4	12	18	22	0	4	0	0	0	0	1	57
WL5.2	1	0	0	0	0	1	0	0	0	0	2
WL6	0	0	0	0	0	0	1	0	0	0	1
WL6.2	0	0	0	3	0	0	0	0	0	0	3
WL8.2	0	0	0	0	0	1	0	0	0	0	1
WL9	0	0	0	5	0	0	0	0	0	0	5
WL11.1	9	0	0	1	0	2	0	2	0	0	14
WL11.2	6	0	0	0	0	1	0	3	0	0	10
WL12	0	0	0	0	0	0	0	1	0	0	1
WL13	2	0	0	0	0	5	4	8	0	5	24
WL15	1	0	0	0	0	0	0	8	3	20	32

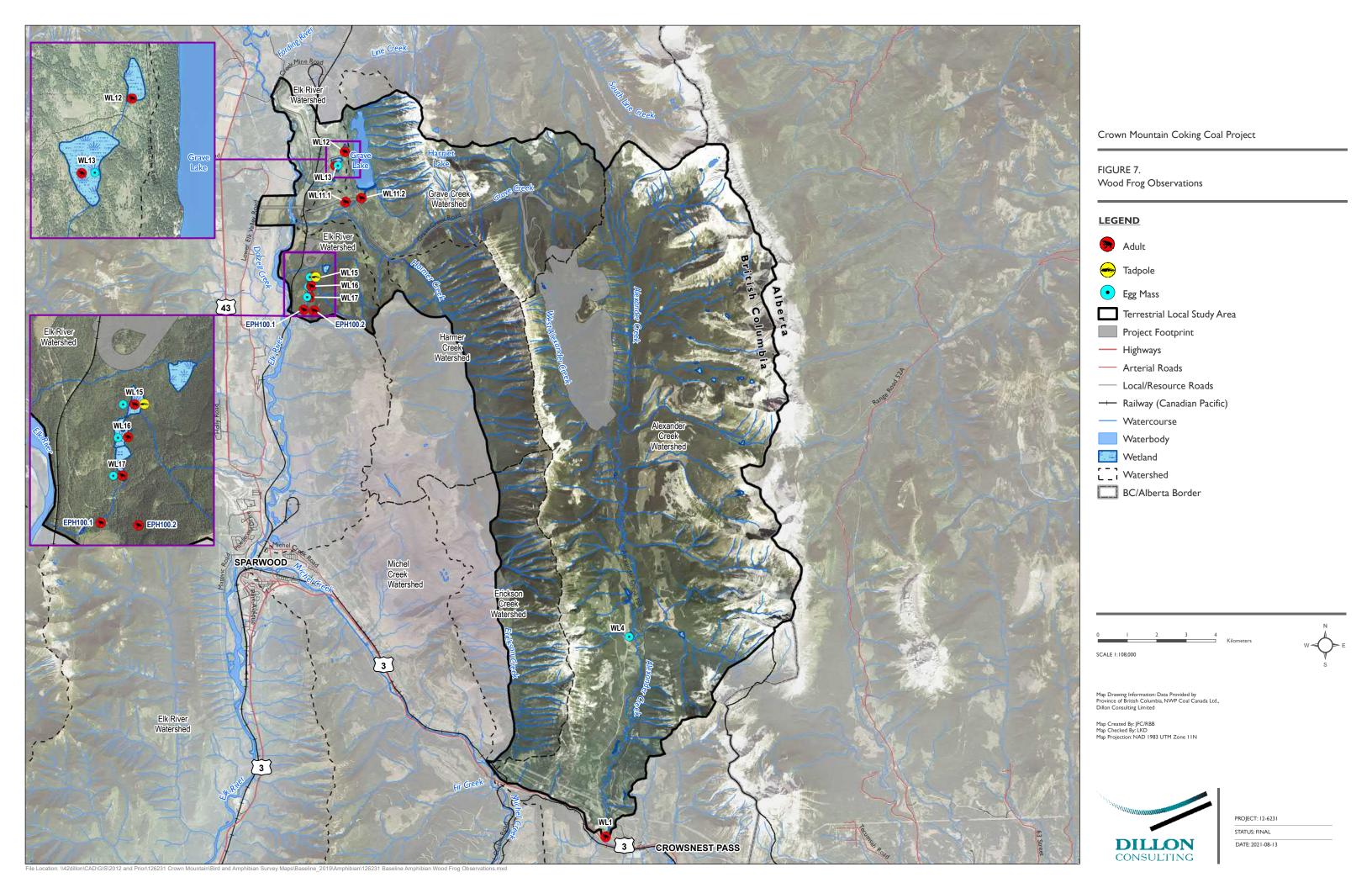

Location	Columbia Spotted Frog			Long-toed Salamander		Western Toad		Wood Frog			
	Adult	Tadpole	Egg Mass	Tadpole	Egg Mass	Adult	Toadlet	Adult	Tadpole	Egg Mass	Total
WL16	1	6	0	4	56	0	0	4	0	11	82
WL17	1	15	36	0	48	0	0	9	0	29	138
WL18	0	0	0	30	0	0	0	0	0	0	30
WL21	0	0	0	0	0	1	0	0	0	0	1
EPH100.1	1	0	0	0	0	0	0	3	0	0	4
EPH100.2	2	0	0	0	0	1	0	1	0	0	4
Total	37	39	58	43	108	13	5	40	3	66	412

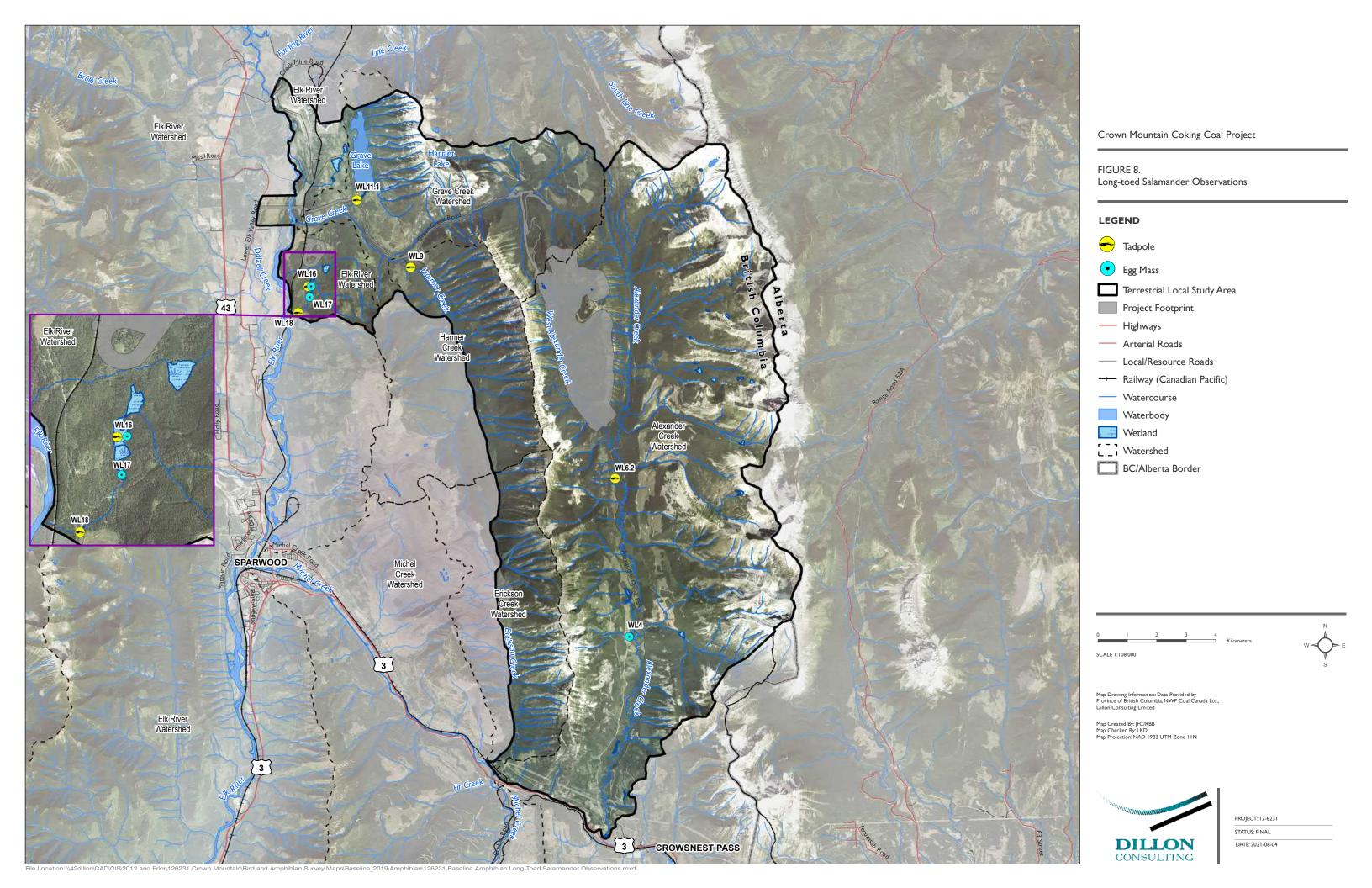
Western Toad were detected at 18 locations in the LSA (**Figure 5**). Adult Western Toad were documented across the LSA, while toadlets were documented in only four locations in the LSA: survey sites WL5.1 and WL6 in the Alexander Creek watershed, WL13 in the Elk River watershed, and incidentally at location 1998 near West Alexander Creek (**Figure 5**). No Western Toad egg masses or tadpoles were observed over the survey years. Western Toad were documented at wetlands and ephemeral areas in the LSA from May to July across the sampling years, primarily during wetland perimeter searches.

Columbia Spotted Frog were detected at 11 locations across the LSA (**Figure 6**). Adults were observed in the Alexander Creek, Grave Creek, and Elk River watersheds, while tadpoles and egg masses were observed in the Alexander Creek and Elk River and watersheds only. Wood Frog were detected at 12 locations (**Figure 7**). Adults were observed in the Grave Creek and Elk River watersheds; tadpoles were observed in the Elk River watershed only; and egg masses were observed in the Alexander Creek and Elk River watersheds. Long-toed Salamander were detected at 7 locations (**Figure 8**). Tadpoles were observed in the Alexander Creek, Grave Creek, Harmer Creek, and Elk River watersheds, and egg masses were observed in the Alexander Creek and Elk River watersheds.

All Columbia Spotted Frog, Wood Frog, and Long-toed Salamander egg mass observations occurred in May and tadpole observations occurred in June and July, with the exception of one Long-toed Salamander observation recorded in September 2019. The adult life stages of Columbia Spotted Frog and Wood Frog were documented in the LSA during the spring, summer, and fall. Only the egg mass and tadpole life stages of Long-toed Salamander were observed, with no adult observations recorded during the baseline program.




eDNA - Suspected Western Toad Observations Watershed Terrestrial Local Study Area BC/Alberta Border Project Footprint - Highways Arterial Roads Local/Resource Roads CONSULTING


Wetland |

Map Drawing Information: Data Provided by Province of British Columbia, NWP Coal Canada Ltd., Dillon Consulting Limited Map Created By: JFC/RBB Map Checked By: LKD Map Projection: NAD 1983 UTM Zone 11N PROJECT: 12-6231 STATUS: FINAL DATE: 2021-08-04

FIGURE 5.

4.1.1 Wetland Perimeter Searches

A total of 406 amphibian detections were recorded over 157 perimeter searches in 30 wetlands and 13 ephemeral areas over 127.8 person-hours in 2014, 2017, 2018, and 2019 (**Table 4-3**; **Appendix C**). All four amphibian species detected during the baseline program were observed during the perimeter searches: 132 Columbia Spotted Frog, 148 Long-toed Salamander, 18 Western Toad, and 108 Wood Frog (**Table 4-3**). In addition, 16 unidentified adults and 48 unidentified tadpoles were observed during the perimeter searches (**Appendix C**).

Table 4-3: Amphibians Observed during Wetland Perimeter Surveys, 2014 and 2017-2019

Consider			No. Observed		
Species	Adult	Toadlet	Tadpole	Egg Mass	Total
Columbia Spotted Frog	35	-	39	58	132
Long-toed Salamander	0	-	40	108	148
Western Toad	13	5	0	0	18
Wood Frog	39	-	3	66	108
Total	87	5	82	232	406

Amphibians were detected at 16 wetland survey sites and 2 ephemeral areas during the perimeter searches (**Table 4-4**). Survey Site WL17 yielded the greatest number of amphibian detections (138), followed by sites WL16 (82), WL4 (56), WL15 (32), WL18 (30), WL13 (24), WL11.1 (14), and WL11.2 (10). Detections were less than 10 individuals at the other 10 survey sites (**Table 4-4**).

Table 4-4: Perimeter Search Amphibian Detections

6 6'	Colu	mbia Spot	ted Frog	Long-toed	Salamander	Weste	ern Toad		Wood Fr	og	
Survey Site	Adult	Tadpole	Egg Mass	Tadpole	Egg Mass	Adult	Toadlet	Adult	Tadpole	Egg Mass	Total
WL1	0	0	0	0	0	1	0	1	0	0	2
WL2	1	0	0	0	0	0	0	0	0	0	1
WL4	11	18	22	0	4	0	0	0	0	1	56
WL5.2	0	0	0	0	0	1	0	0	0	0	1
WL6	0	0	0	0	0	0	1	0	0	0	1
WL8.2	0	0	0	0	0	1	0	0	0	0	1
WL9	0	0	0	5	0	0	0	0	0	0	5
WL11.1	9	0	0	1	0	2	0	2	0	0	14
WL11.2	6	0	0	0	0	1	0	3	0	0	10
WL12	0	0	0	0	0	0	0	1	0	0	1
WL13	2	0	0	0	0	5	4	8	0	5	24
WL15	1	0	0	0	0	0	0	8	3	20	32
WL16	1	6	0	4	56	0	0	4	0	11	82
WL17	1	15	36	0	48	0	0	9	0	29	138
WL18	0	0	0	30	0	0	0	0	0	0	30
WL21	0	0	0	0	0	1	0	0	0	0	1
EPH 100.1	1	0	0	0	0	0	0	2	0	0	3
EPH 100.2	2	0	0	0	0	1	0	1	0	0	4
Total	35	39	58	40	108	13	5	39	3	66	406

4.1.2 Evening Roadside Transect Surveys

No Western Toad were observed during the evening roadside transect surveys, nor were any other migrating amphibian species detected during the 1.3 person-hours of effort along the two road transects and 12 call survey stations (**Appendix C**).

4.1.3 Environmental DNA

Environmental DNA analysis techniques for Western Toad were conducted at 13 wetlands in the LSA with one wetland serving as a positive control (wetland survey site WL21 - visual *in situ* Western Toad presence). Four samples failed the IntegritE-DNA™ test and required cleanup of DNA inhibitors. After cleanup, three samples (one each from survey sites WL11, WL14, and WL21) passed the IntegriE-DNA™ test and were tested for Western Toad. Of all the samples collected, only one sample from site WL2 failed the IntegritE-DNA™ test even after cleanup. This sample was not tested for Western Toad. Results indicate that one positive detection of Western Toad occurred at wetland survey site WL5.3, one suspected detection of Western Toad occurred at site WL4, 8 positive detections occurred at site WL21, and the remainder of the wetlands sampled resulted in non-detection for Western Toad (Figure 5; **Table 4-5**). As a conservative approach, the suspected eDNA occurrence was treated as a positive occurrence for the purposes of this report. The raw data from the eDNA analysis is presented in **Appendix D**.

Table 4-5: Western Toad eDNA Results for Wetlands Sampled

Survey Site ID	eDNA Positive Detection*	Inferred Western Toad Presence
WL2	0/8	No
WL4	1/8	Suspected
WL5.2	0/8	No
WL5.3	2/8	Yes
WL11	0/8	No
WL12	0/8	No
WL14	0/8	No
WL15	0/8	No
WL16	0/8	No
WL17	0/8	No
WL18	0/8	No
WL21**	8/8	Yes
WL22	0/8	No

^{*} Indicates the highest detection rate in triplicate set

^{**}Visual positive

Emergence Surveys

4.1.4

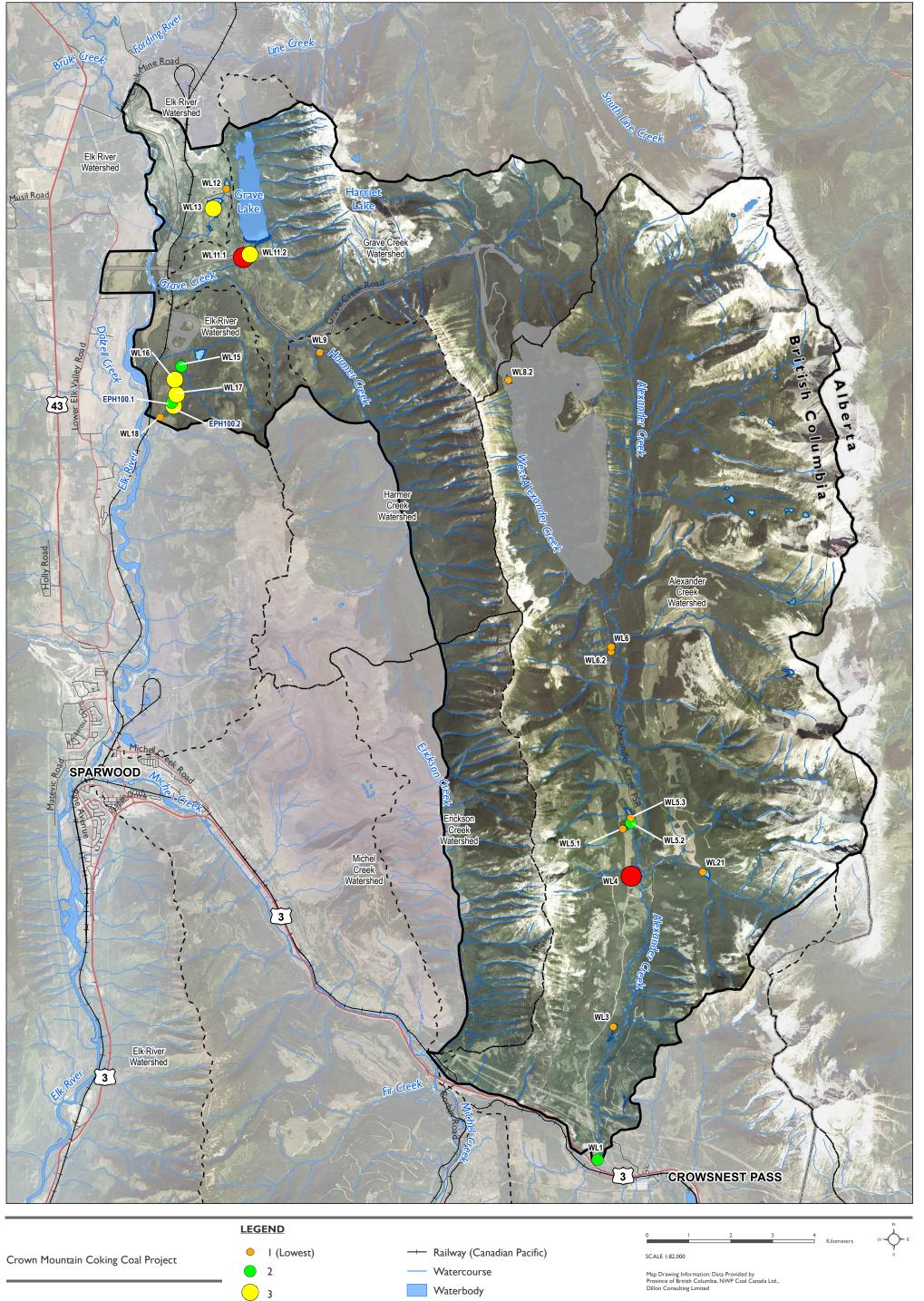
4.2

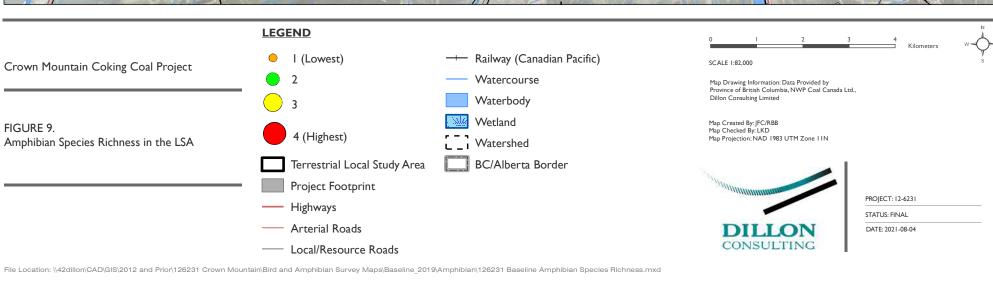
No Western Toad toadlets were observed in the LSA during the 43 emergence surveys in 19 wetlands and 5 ephemeral areas in September 2019 over 31.0 person-hours (Table 4-6). Single observations of adult Columbia Spotted Frog were recorded in WL4 and WL5.2, one adult Wood Frog was detected in EPH100.1, and three Long-toed Salamander tadpoles were detected in WL6.2 (Table 4-6).

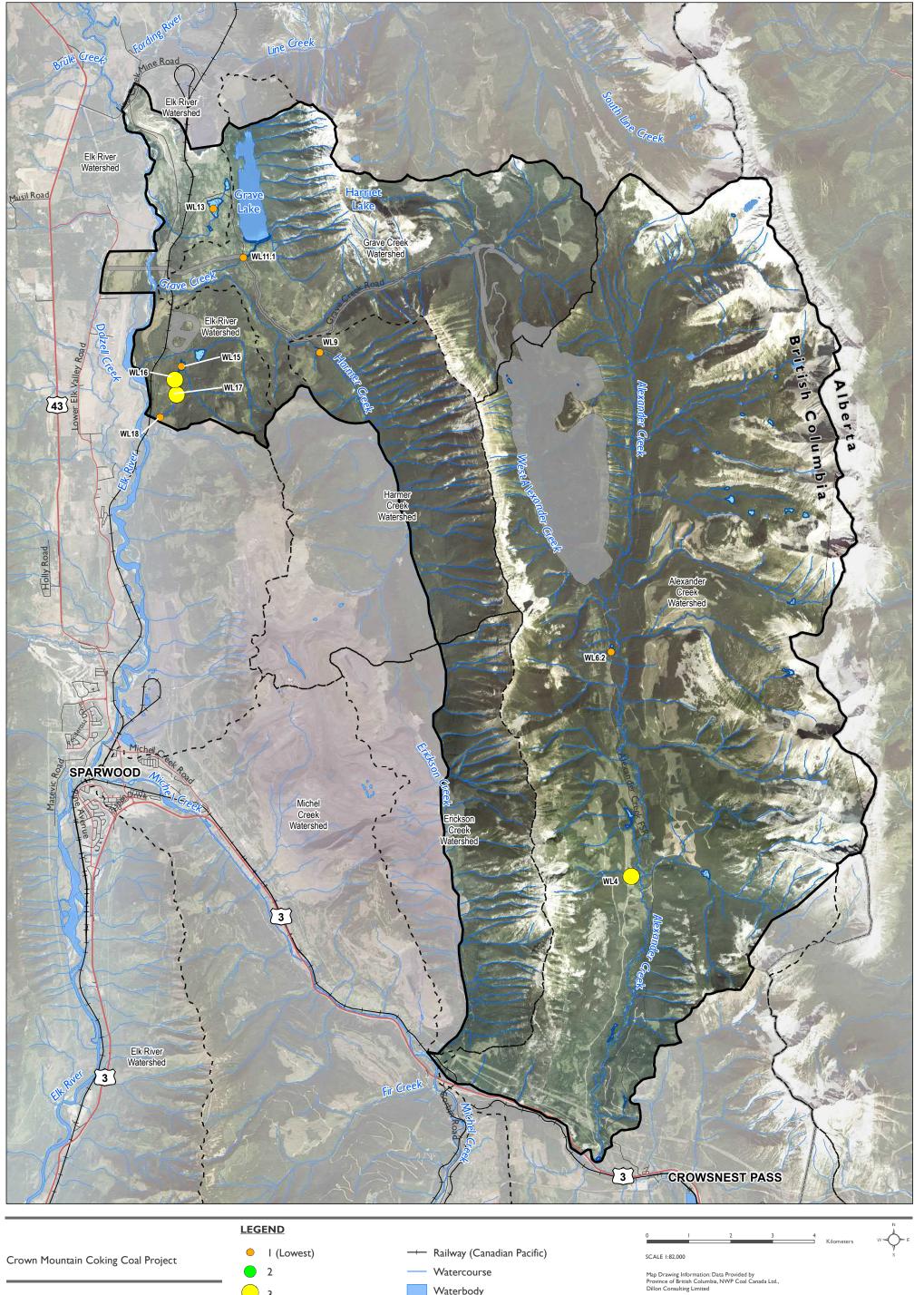
Table 4-6: Amphibians Observed during Emergence Surveys, September 2019

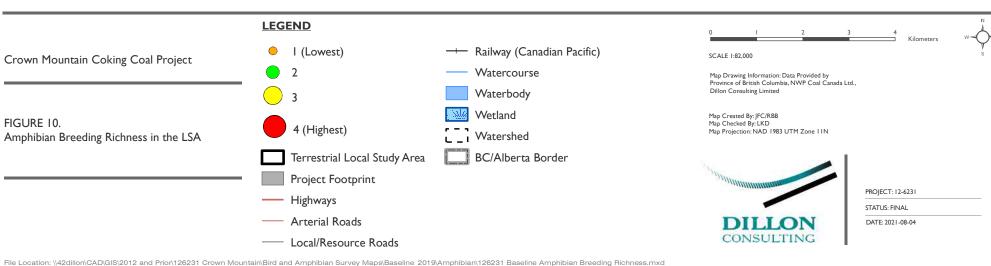
Sancian			No. Observed		
Species	Adult	Toadlet	Tadpole	Egg Mass	Total
Columbia Spotted Frog	2	0	0		3
Long-toed Salamander	0	0	3	0	3
Western Toad	0	0	0	0	0
Wood Frog	1	0	0	0	0

Amphibian Habitat and Distribution


Most amphibian observations were recorded in marshes and shallow water wetlands with habitat characteristics such as peat and organic surface substrates, emergent vegetation cover, and moderate temperatures. The greatest number of amphibian detections occurred in the Alexander Creek (WL4), Grave Creek (WL11.1 and WL11.2), and Elk River (WL13, WL15, WL16, and WL17) watersheds, with key breeding areas identified at WL4 in the Alexander Creek watershed and WL16 and WL17 in the Elk River watershed.


Amphibian species richness per survey site varied from 0 to 4. The most species-rich and diverse wetlands were WL11.1 in the Grave Creek watershed and WL4 in the Alexander Creek watershed, in which all four amphibian species were detected (Figure 9). Survey sites with species richness of 3 included WL11.2 in the Grave Creek watershed and sites WL13, WL16, WL17, and EPH100.2 in the Elk River watershed.


Breeding richness, the number of species breeding at a survey site ranged from 0 to 3 (Figure 10). The most species-rich breeding sites were WL4 in the Alexander Creek watershed and WL16 and WL17 in the Elk River watershed, at which tadpoles and/or egg masses for Columbia Spotted Frog, Long-toed Salamander, and Wood Frog were observed. Only one breeding species was detected at the other five survey sites at which breeding was recorded (Figure 10).


Amphibian habitat and distribution across the Alexander Creek, Grave Creek, Elk River, and Harmer Creek watersheds is discussed in the following subsections.

4.2.1.1 Alexander Creek Watershed

Within the Alexander Creek watershed, 17 wetlands were visited 80 times and 7 ephemeral areas were visited 12 times over the 4 survey years. Western Toad were documented at eight wetlands and four incidental locations (Figure 5); Columbia Spotted Frog were documented at three wetlands (Figure 6); and Wood Frog and Long-toed Salamander were documented at two wetlands (Figure 7 and Figure 8; Table 4-7). Incidental observations were recorded at four locations in the Alexander Creek watershed: 1 adult Western Toad at each of 1994, 1995, and 1997, and one Western Toad toadlet at 1998 (Figure 5; Appendix C).

Wetland survey site WL4 was the most species-rich, with all four amphibian species observed over the course of the baseline program documented in this wetland (Table 4-7; Figure 9). Where evidence of breeding occurred (egg mass and tadpoles), the breeding species richness was also determined. Site WL4 had the highest breeding species richness of 3 in the Alexander Creek Watershed, where egg masses were documented for Columbia Spotted Frog, Wood Frog, and Long-toed Salamander (Table 4-7; Figure 10). Amphibian observations at WL4 were dominated by the Columbia Spotted Frog, which were observed over multiple years in all life stages (egg mass, tadpole, adult). Site WL6.2 was the only other location with evidence of breeding in the Alexander Creek watershed, with a single observation of Long-toed Salamander tadpoles in September 2019. Aside from observations at sites WL4 and WL6.2, all other amphibian observations in the Alexander Creek watershed were single-year observations with one to two species present. Western Toad toadlets were documented at sites WL5.1 and WL6 and in incidental location 1998, and the remainder of the observations were adults (no egg masses or tadpoles were observed). Each observation was of a single Western Toad, and there were no multi-year observations in the same location. Survey sites in the Alexander Creek watershed where no amphibians were detected included wetlands WL3, WL5.3, WL5.4, WL6.1, WL7, WL8.1, and WL8.3, and ephemeral areas EPH4.2, the field north of WL5.4; EPH103, EPH104.1, EPH104.2, EPH105, and EPH106 (Appendix C).

The majority of amphibian observations in the Alexander Creek watershed occurred in the lower elevation MSdw BEC subzone in marshes and shallow water wetlands. Higher elevation observations in the ESSFdk1 subzone were only of Western Toad; one in a shallow water alpine wetland (survey site WL8.2 located within the Project footprint), three incidental observations in the forested slopes of West Alexander Creek, and one incidental observation near Deadman's Pass (Figure 5). Common habitat characteristics at sites where amphibians were observed within the Alexander Creek watershed include: substrates of peat, organics, silt, and sand; low to moderate emergent vegetation cover; presence of coarse woody debris; and water temperatures between 7 and 15°C (Table 4-7). In general, habitat characteristics were similar between the sites with and without amphibian occupancy (Appendix A).

Table 4-7: Alexander Creek Watershed Amphibian Survey Results and Habitat Characteristics

Survey Site	Year	Month	Life Stage	Western Toad	Columbia Spotted Frog	Wood Frog	Long-toed Salamander	Overall Species Richness	Breeding Species Richness	BEC Subzone	Primary Wetland Type *	Surface Substrate	Emergent Vegetation Cover (%)	Coarse Woody Debris**	Temperature (°C)	Potential for Fish Presence	Located within Project Footprint?
Occupied	l Survey	Sites															
WL1	2014	July	Adult	1	-	1	-	2	0	MSdw	Marsh	Peat, Silt, Sand	33-66	Υ	7.3	Fish bearing	No
WL2	2019	July	Adult	-	1	-	-	1	0	MSdw	Fen	Peat, Silt	0-33	N	7.9-11.5	Unlikely	No
	2014	June	Adult	-	1	-	-										No
		June	Tadpole	-	10	-	-										
	2017	Julie	Adult	-	2	-	-										
		July	Tadpole	-	5	-	-										
	2018	May	Egg Mass	-	8	-	-					Peat,					
WL4	2018	iviay	Adult	-	3	-	-	4	3	MSdw	Marsh	Organics, Silt,	33-66	Υ	10.4-15	Fish bearing	No
		May	Egg Mass	-	5, 9	1	4					Sand					NO
		iviay	Adult	-	5	-	-										
	2019	July	Tadpole	-	3	-	-										
		July	Unknown	Suspected***	-	-	-										
		September	Adult	-	1	-	-										
WL5.1	2014	June	Toadlet	1*	-	-	-	1	0	MSdw	Marsh	Peat, Organics, Silt, Sand, Gravel	66-100	Y	6.8	Fish bearing	No
WL5.2	2019	September	Adult	1	1	-	-	2	0	MSdw	Marsh	Peat, Organics, Silt, Sand	33-66	Y	9.1	Fish bearing	No
WL5.3	2019	July	Unknown	Present***	-	-	-	1	0	MSdw	Marsh	Peat, Organics, Silt, Sand	33-66	N	9.5	Fish bearing	No
WL6	2017	June	Toadlet	1	-	-	-	1	0	MSdw	Marsh	Organics, Silt, Sand	0-33	Υ	13-13.3	Fish bearing	No
WL6.2	2019	September	Tadpole	-	-	-	3	1	1	MSdw	Shallow Water	Gravel	0-33	Υ	n/a	Not sampled	No
WL8.2	2018	July	Adult	1	-	-	-	1	0	ESSFdk1	Shallow Water	Peat, Organics, Silt	0-33	Υ	14.9	Unlikely	Yes
WL21	2019	July	Adult	1	-	-	-	1	0	MSdw	Marsh	Peat, Organics, Silt, Sand, Gravel	0-33	Y	6.2	Fish bearing	No

^{*} Many wetlands observed within the LSA form wetland complexes of two or more distinct wetland associations

^{**} Y = Yes; N = No; n/a = not applicable

^{***} Based on eDNA detection

4.2.1.2 Grave Creek Watershed

In the Grave Creek watershed, 3 wetlands were visited 20 times and 5 ephemeral areas were visited 6 times over the 4 survey years. Western Toad were documented at two wetlands and one incidental location (Figure 5); Columbia Spotted Frog and Wood Frog were documented at two wetlands (Figure 6 and Figure 7); and Long-toed Salamander were documented at one wetland (Figure 8).

Wetland survey sites WL11.1 and WL11.2 in the Grave Creek watershed had high species richness (4 and 3, respectively; **Table 4-8**; **Figure 9**) and low breeding species richness (1 at WL11.1 and 0 at WL11.2; **Figure 10**). A Western Toad toadlet was documented at survey site WL11.1, and all other Western Toad observations in the Grave Creek watershed were of adults. Columbia Spotted Frog and Wood Frog adults were the only life stage of these species observed in the Grave Creek watershed, while only Long-toed Salamander tadpoles were observed. No amphibians were observed at survey sites WL11.3 or EPH112 in the Grave Creek watershed. One adult Western Toad was incidentally observed at location at 1996 in July 2019 (**Appendix C**).

Observations of amphibians in the Grave Creek watershed occurred in marshes and shallow water wetlands of the MSdw (**Table 4-14**). One Western Toad was observed incidentally in the ESSFdk1 subzone in the upper Grave Creek watershed in a steep, re-planted cutblock. Within the Grave Creek watershed, amphibians were commonly observed in wetlands with the following habitat characteristics: surface substrates of peat, organics, silt, and sand; low to moderate emergent vegetation cover; coarse woody debris presence; and water temperatures between 12 and 15°C (**Table 4-8**). In general, habitat characteristics were similar between the sites with and without amphibian occupancy (**Appendix A**).

Table 4-8: Grave Creek Watershed Amphibian Survey Results and Habitat Characteristics

Survey Site	Year	Month	Life Stage	Western Toad	Columbia Spotted Frog	Wood Frog	Long-toed Salamander	Overall Species Richness	Breeding Species Richness	BEC Subzone	Primary Wetland Type [*]	Surface Substrate	Emergent Vegetation Cover (%)	Coarse Woody Debris**	Temperature (°C)	Potential for Fish Presence	Located within Project Footprint?
	2014	July	Adult	1	7	1	-					Peat,					
WL11.1 2017 June	June	Toadlet	1	-	-	-	4	1	MSdw	Marsh	,	0-33	Υ	11.7-14	Fish bearing	Yes	
	July	Tadpole	-	-	-	1					Sand		·		1 isir bearing		
	2019	July	Adult	-	2	1	-										
	2014	July	Adult	1	2	-	-				Shallow	Peat,					
	July	Adult	-	2	3	-	3	0	MSdw	Shallow Water	Organics, Silt, Sand, Gravel		Y	15.2	Not sampled	No	

^{*} Many wetlands observed within the LSA form wetland complexes of two or more distinct wetland associations

^{**} Y = Yes; N = No; n/a = not applicable

4.2.1.3 Elk River Watershed

In the Elk River watershed, 9 wetlands were visited 62 times and 10 ephemeral areas were visited 16 times over the 4 survey years. Western Toad were only documented at one wetland and one ephemeral area (**Figure 5**); Columbia Spotted Frog were documented at four wetlands and two ephemeral areas (**Figure 6**); Wood Frog were documented at five wetlands and two ephemeral areas (**Figure 7**); and Longtoed Salamander were documented at three wetlands (**Figure 8**; **Table 4-9**).

Wetland survey sites WL13, WL16, and WL17, and ephemeral area EPH100.2 in the Elk River watershed had species richness of 3 (**Table 4-9**; **Figure 9 - 10**). Sites WL16 and WL17, both with a breeding species richness of 3, were found to have the highest breeding richness in the Elk River watershed. Evidence of breeding occurred in all but one wetland (site WL12) visited in the Elk River watershed, and was documented for all amphibian species observed as part of the baseline program with the exception of Western Toad. Western Toad toadlets were observed over multiple years at WL13, and adults were observed at this site each survey year. Additionally, a single adult Western Toad was documented at EPH100.2 in 2019.

Amphibian observations in the Elk River watershed were dominated by Wood Frog, followed by Columbia Spotted Frog, and both of these species had evidence of breeding. Long-toed Salamander were observed to be breeding at WL16, WL17, and WL18. No amphibians were detected at survey sites WL19, WL20, WL22, EPH101, EPH102, EPH113, EPH115, EPH1003, EPH1004, EPH1005, EPH1006, EPH1007, EPH1008, EPH1009, and EPH1010 in the Elk River watershed. One adult frog was detected at survey site WL14 in the Elk River watershed, but the species could not be confirmed (**Appendix C**).

Observations in the Elk River watershed occurred in the MSdw subzone generally in marshes, shallow water wetlands, and ephemeral areas. Common habitat characteristics of wetland where amphibians were observed include: substrates of peat and organics; high emergent vegetation cover; and water temperatures between 12 and 18°C (Table 4-9). In general, habitat characteristics were similar between the sites with and without amphibian occupancy (Appendix A).

Table 4-9: Elk River Watershed Amphibian Observations and Habitat Characteristics

Survey Site	Year	Month	Life Stage	Western Toad	Columbia Spotted Frog	Wood Frog	Long-toed Salamander	Overall Species Richness	Breeding Species Richness	BEC Subzone	Primary Wetland Type*	Surface Substrate	Emergent Vegetation Cover (%)	Coarse Woody Debris**	Temperature (°C)	Potential for Fish Presence	Located within Project Footprint?
WL12	2019	July	Adult	-	-	1	-	1	0	MSdw	Transitional Marsh-Fen	Peat, Organics	66-100	N	14.6-18	Not sampled	No
	2014	June	Toadlet	2	-	-	-										
		Julie	Adult	2	-	1	-										
	2017	June	Adult	1	1	3	-										
WL13	2018	May	Egg Mass	-	-	5	-	3	1	MSdw	Swamp	Peat, Organics	66-100	N	n/a	Not sampled	No
	2018	May	Toadlet	2	-	-	-										
			Adult	-	1 (incidental)	1	-										
	2019	July	Adult	2	-	3	-										
	2018	May	Egg Mass	-	-	10	-										
	2016		Adult	-	-	4	-										
\\/I 15	WL15	July	Tadpole	-	-	3	-	2	1	MSdw	Marsh	Peat,	66-100	N	12	Unlikely	No
***113	2019	May	Egg Mass	-	-	10	-	-	_		Widi Sii	Organics 66-100	66-100 N	N 12	oe.,		
	2019		Adult	-	-	2	-										
		July	Adult	-	1	2	-										
WL16	2019	May	Egg Mass	-	-	11	3, 53	3	3	MSdw	Marsh	Peat,	66-100	Y	12.2	Unlikely	No
WLIO	2013	July	Tadpole	-	6	-	4	3	3	IVISUV	IVIALSH	Organics	00-100	,	12.2	Officery	NO
		July	Adult	-	1	4	-										
	2014	July	Tadpole	-	4	-	-										
			Adult	-	-	2	-										
	2017	June	Adult	-	-	3	-										
		July	Tadpole	-	11	-	-										
WL17	2018	May	Egg Mass	-	8	27	-	3	3	MSdw	Marsh	Peat, Organics	66-100	N	12.7-15.8	Potential	No
	2019	May	Egg Mass	-	28	2	48										
	2019		Adult	-	-	1	-										
		July	Adult	-	1	3	-										
WL18	2019	July	Tadpole	-	-	-	34	1	1	MSdw	Shallow Water	Peat, Organics, Sand	66-100	Υ	11.7	Potential	No

Survey Site	Year	Month	Life Stage	Western Toad	Columbia Spotted Frog	Wood Frog	Long-toed Salamander	Overall Species Richness	Breeding Species Richness	BEC Subzone	Primary Wetland Type [*]	Surface Substrate	Emergent Vegetation Cover (%)	Coarse Woody Debris**	Temperature (°C)	Potential for Fish Presence	Located within Project Footprint?
	2014	June	Adult	-	-	1	-										No
EPH100.1		May	Adult	-	1	-	-	2	0	MSdw	n/a	Peat,	0	N	n/a	n/a	110
	2019	July	Adult	-	-	1	-	_			.,, .	Organics			1,72	., .	
		September	Adult	-	-	1	-										
		May	Adult	1	1	-	-					Peat,					
EPH100.2	2019	July	Adult	-	1	1	-	3	0	MSdw	n/a	Organics, Sand	0-33	N	n/a	n/a	No

^{*} Many wetlands observed within the LSA form wetland complexes of two or more distinct wetland associations

^{**} Y = Yes; N = No; n/a = not applicable

4.2.1.4 Harmer Creek Watershed

In the Harmer Creek watershed, 2 wetlands were visited 13 times and 1 ephemeral area was visited once over the 4 survey years. One Western Toad was documented at incidental area 1999 in July 2018 (Figure 1) and five Long-toed Salamander tadpoles were documented in WL9 in July 2017 (Figure 8; Table 4-10). Columbia Spotted Frog and Wood Frog were not documented in this watershed. Overall species richness and breeding richness was low (1) for WL9 (Figure 9 and 10). No amphibians were detected at survey sites WL10 and EPH114 in the Harmer Creek watershed.

Within the Harmer Creek watershed, Long-toed Salamander tadpoles were documented in WL9, a floodplain surrounding a shallow water wetland with a surface substrate composed of organics, silt, sand, and gravel, and a water temperature of 11°C. A single adult Western Toad was incidentally observed in a moist forest understory dominated by *Carex* species. In general, habitat characteristics were similar between the sites with and without amphibian occupancy (**Appendix A**).

Table 4-10: Harmer Creek Watershed Amphibian Observations and Habitat Characteristics

Survey Site	Year	Month	Life Stage	Western Toad	Columbia Spotted Frog	Wood Frog	Long-toed Salamander	Overall Species Richness	Breeding Species Richness	BEC Subzone	Primary Wetland Type [*]	Surface Substrat e	Emergent Vegetatio n Cover (%)	Coarse Woody Debris**	Temperat ure (°C)	Potential for Fish Presence	Located within Project Footprint?
WL9	2017	July	Tadpole	-	-	-	5	1	1	MSdw	n/a (Floodplain)	Organics, Silt, Sand, Gravel	0-33	N	11	Unlikely	No

^{*} Many wetlands observed within the LSA form wetland complexes of two or more distinct wetland associations

^{**} Y = Yes; N = No; n/a = not applicable

4.3 Tissue and Water Sample Collection

Columbia Spotted Frog, Wood Frog, and Long-toed Salamander were targeted for tissue collection to provide a baseline measure of metal concentrations in amphibian tissues. Egg mass samples were collected in May 2018 and 2019, and tadpoles were collected in July 2017 and 2018. Egg masses were preferentially collected, and tadpoles were only collected in locations where egg masses had not previously been sampled. In 2017 and 2018, co-located surface water quality samples were also collected to inform the baseline conditions in the surrounding environment.

During the 2017 field season, two Columbia Spotted Frog tadpole tissue samples were collected from wetland survey sites WL4 and WL17 (**Table 4-11**; **Figure 11**). Fewer wetlands with amphibians were encountered than anticipated during the 2017 field season and therefore additional sampling was completed in 2018. In 2018, three Wood Frog egg masses, one Wood Frog tadpole, and one Columbia Spotted Frog egg mass were collected from four wetlands in the LSA, WL4, WL13, WL15, and WL17 (**Table 4-11**; **Figure 11**). During the 2018 sample season, amphibian tissue samples were particularly difficult to collect due to weather and seasonality, as such follow up sampling was completed in 2019. In 2019, two Wood Frog egg masses and one Columbia Spotted Frog egg mass were collected from three wetlands, survey sites WL4, WL15, and WL17 (**Table 4-11**; **Figure 11**). Most tissue samples were collected in the Elk River watershed, except for two Columbia Spotted Frog egg masses and one tadpole from wetland survey site WL4 in the Alexander Creek watershed. No Long-toed Salamander samples were collected over the course of the baseline program.

Table 4-11: Amphibian Tissue and Water Quality Sample Collection

Year	Date	Watershed	Wetland	Columbia Spotted Frog	Wood Frog	Water Quality Sample ID
2017	July 6	Alexander Creek	WL4	Tadpole	-	-
		Elk River	WL17	Tadpole	-	-
2018	May 5	Elk River	WL15	-	Egg Mass	18-WF-WL9B
		Elk River	WL17	-	Egg Mass	18-WL9
	May 8	Elk River	WL13	-	Egg Mass	18-WF-10
	May 9	Alexander Creek	WL4	Egg Mass		18-CSF-07
	July 4	Elk River	WL15	-	Tadpole	WET21
2019	May 9	Elk River	WL15	-	Egg Mass	WF-WL15-19
		Elk River	WL17	Egg Mass	-	CSF-WL17-19
	May 21	Alexander Creek	WL4	Egg Mass	-	CSF-4.1-19

4.3.1 Comparison to Tissue Guideline Values

Results for the laboratory analyses of metals in amphibian tissues and summary statistics (minimum, maximum, geometric mean, and standard deviation) are provided in **Appendix E**. Tissue concentrations were considered by sample type (i.e., tadpole or egg mass). A summary of tissue concentrations for parameters with relevant guidelines is provided in **Table 4-12**.

The mean concentration of selenium in tadpoles collected was 3.26 mg/kg dw (range: 2.39 to 5.33). The mean concentration of selenium in egg masses was 2.83 mg/kg dw (range: 1.86 to 5.00). Selenium levels in all tadpole tissue samples were below the US EPA (2016) guideline value for fish (8.5 mg/kg dw). Concentrations of selenium in all amphibian egg samples collected were below the BC MOE (2014) guidelines for bird eggs and the US EPA (2016) guideline for fish. No exceedances of Elk Valley reference concentrations for chromium or vanadium (Windward et al., 2014) were observed in the amphibian egg samples, as all samples were below the detection limit (**Table 4-12**).

Table 4-12: Amphibian Tissue Concentrations and Guideline Values for Selenium, Chromium, and Vanadium

Species	Watershed	Wetland	Date	Selenium (mg/kg dw)	Chromium (mg/kg dw)	Vanadium (mg/kg dw)
Tadpole Tissue						
Guideline Value				8.5 ^a	-	-
Columbia	Alexander	WL4	July 6, 2017	2.39		
Spotted Frog	Creek	VVL4	July 6, 2017	2.39	-	-
Columbia	Elk River	WL17	July 6, 2017	2.72		
Spotted Frog	EIK KIVEI	VVL17	July 6, 2017	2.72	-	_
Wood Frog	Elk River	WL15	July 4, 2018	5.33	-	-
Egg Mass						
Guideline Value				6 ^b ; 15.1 ^c	12.7 ^d	6.5 ^d
Wood Frog	Elk River	WL15	May 5, 2018	2.09	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Wood Frog	Elk River	WL17	May 5, 2018	1.86	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Wood Frog	Elk River	WL13	May 8, 2018	2.59	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Columbia	Alexander	WL4	May 9, 2018	2.17	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Spotted frog	Creek	VV L4	Iviay 9, 2016	2.17	\DL	\DL
Wood Frog	Elk River	WL15	May 9, 2019	5.00	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Columbia	Elk River	WL17	May 0, 2010	3.57	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Spotted Frog	EIKNIVEI	VVL1/	May 9, 2019	3.37	\DL	\DL
Columbia	Alexander	WL4	May 21, 2019	3.77	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Spotted Frog	Creek	VV L4	iviay 21, 2019	3.77	\DL	\DL

a: Whole body US EPA (2016) guideline for fish

b: Egg BC MOE (2014) guideline for bird eggs

c: Egg US EPA (2016) guideline for fish

d: Egg reference value for amphibians developed by Windward et al. (2014)

DL = detection limit. Chromium DL = 0.040 mg/kg wet weight; Vanadium DL = 0.020 mg/kg wet weight

4.3.2 Water Quality at Tissue Sampling Locations

Federal (CWQG) and provincial (BC WQG) surface water guidelines, as well as the Elk Valley Water Quality Plan, were considered in order to identify potential effects to aquatic life. The BC WQG are more regionally relevant and often parameter-dependent, and are therefore more useful at characterizing the existing water quality. The CWQG are developed based on data from across Canada and are typically more conservative to account for certain regional conditions that may or may not apply in BC; therefore, these guidelines were applied as a conservative comparison measure. Descriptions of the relevant guidelines are provided in **Section 1.3.3**.

The results from the water quality samples and an indication of whether they exceed the BC WQG and CWQG are provided in **Table 4-13**. Both short- and long-term guidelines were applied. Note that since the monitoring frequency of the baseline program was insufficient to meet the requirements for the specified averaging period (e.g., 5 samples over 30 days), individual samples are compared against the long-term average guideline. Therefore, failure of any individual sample to meet the long-term average guideline may not be of concern, as the long-term guideline is meant to be compared to averaged values.

Parameters without guidelines or guideline exceedances are not further discussed and are shown in **Appendix F**. The phosphorous guideline was excluded as it only applies to lakes where salmonids are the predominant fish species due to concerns over eutrophication. Lakes were not sampled for the amphibian baseline program and none of the wetlands sampled for water quality had documented salmonid presence. Basic statistics (minimum, maximum, geometric mean, and standard deviation) for all parameters are provided in **Appendix F**. Calculations for parameter-dependent guidelines are provided in **Appendix G**.

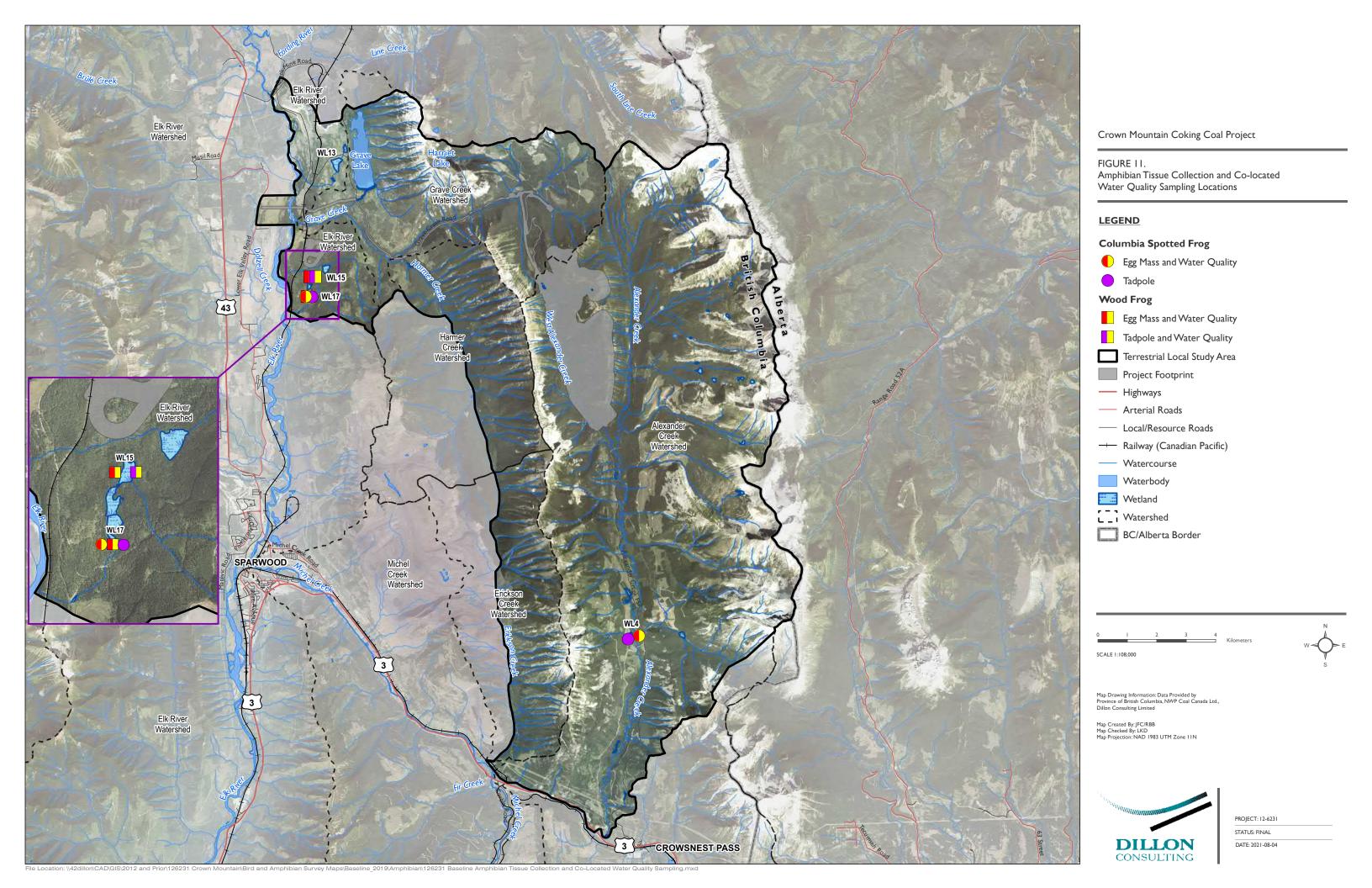
With the exception of fluoride, there were few guideline exceedances of any of the parameters measured. The majority of exceedances were from wetland survey site WL17 in May 2019, in which total ammonia, total fluoride, and total iron all exceeded the long-term CWQG (**Table 4-13**). The dissolved iron at site WL17 exceeded the short-term BC WQG; the only exceedance of a short-term BC WQG for any parameter measured. Total iron at WL4 in May 2019 also exceeded the long-term CWQG. Total fluoride exceeded the long-term CWQG in all but one sample, and no samples exceeded the short-term BC WQG. Where guidelines existed, there were no exceedances of the long-term BC WQG or the short-term CWQG. Water quality targets specific to the Elk Valley Water Quality Plan were not exceeded.

Table 4-13: Water Quality Guideline Exceedances at Sampled Wetlands in the LSA

Date	Watershed	Wetland	Original Sample Code	Total Ammonia (mg/L)	Total Fluoride (mg/L)	Total Iron (mg/L)	Dissolved Iron (mg/L)
BC WQG (sho	ort-term)¹			2.35 – 10.6*	1.50 – 1.67 [*]	1	0.35
BC WQG (lon	g-term)¹			0.40 - 1.66*	-	-	-
CWQG (long-	term)²			<u>0.171</u> – <u>1.54*</u>	<u>0.12³</u>	0.3	-
May 5, 2018	Elk River	WL15	18-WF- WL9B	-	0.23	-	-
2018	Elk River	WL17	18-WL9	-	<u>0.19</u>	-	-
May 8, 2018	Elk River	WL13	18-WF-10	-	0.27	-	-
May 9, 2018	Alexander Creek	WL4	18-CSF-07	-	<u>0.13</u>	-	-
July 4 2018	Elk River	WL15	WET21	-	<u>0.26</u>	-	-
May 9,	Elk River	WL15	WF-WL15- 19	-	<u>0.21</u>	-	-
2019	Elk River	WL17	CSF-WL17- 19	0.262	0.23	0.9	0.41
May 21, 2019	Alexander Creek	WL4	CSF-4.1-19	-	-	0.7	-

¹ BC MOE, 2016

Bold indicate exceedance(s) of short-term maximum BC WQG


Underline indicates exceedance(s) of long-term CWQG

² CCME, 1999 (updated 2007)

³ Interim guideline

^{*}Parameter-dependent guidelines – see **Appendix F**

5.0 Discussion

5.1 Amphibian Habitat and Distribution

The amphibian baseline program results confirm that amphibian occupancy and suitable habitat are dispersed throughout the LSA. Nineteen of the thirty-one wetland survey sites, two of the twenty-three ephemeral areas, and six incidental areas had amphibian occupancy. Four amphibian species were documented in the LSA over the course of the baseline program (i.e., Western Toad, Columbia Spotted Frog, Wood Frog, and Long-toed Salamander), and amphibians were found in all four watersheds surveyed: Alexander Creek, Grave Creek, Elk River, and Harmer Creek.

Areas of high amphibian detection (≥ 10 amphibians) occurred in the Alexander Creek watershed (WL4); Grave Creek watershed (WL11.1 and WL11.2); and the Elk River watershed (WL17, Wl16, WL15, WL18, and WL13). Two ephemeral areas (EPH100.1 and EPH100.2) in the Elk River watershed contained amphibians, suggesting these areas provide temporary habitat for amphibians. Both ephemeral areas are culvert-created wetted areas located between wetland sites WL17 and WL18, and may provide a movement corridor for amphibians between these two wetlands. In the LSA, most amphibians were documented in marshes and shallow-water wetlands.

Western Toad were the mostly widely distributed species, followed by Wood Frog, Columbia Spotted Frog, and Long-toed Salamander. Western Toad were most frequently documented in the Alexander Creek watershed, followed by the Grave Creek and Elk River watersheds. Columbia Spotted Frog, Wood Frog, and Long-toed Salamander were most frequently documented in the Elk River and Grave Creek watersheds, with limited observations in the Alexander Creek watershed. Only single observations of Long-toed Salamander and Western Toad occurred in the Harmer Creek watershed. Based on overall species richness, amphibian observations were greatest in the Alexander Creek watershed at WL4, in the Grave Creek watershed at WL11.1, and WL11.2, and in the Elk River watershed at WL13, WL16, and WL17. These species-rich areas are consistent with amphibian detections, with the exception of WL15 (which had a higher detection rate) and WL16 (which had a higher species richness).

Columbia Spotted Frog, Wood Frog, and Long-toed Salamander egg masses and tadpoles were documented in the Elk River watershed, indicating this area is used as breeding habitat. Egg masses of these three species were documented at WL4, suggesting this wetland was also used as breeding habitat in the Alexander Creek watershed. No egg masses or tadpoles of Western Toad were documented in the LSA; however, toadlets were observed in survey sites WL5.1 and WL6 in the Alexander Creek watershed; WL13 in the Elk River watershed; and incidentally at location 1998 near West Alexander Creek. Based on the breeding species richness (the number of species with evidence of breeding), WL4 and WL17 in the Alexander Creek and Elk River watersheds, respectively, appear to support amphibian breeding activity.

The breeding season in the LSA for Columbia Spotted Frog, Wood Frog, and Long-toed Salamander appears to occur in May, as indicated by all egg mass observations for these species. Tadpoles were documented between June and July, suggesting these species may emerge and migrate to their wintering habitats in the late summer or early fall in the LSA, as has been documented for these species in other areas of Canada (Canadian Herpetological Society, 2017a). One observation of Long-toed Salamander tadpoles at wetland survey site WL6.2 in September 2019 suggests their emergence may have been later that year.

Preferred Columbia Spotted Frog breeding habitat in the Rocky Mountains is generally in shallow permanent pools (James, 1998). In the LSA, Columbia Spotted Frog egg masses and tadpoles were found in marshes with associated shallow water wetlands (WL4, WL16, and WL17). While Wood Frog are known to prefer shallow, fish-free ephemeral wetlands in forested areas that are less than one metre deep (Canadian Herpetological Society, 2017b), in the LSA they were found in permanent wetlands (marshes, shallow water, fens), some with fish presence, as well as some ephemeral areas. Long-toed Salamander prefer fish-free permanent or semi-permanent wetlands for breeding, and were typically found in permanent marsh and shallow water wetlands in the LSA, some of which are known to be occupied by fish. Other habitat features that generally corresponded with amphibian observations and that may be important in the LSA included surface substrate with peat and organics, some emergent vegetation cover, and relatively warm water temperatures (7 to 15°C).

While Adult Western Toad, Columbia Spotted Frog, and Wood Frog were documented in the LSA, no adult Long-toed Salamander were observed. Adult Long-toed Salamander seek shelter in logs, rocks, underground burrows and crevices (Canadian Herpetological Society, 2017a), which makes them difficult to detect and may explain why no adults of this species were observed.

Western Toad were found in several wetlands and a few ephemeral areas, as well as in some forested areas away from waterbodies. The adult Western Toad can travel up to 6 km from their breeding sites to their foraging sites in the summer (Bull, 2009; Browne and Paszaowksi, 2010; COSEWIC, 2012), and also exhibit fidelity to their breeding sites (ECCC, 2016). Given these characteristics and that adult and toadlet Western Toads were documented throughout the LSA, it is likely that Western Toad are breeding in the LSA. Western Toad metamorphose into toadlets within two to three months of egglaying (Davis, 2002; ECCC, 2016). Given that all toadlet observations in the LSA occurred between May and July, and that winter conditions persist in this area until late-March to early-April, it is likely that breeding and egg laying occur between April and May in the LSA.

Western Toad were observed in all watersheds surveyed in the LSA, with the majority of observations in the Alexander Creek watershed, including several observations at higher elevations near West Alexander Creek. No Western Toad egg masses or tadpoles were found in the LSA during the surveys, making it difficult to identify specific breeding habitats. Toadlets are known to migrate to greater than 1 km from their breeding habitats upon hatching, whereupon they follow drainage paths and stay within 200 m of

water (Bull, 2009; Browne & Paszaowksi, 2010; Davis, 2002); therefore, locations where toadlets were documented in the LSA cannot be assumed to be breeding habitats. One Western Toad toadlet was observed at a higher elevation near West Alexander Creek in July not far from wetland site WL8.2, where an adult Western Toad was observed. Given that no other pools or wetlands were observed in this higher-elevation area other than WL8.2, there is potential for this area to support breeding habitat for Western Toad.

In an effort to identify whether the calling population of Western Toad is present in the LSA, evening roadside transect surveys were conducted. No toads were detected, which may have been due to the limited survey effort, or the fact that the surveys may have been conducted outside of the breeding window. Therefore, although the overall results confirm Western Toad are present in the LSA, it remains unclear whether these observations are from the calling population or non-calling population.

Of the 13 wetlands sampled for eDNA, results indicate that Western Toad are confirmed to be present in two wetlands (i.e., WL5.3 and WL21). The relatively high number of non-detections of Western Toad from the eDNA sampling could be the result of one or more of the following: Western Toad were not present in the wetlands sampled; Western Toad may be present but did not breed during the 2019 breeding season in the sampled wetlands, thus no tadpoles would be present in the wetlands sampled (adults spend the majority of their time on land, so eDNA may not have been detected in the water); or Western Toad eDNA dilution was too low to be detected by the primer.

The results of the amphibian baseline program are consistent with findings from studies undertaken for projects in the surrounding area. Studies conducted by Teck (Golder Associates, 2015a) for the Elkview Operations environmental assessment detected Western Toad and Wood Frog in the study area through completion of 44 plot surveys conducted over 7 days between May and July 2013 (Golder Associates, 2015a). Generally, Western Toad were observed in ponds and Wood Frog were observed in marshes and ephemeral pools/puddles. Similar to the Crown Mountain baseline program findings, the study by Teck (Golder Associates, 2015a) detected both adult and toadlet Western Toads, and Wood Frog adults, tadpoles, and egg masses in the study area. However, this study also documented Western Toad tadpoles and egg masses, which may be a potential source of breeding habitat supporting the adult and toadlet populations found in the Elk River and Grave Creek watersheds of the Crown Mountain baseline program LSA.

Columbia Spotted Frog were not observed during the Teck study (Golder Associates, 2015a); however, it was noted that this species likely occurs in the study area based on habitat and observations within the vicinity of the Elkview Operations (Golder Associates, 2015a). No Long-toed Salamander were documented as part of the Teck study for the Elkview Operations (Golder Associates, 2015a). Unlike the findings for Crown Mountain amphibian baseline program, amphibians were not present at the majority of the sites surveyed; amphibians were only present in a few localized areas during the study period.

Studies completed for Teck's Line Creek Operations baseline amphibian study (Teck Coal Ltd., 2011) determined that Western Toad is likely to be present, but detected few in the study area, consistent with the results herein. There were no amphibian surveys completed during as part of Teck's Line Creek Operations baseline program (Teck Coal Ltd., 2011).

Amphibian Tissues and Water Quality

5.2

Tissue collection results indicate that concentrations of selenium in amphibian tissues (including whole-body and egg samples) are not elevated above applicable guideline values. Guidelines do not currently exist for the evaluation of other metals in amphibians; therefore, it is difficult to comment on levels of other metals in amphibian tissues in the LSA. Chromium and vanadium concentrations in amphibian egg tissue did not exceed the Elk Valley reference values (Windward et al., 2014) in any of the samples collected.

Surface water quality guideline exceedances were limited to single exceedances of total ammonia, total fluoride, and total and dissolved iron at wetland site WL17, and total iron at WL4. Each of these parameters exceeded the long-term CWQG, with only one sample exceeding the short-term BC WQG for dissolved iron. Total fluoride exceeded the long-term CWQG at all but one location, but had no exceedances of the short-term BC WQG. Water quality targets specific to the Elk Valley were not exceeded.

The long-term CWQG is meant to be compared against averaged concentrations from intensive sampling (5 samples in 30 days), and comparing these discrete sample concentrations was a conservative measure. Further sampling would be required to determine whether any of the exceedances of the long-term CWQG represent a risk to aquatic health. The short-term BC WQG are more relevant to the site, particularly for parameter-dependent guidelines. Given that only one sample slightly exceeded a short-term BC WQG for one parameter (dissolved iron), and with the exception of total fluoride (which is currently an interim CCME guideline), only a few parameters exceeded the long-term CWQG, the existing water quality in the sampled wetlands is not considered to pose a risk to aquatic health.

Amphibian egg tissues collected for other projects in the vicinity of the Project generally showed elevated levels of selenium, chromium, and vanadium north of the Project, and similar levels west of the Project. During studies completed for Teck's Elkview Operations west of the Project, two Long-toed Salamander egg masses were collected in 2014 from a mine-exposed wetland (Golder Associates, 2015b). Selenium concentrations ranged from 2.12 to 2.23 mg/kg dw, which is within the range of concentrations identified in the egg masses analyzed for the Project. Concentrations of vanadium were above the reference concentration developed by Windward et al. (2004) in one of the two amphibian egg masses in the Teck study (9.58 mg/kg dw). Elevated levels of chromium compared to the reference concentration were not identified in the amphibian eggs collected in the Elkview Operations study.

At Teck's Line Creek Operations north of Crown Mountain in 2009 to 2010, Columbia Spotted Frog egg mass samples were collected at one mine-exposed area and Western Toad egg masses were collected at two mine-exposed areas (Teck Coal Ltd., 2011). Average selenium concentrations in the Columbia Spotted Frog egg masses (6.8 mg/kg dw) and Western Toad egg masses (11.0 mg/kg dw) from one of the two locations sampled exceeded the BC MOE (2014) guideline of 6 mg/kg dw. Chromium and vanadium maximum concentrations in the Columbia Spotted Frog egg masses also exceeded the Elk Valley reference concentrations (Teck Coal Ltd., 2011). The maximum chromium concentrations ranged from 14 to 46 mg/kg dw compared to the 12.7 reference concentration, and the maximum vanadium concentrations ranged from 0.77 to 12 mg/kg dw compared to the 6.5 mg/kg dw reference concentration.

Summary

6.0

Amphibian baseline surveys were conducted in the LSA in 2014, 2017, 2018, and 2019. Surveys included wetland perimeter searches, roadside evening calling surveys, emergence surveys, eDNA surveys, and tissue and water quality collection surveys. Four amphibian species were detected throughout the LSA: Western Toad, Columbia Spotted Frog, Wood Frog, and Long-toed Salamander. Along with adults, Columbia Spotted Frog, Wood Frog, and Long-toed Salamander egg masses and tadpoles were documented, indicating these species breed in the wetlands and ephemeral areas of the LSA. Western Toad were only observed in the toadlet and adult life stages; however, given known migration distances from breeding to foraging and overwintering habitats, it is likely they are also breeding in the LSA. Based on the timing of observations, there is potential for amphibians detected in the LSA to breed between April and May and migrate from their breeding habitats to their overwintering habitats in early to late fall.

Most amphibian observations were recorded in marshes and shallow water wetlands with habitat characteristics such as peat and organic surface substrates, emergent vegetation cover, and moderate temperatures. Western Toad were found in wetlands, ephemeral areas, and forested areas throughout the LSA. Highest observations of amphibian occurred in the Alexander Creek (WL4), Grave Creek (WL11.1 and WL11.2), and Elk River (WL13, WL15, WL16, and WL17) watersheds, with breeding areas identified at WL4 in the Alexander Creek watershed and WL16 and WL17 in the Elk River watershed.

Selenium, chromium, and vanadium concentrations were not elevated in amphibian tissues collected in the LSA when compared to guideline and reference values. Water quality at amphibian tissue sampling locations showed single exceedances of a few parameters (ammonia, fluoride, iron) above the long-term CWQG, and only one exceedance of the short-term BC WQG for dissolved iron, suggesting that the existing water quality at the sampled wetlands is generally suitable for aquatic life.

References

- BC Conservation Data Centre (BC CDC). (2019a). BC Conservation Data Centre. Retrieved February 6, 2020, from https://www2.gov.bc.ca/gov/content/environment/plants-animals-ecosystems/conservation-data-centre.
- BC Conservation Data Centre (BC CDC). (2019b). CDC iMap [web application]. Retrieved November 20, 2019 from http://maps.gov.bc.ca/ess/sv/cdc/
- BC Conservation Data Centre (BC CDC). (2019c). BC Species and Ecosystems Explorer [web application]. Retrieved November 20, 2019 from http://a100.gov.bc.ca/pub/eswp/
- BC Conservation Data Centre (BC CDC). (2019d). BC Species and Ecosystems Explorer [web application]. Retrieved December 13, 2019 from http://a100.gov.bc.ca/pub/eswp/reports.do?elcode=AAABH01170
- Biolinx Environmental Research Ltd. (2014). *Guidelines for Amphibian and Reptile Conservation during Urban and Rural Land Development in British Columbia (2014)*. Retrieved from https://www2.gov.bc.ca/assets/gov/environment/natural-resource-stewardship/best-management-practices/herptilebmp_complete.pdf
- British Columbia Ministry of Environment (BC MOE), Water Protection & Sustainability Branch,
 Environmental Sustainability and Strategic Policy Division. (2013). *Guidance for the Derivation and*Application of Water Quality Guidelines in British Columbia. Retrieved from
 https://www2.gov.bc.ca/assets/gov/environment/air-land-water/water/waterquality/water-quality-objectives/wqo_proc_guidance.pdf
- British Columbia Ministry of Environment (BC MOE), Water Protection & Sustainability Branch,
 Environmental Sustainability and Strategic Policy Division. (2014). *Ambient Water Quality Guidelines for Selenium Technical Report Update*. Retrieved from
 https://www2.gov.bc.ca/assets/gov/environment/air-land-water/water/waterquality/waterquality-guidelines/approved-wqgs/bc_moe_se_wqg.pdf
- British Columbia Ministry of Environment (BC MOE), Water Protection & Sustainability Branch,
 Environmental Sustainability and Strategic Policy Division. (2016). Long-Term Average vs. ShortTerm Maximum Water Quality Guidelines. Retrieved from
 https://www2.gov.bc.ca/assets/gov/environment/waste-management/industrialwaste/industrial-waste/mining-smelt-energy/guidance-documents/max-vs-long-term-wqguidelines-fs.pdf

- British Columbia Ministry of Environment (BC MOE). (2017a). *Environmental DNA Protocol for Freshwater Aquatic Ecosystems Version 2.2*. Retrieved from https://www.hemmera.com/wp-content/uploads/2018/08/171115-eDNA-protocol-V2.2.pdf
- British Columbia Ministry of Environment and Climate Change Strategy (BC MOE), Water Protection & Sustainability Branch, Environmental Sustainability and Strategic Policy Division. (2019). British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture Summary Report. Retrieved from https://www2.gov.bc.ca/assets/gov/environment/air-land-water/water/waterquality/water-quality-guidelines/approved-wqgs/wqg_summary_aquaticlife_wildlife_agri.pdf
- British Columbia Ministry of Forests. (1991). *Ecosystems of British Columbia*. Retrieved from https://www.for.gov.bc.ca/hfd/pubs/docs/srs/srs06.pdf
- British Columbia Ministry of Forests, Lands, and Natural Resource Operations. (2015). *Guide to Identification of Low-Elevation Wetlands in the Okanagan Valley using Primary Indicators.*Retrieved from http://a100.gov.bc.ca/pub/eirs/finishDownloadDocument.do?subdocumentId=10211
- Browne, C., & Paszaowski, C. (2010). Hibernation Sites of Western Toads (Anaxyrus boreas)

 Characterization and Management Implications. *Herpetological Conservation and Biology* 5(1), 49-63.
- Bull, E. (2009). Dispersal of Newly Metamorphosed and Juvenile Western Toads (Anaxyrus boreas) in Northeastern Oregon. *Herpetological Conservation and Biology* 4(2), 236-247.
- Bureau Veritas. (2019). Understanding Environmental DNA Testing. Retrieved from https://www.bvlabs.com/insights/articles/understanding-environmental-dna-testing
- Canadian Council of Ministers of the Environment (CCME). (2007). A Protocol for the Derivation of Water Quality Guidelines for the Protection of Aquatic Life 2007. Retrieved from http://ceqg-rcqe.ccme.ca/download/en/220
- Canadian Council of Ministers for the Environment (CCME). (1999 [updated 2007]). Canadian Water Quality Guidelines for the Protection of Aquatic Life. In Canadian Environmental Quality Guidelines. Winnipeg, Canada: Canadian Council of Ministers for the Environment.
- Canadian Environmental Assessment Act SC 2012, c. 19, s. 52. Retrieved from https://laws-lois.justice.gc.ca/eng/acts/c-15.21/page-1.html
- Canadian Environmental Assessment Agency (CEAA) (n. d.). Guidelines for the Preparation of an Environmental Impact Statement pursuant to the Canadian Environmental Assessment Act, 2012, Crown Mountain Coking Coal Project, NWP Coal Canada Ltd.

- Canadian Herpetological Society. (2017a). Western Long-toed Salamander. Retrieved on October 23, 2019, from http://canadianherpetology.ca/species/species_page.html?cname=Western%20Long-toed%20Salamander
- Canadian Herpetological Society. (2017b). Wood Frog. Retrieved on October 23, 2019 from http://canadianherpetology.ca/species/species page.html?cname=Wood%20Frog
- Committee on the Status of Endangered Wildlife in Canada (COSEWIC). (2012). COSEWIC Assessment and Status Report on the Western Toad Anaxyrus boreas in Canada. Retrieved from www.registrelep-sararegistry.gc.ca/default_e.cfm
- Davis, T.M. (2002). Research Priorities for the Management of the Western Toad, Bufo boreas, in British Columbia. B.C. Minist. Water, Land and Air Protection, Biodiversity Branch, Victoria, BC. Wildlife Working Report No. WR-106.
- Dillon Consulting Limited. (2020). Wetland Ecosystems Baseline Report Crown Mountain Coking Coal Environmental Assessment.
- Environmental Assessment Act, SBC 2002, c. 43. Retrieved from https://www2.gov.bc.ca/gov/content/environment/air-land-water/water/laws-rules/environmental-assessment-act
- Environmental Assessment Office (EAO). (2018). Application Information Requirements: Crown

 Mountain Coking Coal Project. NWP Coal Canada Ltd. Retrieved from

 https://projects.eao.gov.bc.ca/api/document/5ae234fccf072d002a31a99c/fetch/Application_Info
 rmation_Requirements
- Environment Canada. (2015). Recovery Strategy for the Rocky Mountain Tailed Frog (Ascaphus montanus) in Canada. Species at Risk Act Recovery Strategy Series. Ottawa, Canada: Environment Canada.
- Environment and Climate Change Canada (ECCC). (2016). Management Plan for the Western Toad (Anaxyrus boreas) in Canada. Retrieved from https://www.registrelepsararegistry.gc.ca/virtual_sara/files/plans/mp-western-toad-e-proposed.pdf
- Environment and Climate Change Canada (ECCC). (2017). Recovery Strategy for the Northern Leopard Frog (Lithobates pipiens), Rocky Mountain population in Canada. Species at Risk Act Recovery Strategy Series. Environment and Climate Change Canada, Ottawa. 2 parts, 24 pp. + 47 pp.
- Forest and Range Practises Act, SBC 2002, c. 69. Retrieved from https://www2.gov.bc.ca/gov/content/environment/natural-resource-stewardship/laws-policies-standards-guidance/legislation-regulation/forest-range-practices-act

- Golder Associates. (2015a). Elkview Operations Baldy Ridge Extension Project, Annex J Wildlife and Wildlife Habitat Baseline Report. Submitted to Teck Coal Limited Elkview Operations. Report Number 1213490003/R50.
- Golder Associates. (2015b). Elkview Operations Baldy Ridge Extension Project, Annex Q Selenium Concentrations in Aquatic Biota Baseline Report. Submitted to Teck Coal Limited Elkview Operations. Report Number 1213490003/R49.
- Government of British Columbia. (2019). *Amphibians in B.C.* Retrieved on October 22, 2019 from https://www2.gov.bc.ca/gov/content/environment/plants-animals-ecosystems/wildlife/wildlife-conservation/amphibians-reptiles/amphibians-in-b-c
- Government of British Columbia. (2014). *Develop with Care 2014 Environmental Guidelines for Urban and Rural Land Development in British Columbia*. Retrieved from https://www2.gov.bc.ca/gov/content/environment/natural-resource-stewardship/laws-policies-standards-guidance/best-management-practices/develop-with-care
- Government of Canada. (2019). *Basics of Environmental Assessment*. Retrieved on November 13, 2019, from https://www.canada.ca/en/impact-assessment-agency/services/environmental-assessments/basics-environmental-assessment.html
- Hobbs, J., Round, J.M., Allison, M.J., & Helbing, C.C. (2019). Expansion of the known distribution of the Coastal Tailed Frog, *Ascaphus truei*, in British Columbia, Canada using robust eDNA detection methods. *PLoS One*, *14*(3), 1-16.
- James, J. D. (1998). Status of the Columbia Spotted Frog (Rana luteiventris) in Alberta. Retrieved from https://www.abconservation.com/downloads/AWSR/Reptile%20Amphibian%20and%20Fish%20R eports/Status%20of%20Columbia%20Spotted%20Frog%20in%20Alberta_1998.pdf
- Janz, D.M., Deforest, D.K., Brooks, M.L., Chapman, P.M., Gilron, G., Hoff, D., Wayland, M. (2010).
 Selenium Toxicity to Aquatic Organisms. In Chapman, P.M., Adams, W.J., Brooks, M.L., Delos, C.G.,
 Luoma, S., Maher, W.A., Sanders, R.W. (Eds.), Ecotoxicology of Selenium in the Aquatic
 Environment pp. 141-231. Pensacola, FL: SETAC Press.
- Keefer Ecological Services Ltd. (2020). *Terrestrial Ecosystem Mapping Report Crown Mountain Coking Coal Project.*
- Ministry of Environment, Lands and Parks Resources Inventory Branch. (1998). *Inventory Methods for Pond-breeding Amphibians and Painted Turtles. Version 2.0.* Retrieved from https://www2.gov.bc.ca/assets/gov/environment/natural-resource-stewardship/nr-laws-policy/risc/pond.pdf

- Nagpal, N.K., & Howell, K. (2001). Water Quality Guidelines for Selenium: Technical Appendix. Victoria, Canada: British Columbia Ministry of Environment, Water Protection and Sustainability Branch Environmental Sustainability and Strategic Policy Division.
- Royal BC Museum. (1999). A Photographic Journey Exploring the Beauty and Wonder of Northern Boreal Muskeg. Retrieved from https://royalbcmuseum.bc.ca/exhibits/living-landscapes/prnr/photo_journey/contents.htm
- Species at Risk Act (SARA), SC 2002, c.29. Retrieved from https://laws-lois.justice.gc.ca/eng/acts/s-15.3/
- Teck Coal Ltd. (2011). Line Creek Operations. Annex J: Line Creek Operations Phase II Project Wildlife and Wildlife Habitat Baseline Report.
- Teck Resources Limited. (2015). *Elk Valley Water Quality Plan*. Retrieved from https://www.teck.com/media/2015-Water-elk_valley_water_quality_plan_T3.2.3.2.pdf
- United States Environmental Protection Agency (US EPA). (2016). Aquatic Life Ambient Water Quality

 Criterion for Selenium Freshwater. Retrieved from

 https://www.epa.gov/sites/production/files/201607/documents/aquatic_life_awqc_for_selenium_-_freshwater_2016.pdf
- Veldhoen, N., J. Hobbs, G. Ikonomou, M. Hii, M. Lesperance, & Helbing, C.C. (2016). Implementation of Novel Design Features for qPCR-Based eDNA Assessment. *PLOS ONE*, *11*, 1-23.
- Wildlife Act, RSBC 1996, c. 488. Retrieved from https://www2.gov.bc.ca/assets/gov/environment/natural-resource-stewardship/environmental-assessments/acts-and-regulations/2002-act-regulations-documents/ea_act_2002.pdf
- Windward Environmental, Minnow Environmental Inc. and CH2M HILL Limited. (2014). *Elk River Watershed and Lake Koocanusa, British Columbia Aquatic Environment Synthesis Report. Prepared for Teck Coal Limited, Sparwood, BC.*

Appendix A Wetland and Ephemeral Area Locations

Table A-1. Wetland Classification and Characteristics

Wetland	Watershed	UTM Coordinates (NAD 83)	No. Surveys	BEC Subzone	Elevation (m)	Total Area (ha) ¹	Primary Wetland Classification	Average Depth (m)	Depth Description	Algae ²	Emergent Vegetation Cover (%)	Cattails Present	Peat	Organics	Silt
1	Alexander	11U 663941 5502585	9	MSdw	1305	0.55	Marsh	0-0.5	Variable	Chara sp.	33-66	N	Y	-	Υ
2	Alexander	11U 664229 5505500	2	MSdw	1348	0.51	Fen	0-0.5	Variable	none	0-33	N	Υ	-	Υ
3	Alexander	11U 664310 5505768	3	MSdw	1355	0.76	Fen	0	Uniform	none	0-33	N	Y	-	Υ
4	Alexander	11U 664742 5509372	14	MSdw	1422	2.12	Marsh	0.5-1.5	Variable	Chara sp.	33-66	N	Υ	Y	Υ
5.1	Alexander	11U 664626 5510566	9	MSdw		0.41	Marsh	0	Uniform	Chara sp.	66-100	N	Υ	Y	Υ
5.2	Alexander	11U 664736 5510647	6	MSdw	1441	0.59	Marsh	0-0.5	Uniform	Chara sp.	33-66	N	Υ	Y	Υ
5.3	Alexander	11U 664733 5510766	8	MSdw	1441	0.14	Marsh	0.5-1.5	Variable	Chara sp.	33-66	N	Υ	Y	Υ
5.4	Alexander	11U 664688 5510880	4	MSdw	1444	1.92	Swamp	0-0.5	Variable	none	0	N	Υ	-	Y
6	Alexander	11U 664264 5514861	8	MSdw	1494	0.45	Marsh	0-0.5	Uniform	Chara sp.; gelatinous algae	0-33	N	-	Y	Υ
6.1	Alexander	11U 664237 5514806	1	MSdw	1492	0.16	Marsh	0-0.5	Uniform	Chara sp.	66-100	N	-	-	-
6.2	Alexander	11U 664262 5514742	3	MSdw	1494	0.02	Shallow water	0.5-1.5	Variable	Chara sp.	0-33	N	-	-	-
7	Alexander	11U 663476 5521127	1	ESSFdkw	2089	0.08	Marsh	0-0.5	Uniform	none	33-66	N	Υ	Y	-
8.1		11U 661756 5521351	3	ESSFdk1	1873	0.04	Marsh	0-0.5	Uniform	none	66-100	N	Υ	Υ	Υ
8.2		11U 661807 5521243	3	ESSFdk1	1873	0.55	Shallow water	>1.5	Variable	none	0-33	N	Υ	Υ	Υ
8.3		11U 661860 5521194	3	ESSFdk1	1873	0.03	Marsh	0-0.5	Uniform	none	66-100	N	Υ	-	-
9		11U 657290 5521906	9	MSdw	1325	0.57	Floodplain	0-0.5	Variable	none	0-33	N	-	Y	Y
10	Harmer	11U 657123 5522007	4	MSdw	1322	0.03	Marsh	0-0.5	Uniform	none	66-100	N	-	Y	Y
11.1		11U 655465 5524177	11	MSdw	1263	0.21	Marsh	0-0.5	Uniform	Chara sp.	0-33	Y	Υ	Y	Υ
11.2	Grave	11U 655622 5524247	6	MSdw	1265	0.88	Shallow water	0.5-1.5	Variable	Chara sp.	33-66	Υ	Υ	Y	Y
11.3	Grave	11U 655790 5524528	3	MSdw	13325	0.78	Marsh	0.5-1.5	Uniform	none	66-100	Υ	Υ	Υ	Y
12	Elk	11U 655054 5525819	7	MSdw	1298	2.44	Transitional marsh/fen	0-0.5	Uniform	none	66-100	Y	Υ	Y	-
13	Elk	11U 654738 5525349	11	MSdw	1285	8.84	Swamp	0.5-1.5	Variable	Chara sp.	66-100	N	Υ	Y	-
14	Elk	11U 654394 5521844	7	MSdw	1217	4.79	Marsh	0-0.5	Uniform	none	66-100	N	1.0	-	Υ
15	Elk	11U 653981 5521570	7	MSdw	1216	2.59	Marsh	0-0.5	Uniform	none	66-100	N	Υ	Y	-
16	Elk	11U 653822 5521252	8	MSdw	1215	2.44	Marsh	0-0.5	Uniform	Chara sp.	66-100	Y	Y	Y	-
17	Elk	11U 653864 5520896	13	MSdw	1214	0.67	Marsh	0-0.5	Variable	Chara sp.	66-100	N	Υ	Y	-
18	Elk	11U 653471 5520358	6	MSdw	1188	0.10	Shallow water	0.5-1.5	Uniform	none	66-100	Υ	Υ	Y	-
19		11U 653953 5521371	2	MSdw	1227	0.02	Marsh	0-0.5	Uniform	none	0-33	N	Υ	Y	-
20	Elk	11U 654656 5524876	1	MSdw	1279	0.61	Marsh	0-0.5	Uniform	none	66-100	N	Υ	-	Υ
21	Alexander	11U 666454 5509468	2	MSdw	1509	2.82	Marsh	0.5-1.5	Variable	none	0-33	N	Y	Y	Y
22	Alexander Notes	11U 664602 5504023	1	MSdw	1431	0.69	Swamp	0-0.5	Variable	none	66-100	N	Υ	-	-

Notes

¹

Total and divisional sizes will vary with time, season, interpretation; they are estimates Algae - Chara sp. - large macro algae present in many wetlands in study area (Ca++, alkaline) Beaver Presence: R = Recent evidence; O = Older evidence; N = No evidence 2

Table A-1. Wetland Classification and Characteristics

1			Fish Detected	Beaver Presence ³	Dominant Forest Species Adjacent	Date	Temperatur e (C)	Sp. Conductivity (mS/cm)	Conductivity (mS/cm)	Total Dissolved Solids (g/L)	Salinity	DO %	DO (mg/L)	рН	ORP	Turbidity (NTU)
	Υ	-	Y	R	Spruce	2019-07-15 ⁶	7.3	0.4849	320.6	-	-	52.2	6.26	6.68	145.3	-
2	_	-	N	Ν	-	2019-07-09	7.9	0.4951	-	0.3217	0.24	-	3.86	7.52	140.2	-
3	_		N	N	-	2019-07-09 2019-07-09	11.5 19.2	0.471 0.5158	-	0.3062 0.3347	0.23 0.25	-	5.26 3.34	7.46 7.42	96.6 116.2	-
3	-	-	IN	IN	-	2019-07-09	19.2	2.36	0.504	328	-	20.8	2.32	6.87	-14.7	54
4	Υ	_	N	N	Spruce	2019-03-22	15	0.5422	-	0.3617	0.26	-	1.7	6.91	71.3	-
7	•		14	14	Oprace	2019-07-09	10.4	0.3505	-	0.2282	0.20	-	8.81	7.71	170.9	_
5.1	Y	Y	Υ	0	Spruce/Pine	2019-07-08	6.8	0.3509	-	0.2282	0.17	-	8.4	7.5	140.2	-
5.2	Y	-	Y	0	Spruce/Pine	2019-07-08	9.1	0.3039	-	0.1976	0.15	-	7.64	7.92	131.3	-
5.3	Υ	-	N	R	Spruce/Pine	2019-07-08	9.5	0.2665	-	0.1729	0.13	-	8.05	8.04	140.9	-
5.4	-	-	N	R	Spruce/Pine	-	-	-	-	-	-	-	-	-	-	-
6	Υ	_	N	0	Spruce	2019-07-06	13.3	-	0.4293	0.2782	0.21	-	9.16	7.81	162	-
0	ľ	-	IN)	Spruce	2019-07-06	13	-	0.4318	0.2808	0.21	-	8.8	7.51	167.3	-
6.1	-	-	N	0	Spruce/Pine	-	-	-	-	-	-	-	-	-	-	-
6.2	-	Υ	N	0	Spruce/Pine	-	-	-	-	-	-	-	-	-	-	-
7	-		N	N	-	-	-	-	-	-	-	-	-	-	-	-
8.1	-	-	N	N	-	2019-07-11	12.2	0.1131	-	0.0708	0.05	-	8.22	6.37	108.5	-
8.2	-	-	N	N	-	2019-07-11	14.9	0.781	-	0.0507	0.04	-	7.04	6.74	89.9	-
8.3	-	-	N	N	-	-	-	-	-	-	-	-	-	-	-	-
9	Y	Υ	N	R	Spruce/Pine	2019-07-07	11		0.5627	0.366	0.27	-	8.79	8.03	159.2	-
10	Υ	-	N	N	Spruce/Pine	-	-	-	-	-	-	-	-	-	-	-
11.1	Υ	-	Υ	0	Spruce/Pine	2019-07-04	11.7	0.4245		0.2775	0.21		4.68	7.06	139.3	-
	.,				•	2019-07-07	14	0.5168		0.3361	0.25		5.16	7.46	92.7	-
11.2	Y	Y	N Y	0	Spruce/Pine	2019-07-04	15.2	0.242		0.2424	0.18		9.05	8.03	146.7	-
11.3	-	<u>-</u>	Y	0	Spruce/Pine	2019-07-04	15.6	0.3076	-	0.2002	0.15 0.22	-	7.96	8.34	155.4 150.7	very clear
12			N	N	Aanan	2019-07-04 2019-07-04	14.6 15.1	0.45 0.4354	-	0.2925 0.2827	0.22	-	8.84 3.66	8.15 7.06	135	- cloor
12	-	-	IN	IN	Aspen	2019-07-04	18	0.4354	-	0.2827	-		3.00	7.06	-	clear
13	-	-	N	N	Aspen	-	-	-	-	-	-	-	-	-	-	-
14	-	-	N	N	Spruce/Aspen	2019-07-05	19.8	0.834		0.5395	0.41		5.58	8.27	158.3	
15	_	_	N	0	Spruce/Fir	2019-05-09	10.4	1.034	0.746	672		35.7	3.95	7.5	-99.7	3.75
	_				•	2019-07-05	12	0.81	-	0.5265	0.4	-	2.95	7.51	91.1	
16	-	-	N	0	Spruce/Fir	2019-07-05	12.2	0.727	-	0.4745	-	-	4.44	7.34	149.8	-
17	-	-	N	0	Spruce	2019-05-09 2019-07-05	15.8 12.7	0.792 0.834	0.653	514 0.5395	0.41	65.5	6.45 11.41	7.54 7.84	105.5 127	9.54
18	Υ	-	N	0	Spruce/Pine	2019-07-05	11.7	0.732	-	0.475	0.36	-	11.89	8.22	129.5	-
19	-	-	N	N	Spruce	-	-	-	-	-	-	-	-	-	-	-
20	-	-	N	N	Aspen	-	-	-	-	-	-	-	-	-	-	-
21	Υ	Υ	N	R	Pine	2019-07-09	6.2	0.2301		0.149	0.11		6.94	7.62	127.9	0.1495
22	-	na	N	N	Aspen	2019-07-10	10.7	0.6001	-	0.39	0.29	-	1.65	7.12	78.6	-

Table A-2. Ephemeral Area Characteristics

Ephemeral Areas	Watershed	UTM Coordinates (NAD 83)	No. Surveys	BEC Subzone	Total Area (ha)	Habitat Description	Average Depth (m)	Depth Description	Algae	Emergent Vegetation Cover (%)	Cattails Present	Peat	Organics	Mineral (soil)	Silt	Sand	Gravel	Fish Detected	Beaver Presence	Dominant Forest Species Adjacent
4.2	Alexander	11U 664636 5503622	2	MSdw	0.03	Meadow	0	Uniform	none	0	N	Υ	Y	Υ	-	-	-	N	0	Spruce
Field North of WL5.4	Alexander	11 U 664612 5511011	. 2	MSdw	0.06	Meadow	0-0.5	Uniform	none	0	N	Y	Y	Y	-	-	-	N	R	Spruce/Pine
100.1	Elk River	11U 653750 5520704	5	MSdw	0.01	FSR/Culvert created wetted area	0.5-1.5	Variable	none	0	N	Υ	Y	-	-	-	-	N	N	Aspen/Spruce
100.2	Elk River	11U 653795 5520621	3	MSdw	0.03	FSR/Culvert created wetted area	0.5-1.5	Variable	none	0-33	N	Υ	Y	-	-	Y	-	N	N	Aspen/Spruce
101	Grave Creek	11U 653772 5523073	1	MSdw	0.01	FSR ditch	0.5-1.5	Variable	none	0	N	-	-	Υ	Υ	Υ	-	N	N	Aspen/Grasslan
102	Grave Creek	11U 654331 5523592	2	MSdw	0.01	Large shallow water puddle under a deciduous canopy. Dries up in summer.	0-0.5	Uniform	none	0	N	-	-	-	Y	Y	-	N	N	Aspen
103	Alexander	11U 664240 5515728	2	MSdw	0.02	River floodplain/Meadow	0.5-1.5	Uniform	none	0	N	-	-	-	Y	Y	-	N	N	Spruce
104.1	Alexander	11U 664207 5514917	3	MSdw	0.01	FSR/Culvert created wetted area	0.5-1.5	Uniform	none	0	N	-	-	-	Y	Y	-	N	N	Spruce
104.2	Alexander	11U 664191 5514809	2	MSdw	0.01	FSR/Culvert created wetted area			none	0	N	-	-	-	Υ	Y	-	М	N	-
105	Alexander	11U 664491 5512885	0	MSdw	0.01	River bank depression	0.5-1.5	Variable	none	0	N	-	Y	-	-	Y	Y	М	N	Spruce/Fir
106	Alexander	11U 664964 5510133	1	MSdw	0.01	River floodplain/Meadow	0.5-1.5	Variable	none	0	N	-	Y	-	-	Y	Y	N	N	-
112	Grave Creek	11U 662134 5524644	1	MSdw	0.01	Wet meadow, no open water	0-0.5	Uniform	none	na	N	-	Y	-	-	-	-	N	N	-
113	Elk River	11U 654475 5525412	1	MSdw	0.02	Meadow	0-0.5	Uniform	none	33-66	N	Υ	Y		-	-	-	N	N	Aspen
114	Harmer Creek	11U 657680 5522035	1	MSdw	0.00	Ditch-like puddle with shallow water (when present) adjacent to recently re-planted cutblocks; no canopy	0-0.5	Uniform	none	0	N	-	-	-	Y	-	-	N	N	Cutblock - Pine
115	Elk River	11U 653631 5523879	1	MSdw	0.01	Rail ditch	0	Uniform	Chara sp.	0	N	-	-	-	Y	-	-	N	N	Aspen/Spruce
1003	Elk River	11U 653384 5520953	1	MSdw	0.02	FSR ditch	0-0.5	Uniform	none	0	N N	-	-	Y	-	-	-	N	N	Aspen/Spruce
1004 1005	Elk River Elk River	11U 653352 5521534 11U 653243 5521908	1 1	MSdw MSdw	0.02 0.02	Rail ditch FSR ditch	0-0.5 0-0.5	Uniform Uniform	none	0	N N	-	-	Y	-	-	-	N N	N N	Aspen/Spruce Aspen/Spruce
1006	Grave Creek	11U 654173 5523884	1	MSdw	0.02	FSR/Culvert created wetted area	0-0.5	Uniform	none	0-33	N	-	-	Y	-	-	-	N	N	Aspen/Spruce
1007	Grave Creek	11U 655445 5524195	1	MSdw	0.02	Shallow water wetland	0-0.5	Uniform	Chara sp.	0-33	N	-	-	-	-	-	-	Y	0	Spruce/Pine
1008	Elk River	11U 655087 5525661	1	MSdw	0.02	Meadow/FSR ditch	0-0.5	Uniform	none	no access	N	-	-	Υ	-	-	-	N	N	Aspen
1009	Elk River	11U 653588 5524052	1	MSdw	0.02	Culvert created wetted area	0-0.5	Uniform	none	33-66	N	Υ	Y	Y	Y	-	-	N	N	Cutblock
1010	Elk River	11U 653914 5525475	1	MSdw	0.02	Meadow	0-0.5	Uniform	none	0	N	-	-	Υ	-	-	-	N	N	Aspen/Spruce

Table A-3. Incidental Observation Locations and Characteristics

Incidental Observations	Watershed	UTM Location (NAD 83)	No. Visits	BEC Subzone	Habitat Description
994	Alexander	11U 662230 5519864	1	ESSFdk1	n/a
995	Alexander	11U 666922 5509080	1	ESSFdk1	n/a
996	Grave	11U 663167 5524496	1	ESSFdk1	Steep cutblock (mostly pine; fairly high elevation; recent re-planted, thick dead grass layer)
997	Alexander	11U 662192 5520100	1	ESSFdk1	Willows, mature and young spruce higher up in the valley
998	Alexander	11U 662299 5520637	1	ESSFdk1	Found in upper West Alexander Valley in seeping wet meadow adjacent (50m) to creek in open area (no trees) under colt's foot.
999	Harmer	11U 657954 5521465	1	MSdw	Moist forest understory dominated by Carex species

recent			
the			
g wet trees)			
ecies			

Appendix B

eDNA Methods

BV JOB #: E20190716 Report Date: 2019/07/26 Report #: DI20190726

Client Name: Dillon Consulting Limited

Client Project #: 126231
Site Location: Crown Mountain Sampler Initials: JRH

Western Toad (Anaxyrus (Bufo) boreas) eDNA Assay Validation Information

eDNA assay Validation
All eDNA assays are validated through a rigorous multi-step evaluation protocol that includes tests of DNA target specificity and amplification sensitivity. All eDNA tests available at Bureau Veritas Laboratories have been validated for performance using interlaboratory verification.

General eDNA Assay Information

Western Toad (Anaxyrus (Bufo) boreas) Target Species

Species Abbreviation eDNA qPCR Primer/Probe set eANBO1 eDNA qPCR Format TaqMan

eDNA Assay Specificity Tests

A. qPCR Activity: Multi-species analysis of eDNA assay efficiency

	Multiple qPCR reactions (n=25) performed per target DNA. Detection within the standardized eDNA qPCR assay = Yes									
ASMO	ANBO-VI	ANBO-YK	LICA	PSRE	RAAU	RAPR	TAGR	HOSA	NTC	
No	Yes	Yes	No	No	No	No	No	No	No	

eDNA Assay Sensitivity Test

DNA (g/L)	Detection Frequency (n=25)	Binomial Standard error (n=8)
5	100%	0%
1	100%	0%
0.2	100%	0%
0.04	96%	7%
0.008	92%	10%
0	0%	0%

Abbreviations

Rocky Mountain Tailed Frog (Ascaphus montanus)	ASMO
Western Toad (Anaxyrus (Bufo) boreas)	ANBO-V
Western Toad (Anaxyrus (Bufo) boreas)	ANBO-Y
Bullfrog (Lithobates (Rana) catesbeiana)	LICA
Pacific Chorus Frog (Pseudacris (Hyla) regilla)	PSRE
Northern Red-legged Frog (Rana aurora)	RAAU
Oregon Spotted Frog (Rana pretiosa)	RAPR
Rough-skinned Newt (Taricha granulosa)	TAGR
Human (Homo sapiens)	HOSA
qPCR no template control	NTC
quantitative real-time polymerase chain reaction	qPCR
environmental DNA	eDNA

Sourced from Vancouver Island (VI) Sourced from Yukon, not great quality sample

Page 6 of 8

Attention: Jacqueline Huard

Dillon Consulting Limited 3820 Cessna Drive, Suite 510 Richmond, BC V7B 0A2 V7B 0A2 Canada Client Project #: 126231

Site Location: Crown Mountain

C.O.C. #: 20190716 Quote #: N/A

Report Date: 2019/07/26 Report #: DI20190726

Version: 1

ENVIRONMENTAL DNA - CERTIFICATE OF ANALYSIS

BV JOB #: E20190716

Received: 2019/07/16, 9:38 AM

Sample Type: Cellulose Nitrate (CN) filter, preserved in silica

Samples Received: 42

Analyses (eDNA Isolation - Species)	Test Requested	Test Performed	Date eDNA Extracted	Date Analyzed IntegritE- DNA [™]		Laboratory Method	Analytical Method (qPCR Primer/Probe set)
eDNA Isolation and IntegritE-DNA TM	42	42	2019/07/17 2019/07/22	2019/07/18 2019/07/23 2019/07/24	N/A	GUE SOP-00056	ePlant5
Western Toad (Anaxyrus (Bufo) boreas)	37	36	N/A	N/A	2019/07/24 2019/07/25	GUE SOP-00056	eANBO1

Remarks:

Bureau Veritas Laboratories (Animal DNA Department, DNA Services) is accredited to ISO17025:2017 for eDNA testing.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by industry professionals using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas Laboratories in writing). All data has met quality control and method performance criteria unless otherwise noted.

Bureau Veritas Laboratories' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas Laboratories has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas Laboratories unless otherwise agreed in writing. Bureau Veritas Laboratories is not responsible for the accuracy or any data impacts that result from the information provided by the customer or their agent.

Results relate to supplied samples tested. This Certificate should not be reproduced except in full, without the written approval of the laboratory.

eDNA tests are used to confirm presence of eDNA in samples for the targeted species / species groups.

Collected eDNA samples will contain eDNA at various stages of degradation, being subject to environmental forces that breakdown DNA, including microbial activity, ultraviolet radiation, heat, hydrolysis, and enzymatic activity. eDNA is first evaluated for eDNA quality and presence of qPCR assay inhibitors using the IntegritE-DNATM assay before testing for target species or genera to confirm that the eDNA is of sufficient quality for testing and to identify and address qPCR inhibition (if present) to avoid false negatives.

SAMPLE RETENTION: Samples and DNA extracts generated from the samples will be retained by Bureau Veritas Laboratories for a period of 90 days after which time they will be discarded unless prearrangement has been made by client with Bureau Veritas Laboratories for longer storage.

Page 1 of 8

Phone: (519) 836-2400 Toll Free: (877) 706-7678 Fax: (519) 836-4218 www.bvlabs.com

Attention: Jacqueline Huard

Dillon Consulting Limited 3820 Cessna Drive, Suite 510 Richmond, BC V7B 0A2 V7B 0A2 Canada Client Project #: 126231

Site Location: Crown Mountain C.O.C. #: 20190716 Quote #: N/A

Report Date: 2019/07/26 Report #: DI20190726

Version: 1

ENVIRONMENTAL DNA - CERTIFICATE OF ANALYSIS

BV JOB #: E20190716

Received: 2019/07/16, 9:38 AM

Methodology for Sample Analysis

Samples received to the laboratory are entered into the Laboratory Information Management System (LIMS) upon receipt. Samples were inspected and assessed for amount of silica beads, silica bead saturation level, coin envelope condition and number of coin envelopes in each bag. Samples were frozen at -20°C until processing in the laboratory. Sample analysis is completed within 5 or 10 business days (as indicated by the client on the COC) following receipt of samples by the testing laboratory.

eDNA isolation is completed using the DNeasy Blood & Tissue KitTM (QIAGEN). A negative control is included as a blank filter sample with each batch of eDNA isolation to monitor for potential laboratory contamination during the eDNA isolation process.

Following eDNA isolation from the filter, the IntegritE-DNATM assay¹ is used to avoid the potential of a false negative (Type II error) during target species or genera testing. The IntegritE-DNATM assay evaluates the integrity of eDNA for suitability for qPCR and for presence of qPCR inhibitors which may reduce the effectiveness of the qPCR assay for target species or genera. This assay evaluates the quality of eDNA to assess whether it is amplifiable using a qPCR assay that targets the chloroplast genome derived from plants/algae that are ubiquitously found in fresh water systems. Four technical replicates per eDNA sample, four technical replicates of negative control (Ultrapure water), and two technical replicates of positive control are used for the IntegritE-DNATM assay. The cut-off Ct (qPCR cycle threshold) value for the IntegritE-DNATM assay is 30. If the IntegritE-DNATM assay produces a positive detection frequency of ⁻ 2 of the 4 technical replicates, this indicates that the eDNA for the target taxa is likely to be of sufficient quality to be detected (if present) with the target assay. If the IntegritE-DNATM assay produces a positive detection frequency < 2 of the 4 technical replicates (eDNA is degraded or qPCR inhibitors are present), then sample cleanup is completed using the OneStep PCR Inhibitor Removal KitTM (ZYMO Research) to remove potential qPCR assay inhibitors from the isolated eDNA. Subsequent to inhibitor removal, the IntegritE-DNATM assay is repeated to re-assess whether the eDNA is of sufficient quality for qPCR. If a sample fails at the IntegritE-DNATM assay for the second time the client will be informed that the quality of the sample is insufficient for the qPCR assay. eDNA indicator (IntegritE-DNATM assay, then the target species or genera assay is performed. Eight technical replicates per eDNA sample, eight technical replicates of the negative control (Ultrapure water), and two technical replicates of positive control (total DNA or synthetic DNA) are used for t

¹ Hobbs J, Round JM, Allison MJ, Helbing CC (2019) Expansion of the known distribution of the coastal tailed frog, *Ascaphus truei*, in British Columbia, Canada, using robust eDNA detection methods. PLOS ONE 14(3): e0213849.

<Original signed by>

)

BECKY HENDERSON

Senior Customer Service Representative, Bureau Veritas Laboratories, DNA Services

Email: Becky.Henderson@bvlabs.com Phone #: (519) 836 2400 Ext. 7067714

Please direct all questions regarding this Certificate of Analysis to your Customer Service Representative above.

For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages: 2

Unit 2 - 335 Laird Road Guelph, ON N1G 4P7

Fax: (519) 836-4218 www.bvlabs.com

BV JOB #: E20190716 Report Date: 2019/07/26 Report #: DI20190726 Client Name: Dillon Consulting Limited

Client Project #: 126231 Site Location: Crown Mountain Sampler Initials: JRH

RESULTS - Western Toad (Anaxyrus (Bufo) boreas)

		Sampling	Preservation	coc	IntegritE- DNA TM Positive detection		Clean up	IntegritE- DNA [™] Positive detection (Ct≤30) after		Analytical Method (qPCR Primer/Probe		
Client Sample ID	BV Case ID	Date	Туре	Number	(Ct≤30) ¹	QC Batch	required	clean up	QC Batch	set)	(Ct≤50) ²	QC Batch
DI20190012	WL14A	2019/07/05	Silica	20190716	4/4	190718Q4	No	N/A	N/A	eANBO1 ⁷	0/8	190724Q2
DI20190013	WL14B	2019/07/05	Silica	20190716	4/4	190718Q4	No 3	N/A	N/A	eANBO1	0/8	190724Q2
DI20190014	WL14C	2019/07/05	Silica	20190716	0/4 ³	190718Q4	Yes ³	4/4 ⁴	190724Q1	eANBO1	0/8	190724Q2
DI20190015	WL18A	2019/07/05	Silica	20190716	4/4	190718Q4	No	N/A	N/A	eANBO1	0/8	190724Q2
DI20190016	WL18B	2019/07/05	Silica	20190716	4/4	190718Q4	No	N/A	N/A	eANBO1	0/8	190724Q2
DI20190017	WL18C	2019/07/05	Silica	20190716	4/4	190718Q4	No	N/A	N/A	eANBO1	0/8	190724Q2
DI20190018	WL15A	2019/07/05	Silica	20190716	4/4	190718Q4	No	N/A	N/A	eANBO1	0/8	190724Q2
DI20190019	WL15B	2019/07/05	Silica	20190716	4/4	190718Q4	No	N/A	N/A	eANBO1	0/8	190724Q2
DI20190020	WL15C	2019/07/05	Silica	20190716	4/4	190718Q4	No	N/A	N/A	eANBO1	0/8	190724Q2
DI20190021	WL17A	2019/07/05	Silica	20190716	4/4	190718Q4	No	N/A	N/A	eANBO1	0/8	190724Q2
DI20190022	WL17B	2019/07/05	Silica	20190716	4/4	190718Q4	No	N/A	N/A	eANBO1	0/8	190724Q3
DI20190023	WL17C	2019/07/05	Silica	20190716	4/4	190718Q4	No	N/A	N/A	eANBO1	0/8	190724Q3
DI20190024	WL16A	2019/07/05	Silica	20190716	4/4	190718Q4	No	N/A	N/A	eANBO1	0/8	190724Q3
DI20190025	WL16B	2019/07/05	Silica	20190716	4/4	190718Q4	No	N/A	N/A	eANBO1	0/8	190724Q3
DI20190026	WL16C	2019/07/05	Silica	20190716	4/4	190718Q4	No	N/A	N/A	eANBO1	0/8	190724Q3
DI20190027	WLB_1	2019/07/05	Silica	20190716	0/43	190718Q4	Yes ³	0/4 ⁵	190724Q1	eANBO1	N/A	N/A
DI20190028	WL11A	2019/07/07	Silica	20190716	0/43	190718Q4	Yes ³	4/44	190724Q1	eANBO1	0/8	190724Q3
DI20190029	WL11B	2019/07/07	Silica	20190716	4/4	190718Q4	No	N/A	N/A	eANBO1	0/8	190724Q3
DI20190030	WL11C	2019/07/07	Silica	20190716	4/4	190718Q4	No	N/A	N/A	eANBO1	0/8	190724Q3
DI20190031	WL12A	2019/07/07	Silica	20190716	4/4	190718Q4	No	N/A	N/A	eANBO1	0/8	190724Q3
DI20190032	WL12B	2019/07/07	Silica	20190716	4/4	190718Q4	No	N/A	N/A	eANBO1	0/8	190724Q3
DI20190033	WL12C	2019/07/07	Silica	20190716	4/4	190723Q1	No	N/A	N/A	eANBO1	0/8	190725Q1
DI20190034	WLB_2	2019/07/07	Silica	20190716	0/43	190723Q1	Yes ³	0/4 ⁵	190724Q1	eANBO1	N/A	N/A
DI20190035	WL5.2A	2019/07/08	Silica	20190716	4/4	190723Q1	No	N/A	N/A	eANBO1	0/8	190725Q1
DI20190036	WL5.2B	2019/07/08	Silica	20190716	4/4	190723Q1	No	N/A	N/A	eANBO1	0/8	190725Q1
DI20190037	WL5.2C	2019/07/08	Silica	20190716	4/4	190723Q1	No	N/A	N/A	eANBO1	0/8	190725Q1
DI20190038	WL5.3A	2019/07/08	Silica	20190716	4/4	190723Q1	No	N/A	N/A	eANBO1	0/8	190725Q1
DI20190039	WL5.3B	2019/07/08	Silica	20190716	4/4	190723Q1	No	N/A	N/A	eANBO1	0/8	190725Q1
DI20190040	WL5.3C	2019/07/08	Silica	20190716	4/4	190723Q1	No	N/A	N/A	eANBO1	2/8	190725Q1
DI20190041	WLB_3	2019/07/08	Silica	20190716	0/43	190723Q1	Yes ³	0/45	190724Q1	eANBO1	N/A	N/A
DI20190042	WL4.1A	2019/07/09	Silica	20190716	4/4	190723Q1	No	N/A	N/A	eANBO1	1/8	190725Q1
DI20190043	WL4.1B	2019/07/09	Silica	20190716	4/4	190723Q1	No	N/A	N/A	eANBO1	0/8	190725Q2
DI20190044	WL4.1C	2019/07/09	Silica	20190716	4/4	190723Q1	No	N/A	N/A	eANBO1	0/8	190725Q2
DI20190045	WL21	2019/07/09	Silica	20190716	0/43	190723Q1	Yes ³	4/44	190724Q1	eANBO1	8/8	190725Q2
DI20190046	WL2A	2019/07/09	Silica	20190716	4/4	190723Q1	No	N/A	N/A	eANBO1	0/8	190725Q2
DI20190047	WL2B	2019/07/09	Silica	20190716	0/43	190723Q1	Yes ³	0/46	190724Q1	eANBO1	N/A	N/A
DI20190048	WL2C	2019/07/09	Silica	20190716	4/4	190723Q1	No	N/A	N/A	eANBO1	0/8	190725Q2
DI20190049	WLB_4	2019/07/09	Silica	20190716	0/43	190723Q1	Yes ³	0/4 ⁵	190724Q1	eANBO1	N/A	N/A
DI20190050	WLN2A	2019/07/10	Silica	20190716	4/4	190723Q1	No	N/A	N/A	eANBO1	0/8	190725Q2
DI20190051	WLN2B	2019/07/10	Silica	20190716	4/4	190723Q1	No	N/A	N/A	eANBO1	0/8	190725Q2
DI20190052	WLN2C	2019/07/10	Silica	20190716	4/4	190723Q1	No	N/A	N/A	eANBO1	0/8	190725Q2
DI20190053	WLB_5	2019/07/10	Silica	20190716	0/43	190723Q1	Yes ³	0/4 ⁵	190724Q1	eANBO1	N/A	N/A

1 IntegritE-DNATM Assay: Four technical replicates were assayed for each eDNA sample. The cut-off Ct value for IntegritE-DNATM assay was 30. Results are reported as the number of positive detections (n) out of a total of 4 technical replicates, n/4.

² Target Species Assay: Eight technical replicates were assayed per eDNA sample. The cut-off Ct value for target species assay was 50. Results are reported as the number of positive detections (n) out of a total of 8 technical replicates, n/8.

³ The IntegritE-DNATM assay failed and cleanup is required.

⁴ These samples passed the IntegritE-DNATM after the clean up.

⁵ No amplification was detected on Blank samples.

⁶ Quality of this sample is insufficient for the qPCR assay.

eANBO1: qPCR primer/probe assay to assess the presence of Western Toad (*Anaxyrus (Bufo) boreas*)

BV JOB #: E20190716 Report Date: 2019/07/26

Report #: DI20190726

Client Name: Dillon Consulting Limited

Client Project #: 126231

Site Location: Crown Mountain Sampler Initials: JRH

GENERAL COMMENTS

WL2B (BV Case ID DI20190047) failed at IntegritE-DNATM after clean up. This sample does not have sufficient quality for the requested target species assay and it may produce false negative

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

			eDNA Isolation Negative	Control ¹	qPCR Positive Co	ntrols ²	qPCR Negative Controls ³		
QC Batch	Parameter	Date	Detection at: Ct 30 (IntegritE-DNA TM) Ct 50 (other assays)	Pass/Fail	Detection at: Ct 30 (IntegritE-DNA TM) Ct 50 (other assays)	Pass/Fail	Detection at: Ct 30 (IntegritE-DNA [™]) Ct 50 (other assays)	Pass/Fail	
190718Q4	IntegritE-DNA	2019/07/18	0 of 4 technical replicates	Pass	2 of 2 technical replicates	Pass	0 of 4 technical replicates	Pass	
190723Q1	IntegritE-DNA	2019/07/23	0 of 4 technical replicates	Pass	2 of 2 technical replicates	Pass	0 of 4 technical replicates	Pass	
190724Q1	IntegritE-DNA	2019/07/24	- DNA Is alstiss No setting	N/A	2 of 2 technical replicates	Pass	0 of 4 technical replicates	Pass	
190724Q2	eANBO1	2019/07/24	eDNA Isolation Negative Control is assessed using	N/A	2 of 2 technical replicates	Pass	0 of 4 technical replicates	Pass	
190724Q3	eANBO1	2019/07/24	IntegritE-DNA TM only once	N/A	2 of 2 technical replicates	Pass	0 of 4 technical replicates	Pass	
190725Q1	eANBO1	2019/07/25	for each extraction batch.	N/A	2 of 2 technical replicates	Pass	0 of 4 technical replicates	Pass	
190725Q2	eANBO1	2019/07/25	TOT GACTI GALLACHOTI DALCTI.	N/A	2 of 2 technical replicates	Pass	0 of 4 technical replicates	Pass	

¹eDNA Isolation Negative Control: Blank filters were included for each batch of eDNA extraction to monitor for laboratory contamination during eDNA isolation. eDNA Isolation Negative Control is assessed using IntegritE-DNATM only. QC results show no eDNA was isolated from the negative control, therefore there was no indication of sample contamination during handling. Acceptance criteria: 0 of 4 technical replicates

²qPCR Positive Controls: Two technical replicates of isolated eDNA from freshwater sample were used as positive controls for IntegritE-DNATM. Two technical replicates of total DNA or synthetic DNA from the target species were used as positive controls for eDNA assays. Results show that 100% of the technical replicates amplified the positive control eDNA as expected, therefore an observation of negative result in eDNA samples is not related to the qPCR performance. Acceptance criteria: 2 of 2 technical replicates

³qPCR Negative Controls (Ultrapure water): Four technical replicates for IntegritE-DNATM and eight technical replicates for target species or genera were used to monitor for laboratory contamination. Results show that 0% of the technical replicates in the negative controls had amplified eDNA, indicating no contamination was detected. Acceptance criteria: 0 of 4 technical replicates for IntegritE-DNATM, and 0 of 8 technical replicates for other assays.

Unit 2 - 335 Laird Road Guelph, ON N1G 4P7

Phone: (519) 836-2400 Toll Free: (877) 706-7678 Fax: (519) 836-4218 www.bvlabs.com

BV JOB #: E20190716 Report Date: 2019/07/26

Report #: DI20190726

Client Name: Dillon Consulting Limited

Client Project #: 126231 Site Location: Crown Mountain

Sampler Initials: JRH

LABORATORY RESULTS VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

<Original signed by>

Reporter: ALI MIRABZADEH, M.Sc. Senior Analyst, Bureau Veritas Laboratories, DNA Services

<Original signed by>

Reviewer: HEATHER ALLEN, M.Sc.

Supervisor, Bureau Veritas Laboratories, DNA Services

BV JOB #: E20190716 Report Date: 2019/07/26 Report #: DI20190726 Client Name: Dillon Consulting Limited

Client Project #: 126231
Site Location: Crown Mountain
Sampler Initials: JRH

Western Toad (Anaxyrus (Bufo) boreas) eDNA Assay Validation Information

eDNA assay Validation

All eDNA assays are validated through a rigorous multi-step evaluation protocol that includes tests of DNA target specificity and amplification sensitivity. All eDNA tests available at Bureau Veritas Laboratories have been validated for performance using interlaboratory verification.

General eDNA Assay Information

Target Species Western Toad (Anaxyrus (Bufo) boreas)

Species Abbreviation ANBO eDNA qPCR Primer/Probe set eANBO1 eDNA qPCR Format TaqMan

eDNA Assay Specificity Tests

A. qPCR Activity: Multi-species analysis of eDNA assay efficiency

Multiple qPCR reactions (n=25) performed per target DNA. Detection within the standardized eDNA qPCR assay = Yes									
ASMO	ANBO-VI	ANBO-YK	LICA	PSRE	RAAU	RAPR	TAGR	HOSA	NTC
No	Yes	Yes	No	No	No	No	No	No	No

eDNA Assay Sensitivity Test

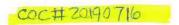
DNA (g/L)	Detection Frequency (n=25)	Binomial Standard error (n=8)
5	100%	0%
1	100%	0%
0.2	100%	0%
0.04	96%	7%
0.008	92%	10%
0	0%	0%

Abbreviations

Rocky Mountain Tailed Frog (Ascaphus montanus) Western Toad (Anaxyrus (Bufo) boreas) ASMO ANBO-VI Western Toad (Anaxyrus (Bufo) boreas) ANBO-YK Bullfrog (Lithobates (Rana) catesbeiana) Pacific Chorus Frog (Pseudacris (Hyla) regilla)
Northern Red-legged Frog (Rana aurora)
Oregon Spotted Frog (Rana pretiosa)
Rough-skinned Newt (Taricha granulosa) **PSRE** RAALI RAPR TAGR Human (Homo sapiens) HOSA qPCR no template control NTC quantitative real-time polymerase chain reaction environmental DNA qPCR eDNA

Sourced from Vancouver Island (VI) Sourced from Yukon, not great quality sample

BV JOB #: E20190716 Report Date: 2019/07/26


Report #: DI20190726

Client Name: Dillon Consulting Limited

Client Project #: 126231

Site Location: Crown Mountain

Sampler Initials: JRH

From Canada, send to:
BV Labs, DNA Services
335 Laird Rd #2
Guelph, ON N1G 4P7
gDNA@bylabs.com

From USA, send to: BV Labs 240 Portage Rd Po Box 670, PMB 19 Lewiston NY 149092-1604

ENVIRONMENTAL DNA (eDNA) CHAIN OF CUSTODY RECORD

Page 1 of 1

«An incomplete or incorrect form may lead to delays in testing»

100		gDNA @ bwads.com	LEWISTON IN	1 149092-10	124							₹ 3×1/
(17	Invoice Information (Required)	2				ion (if differs	from invoice	e)	3 Project I	nformation (where applicable)	4 Turnaround Time (TAT) (Require
ompany l	Vame:	Dillon Consulting Limited	C	ompany Na	ne: Dillo	n Consultin	g Limited			Quotation #:		Regular TAT (Most analyses)
			1 82		1922		.a2			-13027		X 10 business days (Sample # ≤ 5 15 business days (Sample # > 5
ontact Na	me:	Jacqueline Huard	C	ontact Nam	e: Jack	queline Huar	ıu			P.O. #:		From date received
ddress:		3820 Cessna Drive, Suite 510	A	idress:	3820	Cessna Dr	ive, Suite 510)		Project #:	126231	PLEASE REQUEST RUSH
		Richmond, BC V7B 0A2			Rich	mond, BC V	77B 0A2			_	Crown Mountain	FROM CUSTOMER SERVICE
					-					_	JRH	Rush TAT (Surcharges will be appl
hone:	604-278	3-7847 Fax: 604-278-7894	PI	one: 604-	278-7847		Fax	604-278-78	94		orts to jhuard@dillon.ca and Idill	5 business days (Sample # ≤ 5
				5-90011			200-00					10 business days (Sample # >
mail:	huard@di.	lon.ca	Er	nail:	_		- war to be a first					From date received
-			MIDORTANT I	EODMATIC			ODNA ANALY	rsis			COCCIAL INCTO	HOTIONS
Nater sar	nnles sho	ould be kept cool and littered as soon as possible	IMPORTANT IN							lease send reports t	SPECIAL INSTR o ckwok@dillon.ca and skalvn@dillon	ca as well. Holding replicate "C" samples to
Cellulose	Nitrate (C	CN) filter is recommended to use for eDNA test be elf-indicating silica beads (2-4 mm diameter) or m	ecause of higher	eDNA reco	ery.			:::-:::	į.			strong eDNA hits as fish presence confirme
reserve	7.	an-indicating sinca beads (2-4 mm diameter) or m	Grecolar grace e	nanoi (aa id 9	100%) imiri	10	wing sample in	Management of the Control of the Con	13	14		<u>15</u>
	•		180000000000	De De	te Filtered	11.000	CARROLL I	Property or the last	Preservation			
Number		Sample identification	Date San (YYYY/MM	MDD) and	Preserved		(Diameter)	Filter Pore	Method (Ethanol /	Ass	ays Requested ¹	Comments
			Mark that	(YY	YY/MM/DD)	- CONTROL	(Clainelei)	Size (µiii)	Silica)			
1		WL14A	7/5/201	P	7/5/2019	Cellulose Nitrate Cellulose	47 mm	0.45	Silica		ANBO *	
2		WL14B	7/5/201	9	7/5/2019	Nitrata	47 mm	1775377	Silica		ANBO	
3		WL14C	7/5/201	9	7/5/2019	Cellulose Nitrate Cellulose	47 mm	2007.1	Silica		ANBO	
4		WLIBA	7/5/201	211	7/5/2019	Nitrate Cellulose	47 mm	95557	Silica		ANBO	
5		WLIBB	7/5/201	_	7/5/2019	Nitrate Cellulose	47 mm	1,000	Silica		ANBO	
6		WL18C	7/5/201		7/5/2019	Nitrate Cellulose	47 mm		Silica		ANBO	
7	_	WL15A	7/5/201		7/5/2019	Nitrate Cellulose	47 mm		Silica		ANBO	
8	_	WL15B	7/5/201		7/5/2019	Nitrate Cellulose	47 mm		Silica		ANBO	
9		WL150	7/8/201		7/5/2019	Nitrate Cellulose	47 mm	1000	Silica		CHIA	
10		WL17A	7/5/201	100	7/5/2019	Nitrate Cellulose	47 mm	3000	Silica		ANBD	
11		WL17B	7/5/201		7/5/2019	Nitrate Cellulose	47 mm	12.001	Silica		ANBO	
12		WL17C	7/5/201		7/5/2019	Nitrate Cellulose	47 mm		Silica		ANBO	
13		WL16A	7/5/201		7/5/2019	Nitrate Cellulose	47 mm		Silica		ANBO	/
14		WL16B	7/5/201		7/5/2019	Nitrate Cellulose	47 mm	277	Silica		ANBO	
15		WL16C WLB	7/5/201		7/5/2019	Nitrate Cellulose	47 mm	22.0	Silica		ANBO	Blank
17		WL11A	7/5/201	200	7/7/2019	Nitrate Cellulose	47 mm 47 mm	2000	Silica		ANBO	Cyclin
18	_	WLIB	7/7/201	202	7/7/2019	Nitrate Cellulose	47 mm	N201	Silica		ANBD	
19	_	WLIIC	7/7/201	201	7/7/2019	Nitrate Cellulose	47 mm	0.45	Silica		ANBO	
20		WL12A	7/7/201	-	7/7/2019	Nitrate Cellulose	47 mm	2000	Silica		ANBO	
21		WL12B	7/7/201		7/7/2019	Nitrate Cellulose	47 mm		Silica		ANBO	
22		WLISC	7/7/201		7/7/2019	Nitrate Cellulose	47 mm	-	Silica		ANBO	
1000		WLB	7/7/201		7/7/2019	Nitrate Cellulose	47 mm	0.45	Silica		Black	Blank
23						Nitrate						100000
23		WL5.2A	7/6/201		78/2019	Cellulose Nitrate Cellulose	47 mm	0.45	Silica		ANBO	

Unit 2 - 335 Laird Road Guelph, ON N1G 4P7 Page 7 of 8

Phone: (519) 836-2400 Toll Free: (877) 706-7678 Fax: (519) 836-4218

www.bvlabs.com

BV JOB #: E20190716 Report Date: 2019/07/26

Report #: DI20190726

Client Name: Dillon Consulting Limited

Client Project #: 126231

Site Location: Crown Mountain

Sampler Initials: JRH

1//	Jacqueline Huard	7/11/1905	1345	5	NA	ICV H	Derisa	For Lab Use Only 209/07/16 9:38 Am	
RELINO	UISHED BY: (Signature/Print) 17	DATE: (YYYY/MM/DD)	18 TIME:	(HH:MM)		RECEIVED	BY: (Signature/P	TABLE TO SERVICE AND ADDRESS OF THE PROPERTY O	M) CASE RANGE
2	WLB	7/10/2019	7/10/2019	Cellulose Nitrate	47 mm	0.45	Silica	Blank	Blank
1	WLN2C	7/10/2019	7/10/2019	Cellulose Nitrate	47 mm	0,45	Silica	ANBO	
0	WLN2B	7/10/2019	7/10/2019	Cellulose Nitrate	47 mm	0.45	Silica	ANBO	
9	WLN2A	7/10/2019	7/10/2019	Cellulose Nitrate	47 mm	0.45	Silica	ANBO	
8	WLB	7/9/2019	7/9/2019	Cellulose Nitrate	47 mm	0.45	Silica	Blank	Bank
7	WL2C	7/9/2019	7/9/2019	Cellulose Nitrate	47 mm	0.45	Silica	ANBO	
36	WL2B	7/9/2019	7/9/2019	Cellulose	47 mm	0.45	Silica	ANBO	
5	WL2A	7/9/2019	7/9/2019	Cellulose	47 mm	0.45	Silica	ANBO	
4	WL21	7/9/2019	7/9/2019	Cellulose	47 mm	0.45	Silica	ANBO	
3	WL4.1C	7/9/2019	7/9/2019	Cellulose	47 mm	0.45	Silica	ANBO	
2	WL4.1B	7/9/2019	7/9/2019	Cellulose	47 mm	0.45	Silica	ANBO	
81	WL4.1A	7/9/2019	7/9/2019	Cellulose Nitrate	47 mm	0.45	Silica	ANBO	
30	WLB	7/8/2019	78/2024	Cellulose	47 mm	0.45	Silica	Blank	Blank
29	WL5.3C	7/8/2019	78/2024	Cellulose Nitrate	47 mm	0.45	Silica	ANBO	
28	WL5.3B	7/8/2019	78/2023	Cellulose	47 mm	0.45	Silica	ANBO	
27	WL5.3A	7/8/2019	78/2022	Cellulose Nitrate	47 mm	0.45	Silica	ANBO	
26	WL5.2C	7/8/2019	78/2021	Cellulose Nitrate	47 mm	0.45	Silica	ANBO	

Available Assays at Bureau Veritas Laboratories: AMMV² (Western tiger salamander), ANBO (Western toad), ASMO (Rocky mountain tailed frog), eFish³ (General fish assay), LICA (North American buillfrog), ONCL (Cutthroat trout), ONKI (Coho salmon), ONMY (Rainbow trout - Steelhead trout), ONNE (Sockeye Salmon), ONTS (Chinook salmon), RAAU (Northern red-legged frog), RAPR (Oregon spotted frog), SOBE (Pacific water shrew), THAR (Arctic grayling), ASTR (Pacific (Coastal) tailed frog)

Unless otherwise agreed to in writing, work submitted on this Chain of Custody is subject to Bureau Veritas Laboratories' standard Terms and Conditions. Signing of this Chain of Custody document is acknowledgment and acceptance of our terms which are available for viewing at http://www.bvlabs.com/com/terms-and-conditions and http://www.bvlabs.com/conditions-generales

² AMMV assay also detects Ambystoma tigrinum (AMTI) Tiger Salamander.

³ eFish assay can detect DNA from 12 fish species (Sockeye salmon, Pink salmon, Chum salmon, Arctic grayling, Cutthroat trout, Rainbow trout, Chinook salmon, Choo salmon, Atlantic Salmon, Dolly Varden, Round Whitefish and Slimy Sculpin). This assay is designed to be non-specific. It may detect eDNA from other fish species in addition or instead of the specific species listed here, which the assay has been validated for.

Appendix C

Amphibian Survey Data

Date Survey Site Start Time End Time Person Hours Notes Survey Purpose Weather 04-Jul-14 WL1 12:02:00 PM 12:40:00 PM 1:16 Appears high in calcium; Fish observed at edge of pond 09-Jun-17 WL1 12:40:00 PM 1:15:00 PM 1:10 PS Overcas 22-Apr-18 WL1 4:00:00 PM 4:15:00 PM 0:30 Snow on edge; pool mostly open (not frozen); Early in the year for PS Overcas	0 High ceiling, 50) (°C) (25 siling, 15	Wind (BU) Precipita 2 Light rai time:	2	Adult	Tadpole Egg mass	Adult 1	Tadpole	Egg mass Adu	ult Toadlet	t Tadpole	Egg mass Adult	Tadpole Egg mass	WF/CSF	Adult	Tadpole
04-Jul-14 WL1 12:02:00 PM 12:40:00 PM 1:16 Appears high in calcium; Fish observed at edge of pond PS Sunny 09-Jun-17 WL1 12:40:00 PM 1:15:00 PM 1:10 PS Overcas Snow on edge; pool mostly open	0 (%) t High ceiling, 50 t High ceiling,) (°C) (25 siling, 15	(BU) Precipita	Observed 2	Adult	Tadpole Egg mass	Adult 1	Tadpole	mass Adu	ılt Toadlet	t Tadpole	mass Adult	Tadpole Egg mass	WF/CSF	Adult	Tadpole
04-3d-14 WE1 12.02.00 PW 12.40.00 PW 1.10 observed at edge of pond PS Overcas 09-Jun-17 WL1 12:40:00 PM 1:15:00 PM 1:10 PS Overcas Snow on edge; pool mostly open	High ceiling, 50 High ceiling,	eiling, 15	2	ı at			1		1							
Snow on edge; pool mostly open	50 High ceiling,) 15	2	ı at							1					
		eiling, o		U												
amphibians		0	2-3 0	0												
03-May-18 WL1 2:00:00 PM 2:50:00 PM 1:40 Some snow on ground; mostly snow free, no ice present PS Sunny	100	0 12	3	0												
03-Jul-18 WL1 3:45:00 PM 4:00:00 PM 0:30 PS				0												
05-Jul-18 WL1 5:00:00 PM 5:30:00 PM 1:00 PS				0												<u> </u>
30-Jul-18 WL1 11:40:00 AM 11:50:00 AM 0:20 PS Sunny	0			0												
25-May-19 WL1 6:27:00 AM 6:40:00 AM 0:26 VAST ARU deployed at south end PS Sunny		0		0												ļ
13-Sep-19 WL1 7:40:00 AM 8:03:00 AM 0:46 ES	40) 8	1 Light ra													
WL1Totals: 7:38 08-May-19 WL2 5:50:00 PM 6:15:00 PM 0:50 PS	50	<u> </u>	0-3	0			1		1							
10-Jul-19 WL2 1:15:00 PM 2:45:00 PM 3:00 PS	10		2	1	1											
WL2 Totals: 3:50	10	20	_	1	1											
29-Jul-18 WL3 11:30:00 AM 12:05:00 PM 1:10 PS				0												
08-May-19 WL3 5:22:00 PM 5:45:00 PM 0:46 PS	50)	0-3	0												
10-Jul-19 WL3 5:15:00 PM 5:30:00 PM 0:30 PS	10) 25	2	0												<u> </u>
WL3 Totals: 2:26	1			0												
07-Jun-14 WL4 11:00:00 AM 11:10:00 AM 0:20 Open pool with beaver damn PS Sunny	0			1	1											<u> </u>
06-Jun-17 WL4 9:00:00 AM 9:15:00 AM 0:30 B	0		1	0												
07-Jun-17 WL4 12:14:00 PM 1:40:00 PM 2:52 PS	0		1	11	1	10										<u></u> '
30-Jun-17 WL4 12:05:00 PM 12:20:00 PM 0:30 PS Sunny 06-Jul-17 WL4 1:15:00 PM 2:00:00 PM 1:30 PS Sunny			0 0	5	1	5						1	 			
24-Apr-18 WL4 8:50:00 AM 9:00:00 AM 0:20 Wetland is completely covered in snow (>0.5m) no open water; early in the year for amphibians		9	1 0	0												
06-May-18 WL4 2:20:00 PM 2:45:00 PM 0:50 PS	0	19	2 0	0												
07-May-18 WL4 11:10:00 AM 11:20:00 AM 0:20 B				0												
09-May-18 WL4 9:00:00 AM 9:20:00 AM 0:40 PS Overcas				11	3	8										ļ'
08-May-19 WL4 7:37:00 AM 0:20 B 08-May-19 WL4 3:22:00 PM 4:30:00 PM 2:16 PS	50 50		0-3	7	1	5			1							
08-May-19 WL4 3:22:00 PM 4:30:00 PM 2:16 PS 22-May-19 WL4 7:09:00 AM 7:21:00 AM 0:24 B Sunny			0-3 1-2	0	'	5			1							
22-May-19 WL4 12:00:00 PM 12:40:00 PM 1:20 PS Sunny			1-2	17	4	9							4			
09-Jul-19 WL4 1:35:00 PM 1:50:00 PM 0:30 PS	10		2	3		3										
12-Sep-19 WL4 7:20:00 AM 7:27:00 AM 0:14 ES	40	5	0 0	0												
12-Sep-19 WL4 7:27:00 AM 8:05:00 AM 1:16 ES	40		0 0	0												
13-Sep-19 WL4 11:03:00 AM 11:15:00 AM 0:24 ES	60		4 Light ra		-						-					<u> </u>
13-Sep-19 WL4 11:15:00 AM 12:01:00 PM 1:32 ES WL4 Totals: 16:08	60	10	4 Light ra	in 1 57	1 12	18 22			1				4			
11-Jun-14 WL5.1 9:48:00 AM 9:58:00 AM 0:20 vent to snout length 2cm B	High ceiling,		2	1	12	10 22				1			4			
07-Jun-17 WL5.1 10:05:00 AM 10:40:00 AM 1:10 Found trout PS	0		1	0												
24-Apr-18 WL5.1 2:00:00 PM 2:15:00 PM 0:30 PS Sunny		9	1 0	0				_				+				ļ
06-May-18 WL5.1 1:43:00 PM 1:53:00 PM 0:20 PS	0	19	2 0	0						-	1	 				ļ!
08-May-19 WL5.1 8:36:00 AM 8:37:00 AM 0:02 Some snow in patches; mostly snow free; no ice B	50		0-3	0												
08-May-19 WL5.1 2:54:00 PM 2:59:00 PM 0:10 PS	50		0-3	0				ļ								ļ!
22-May-19 WL5.1 8:35:00 AM 8:45:00 AM 0:20 B Sunny 08-Jul-19 WL5.1 4:20:00 PM 4:30:00 PM 0:20 PS Sunny			1-2	0						-	1	 				ļ!
08-Jul-19 WL5.1 4:20:00 PM 4:30:00 PM 0:20 PS Sunny 12-Sep-19 WL5.1 8:20:00 AM 8:30:00 AM 0:20 ES	0 40		0 0	0	-			-	 	-	-	+				
12-Sep-19 WL5.1 8.30:00 AW 8.43:00 AM 0:26 ES	40		0 0	0					 	-	+	+ + -	 			
12-Sep-19 WL5.1 4:37:00 PM 4:50:00 PM 0:26 ES	90		2 0	0								+ + -				
12-Sep-19 WL5.1 4:51:00 PM 5:15:00 PM 0:48 ES	90		2 0	0				1				1 1				 -
WL5.1 Totals: 5:12				1						1						
07-Jun-17 WL5.2 11:00:00 AM 11:20:00 AM 0:40 PS	0	3	1	1					1							

								We	eather Condition	ons			Colum	nbia Spot	ted Frog	Wood Fro	g		Wester	n Toad	Long-	toed Sala	mander		Unidentified	
Date	Survey Site	Start Time	End Time	Person Hours	Notes	Survey Purpose	Weather	Cloud Cover (%)	Temperature (°C)	Wind (BU)	Precipitation	Total Amphibians Observed	Adult	Tadpole	Egg mass Adult	Tadpole	Egg mass	dult -	Toadlet	Tadpole	Egg mass Adult	Tadpole	Egg mass	WF/CSF	Adult	Tadpole
24-Apr-18	WL5.2	2:30:00 PM	2:45:00 PM	0:30		PS	Sunny		9	1	0	0														
08-May-19	WL5.2	8:53:00 AM	9:03:00 AM	0:20	Some snow in patches; mostly	PS	,	50		0-3		0														
08-May-19	WL5.2	2:25:00 PM	2:53:00 PM	0:56	snow free; no ice	PS		50		0-3		0														
08-Jul-19	WL5.2	4:50:00 PM	5:15:00 PM	0:50		PS	Sunny	0	25			0														
12-Sep-19	WL5.2 Tota	4:15:00 PM	4:37:00 PM	0:44		ES		80	14	3	0	1	1					1								
02-Jul-14	WL5.2 TOTA	1:30:00 PM	1:45:00 PM	4:00 0:30		PS	l	0	30	2		0	1					1								
07-Jun-17	WL5.3	10:40:00 AM	11:00:00 AM	0:40		PS		0	3	1		0														
24-Apr-18	WL5.3	2:30:00 PM	2:45:00 PM	0:30		PS	Sunny	0	9	1	0	0														
06-May-18 07-May-18	WL5.3 WL5.3	1:30:00 PM 10:35:00 AM	1:40:00 PM 10:45:00 AM	0:20 0:20		PS B		0	18	2	0	0														
08-May-19	WL5.3	9:05:00 AM	9:10:00 AM	0:10		В						0														
08-May-19	WL5.3	2:10:00 PM	2:19:00 PM	0:18		PS		50	4	0-3		0														
22-May-19 08-Jul-19	WL5.3 WL5.3	8:53:00 AM 5:30:00 PM	9:03:00 AM 5:50:00 PM	0:20 0:40		B PS	Sunny	0	4 25	1-2		0														
12-Sep-19	WL5.3	8:43:00 AM	8:59:00 AM	0:32		ES	ourn.y	40	8	0	0	0														
12-Sep-19	WL5.3	4:01:00 PM	4:14:00 PM	0:26		ES		60	14	4	0	0														
02-Jul-14	WL5.3 Tota WL5.4	1:10:00 PM	1:30:00 PM	4:46 0:40	No pooled water	PS	I	0	30	2		0														
06-May-18	WL5.4		11:25:00 AM	0:20	Two pooled water	В		0	15	2	0	0														
08-May-18	WL5.4	9:20:00 AM	9:30:00 AM	0:20	Some snow in patches; mostly snow free; no ice	PS		50		0-3		0														
22-May-19	WL5.4 WL5.4	9:03:00 AM	9:13:00 AM 9:30:00 AM	0:20 1:02		B	Sunny	0 40	9	1-2	0	0														
12-Sep-19 12-Sep-19	WL5.4	8:59:00 AM 3:36:00 PM	4:01:00 PM	0:50		ES ES		60	14	0 4	0	0														
	WL5.4 Tota	ls:		3:32								0														
07-Jun-14	WL6	8:40:00 AM	8:55:00 AM	0:30		В	Sunny	0	4	1		0														
06-Jun-17 30-Jun-17	WL6 WL6	1:30:00 PM 11:00:00 AM	1:45:00 PM 11:18:00 AM	0:30 0:36		PS PS	Sunny	0	3 20	0	0	0					 		1							
06-May-18	WL6		11:15:00 AM	0:20	Snow on banks, no ice	В	ourn.y	0	9	2	0	0														
26-Jul-18	WL6	na	na	na		PS						0														
08-May-19	WL6	12:10:00 PM	12:33:00 PM	0:46	VAST came by to do an amphibian	PS		50		0-3		0														<u> </u>
22-May-19	WL6	10:05:00 AM	10:15:00 AM	0:20	search	В	Sunny Foggy;	0	4	1-2		0														
06-Jul-19	WL6	2:35:00 PM	2:50:00 PM	0:30		PS	Overcast			2		0														
12-Sep-19 12-Sep-19	WL6 WL6	10:27:00 AM 1:30:00 PM	10:40:00 AM 2:17:00 PM	0:26 1:34	Many volos	ES ES		40 40	9 12	2	0	0														
12-Sep-19	WL6	1:30:00 PM	2:17:00 PM	1:34	Many voles	ES		40	12	2	0	0														
·	WL6 Totals			7:06								1							1							
12-Sep-19	WL6.1 WL6.1 Tota	2:26:00 PM	2:37:00 PM	0:22	Many voles	ES		40	14	3	0	0														
08-Jun-14	WL6.1 10ta	1:15:00 PM	1:25:00 PM	0:20		PS	Sunny	0	1			0														
30-Jun-17	WL6.2	11:28:00 AM	11:35:00 AM	0:14		PS	Sunny	0	20	0	0	0														
12-Sep-19	WL6.2 Tota	2:37:00 PM	2:53:00 PM	0:32 1:06		ES		40	14	3	0	3										3				
04-Jul-18	WL7	10:30:00 AM	11:00:00 AM	1:06		PS						0										3				
	WL7 Totals	S:		1:00								0														
04-Jul-18 26-Jul-18	WL8.1 WL8.1	12:20:00 PM 9:30:00 AM	12:40:00 PM 10:00:00 AM	0:40 1:00		PS PS	Sunny Overcast/S	80 40		2		0														
10-Jul-19	WL8.1	7:00:00 AM		0:20		В	unny	30	10	3		0														
10-Jul-19 11-Jul-19	WL8.1	10:30:00 AM		0:20		PS		30	10	3		0														
	WL8.1 Tota	ls:		2:20								0														
04-Jul-18 26-Jul-18	WL8.2	12:56:00 PM 10:20:00 AM	1:15:00 PM 10:45:00 AM	0:38 0:50		PS PS	Sunny Overcast/S	80 40		3		0						1								
10-Jul-19	WL8.2	7:10:00 AM		0:20		В	unny	30	10	3		0						+								
10-Jul-19 11-Jul-19	WL8.2	10:40:00 AM		0:40		PS		30	10	J		0						+								
	WL8.2 Tota	ls:		2:28								1						1								
04-Jul-18	WL8.3	1:15:00 PM	1:30:00 PM	0:30		PS	Sunny Overcast/S	80		3		0						_								
26-Jul-18	WL8.3		11:15:00 AM	1:00		PS	Overcast/S unny	40		2		0														
10-Jul-19	WL8.3	7:20:00 AM	7:30:00 AM	0:20		В		30	10	3		0														<u>. </u>

								Wea	ther Condition	ons			Colum	bia Spot	ted Frog	Wood Fro	og		Weste	rn Toad	Long	-toed Sala	mander	l	Unidentified	
Date	Survey Site	Start Time	End Time	Person Hours	Notes	Survey		Cloud Cover	Tomporaturo	Wind		Total Amphibians					Egg				Egg					
Date	Survey Site	Start Time	LIIU IIIIIE	reisoninouis	Notes	Purpose	Weather	Cloud Cover (%)	Temperature (∘C)	(BU)	Precipitation	Observed	Adult	Tadpole	Egg mass Adult	Tadpole	Egg mass	Adult	Toadlet	Tadpole	Egg mass Adul	Tadpole	Egg mass	WF/CSF	Adult	Tadpole
11-Jul-19	WL8.3	11,00,00 AM	11:10:00 AM	0:20		PS						0														
11-Jul-19	WL8.3 Total		11.10.00 AW	2:10		rs						0														
								Overcast,																		
06-Jun-14	WL9	5:50:00 AM	6:00:00 AM	0:20		В		Moderatly high ceiling,	2	2		0														
								100																		
08-Jun-17	WL9	7:45:00 AM	8:00:00 AM	0:30		В		High ceiling, 50	7	0		0														
02-Jul-17	WL9	2:40:00 PM	3:56:00 PM	2:32		PS	Sunny	0	20	0	0	0														
03-Jul-17	WL9	3:03:00 PM	3:20:00 PM	0:34	Snow and ice on banks and in	PS	Sunny	0	30	0	0	5										5				
25-Apr-18	WL9	12:00:00 PM	12:10:00 PM	0:20	shadows	PS		0	9	3		0														
05-May-18	WL9	10:47:00 AM	11:10:00 AM	0:46		В		0 High coiling	9	2	0	0														
08-May-18	WL9	10:38:00 AM	10:49:00 AM	0:22		В		High ceiling, 70		0		0														
02-Jul-18	WL9	2:00:00 PM	2:10:00 PM	0:20		PS	Overcast	100		3-4	Light rain	0														
09-May-19 24-May-19	WL9 WL9	9:30:00 AM 9:48:00 AM	9:40:00 AM 9:58:00 AM	0:20 0:20		PS PS	Overcast	50 60	3	0-3 2		0														
07-Jul-19	WL9	4:15:00 PM	4:30:00 PM	0:30		PS	na		-			0														
10-Sep-19	WL9	1:31:00 PM	1:57:00 PM	0:52		ES		100	10	1	Light rain	0														
10-Sep-19	WL9 WL9 Totals	1:57:00 PM	2:06:00 PM	0:18 8:04		ES		100	10	1	Light rain	0 5										5				
05-May-18	WL10	11:10:00 AM	11:24:00 AM	0:28		PS		0	9	2	0	0														
09-May-18	WL10	9:40:00 AM	10:00:00 AM	0:40		PS		50		0-3		0														
10-Sep-19 10-Sep-19	WL10 WL10	12:54:00 PM 1:16:00 PM	1:15:00 PM 1:24:00 PM	0:42 0:16		ES ES		100	9	1	Light rain Light rain	0														
10-3ep-17	WL10 Totals		1.24.001101	2:06		LJ		100	7	'	Light rain	0														
05-Jun-14	WL11.1	2:50:00 PM	3:00:00 PM	0:20	Fish observed	PS	Sunny	0	Cold			0														
03-Jul-14	WL11.1	12:18:00 PM	2:00:00 PM	3:24	Fish observed	PS	Overcast	100 High ceiling,	10	2-3	Light rain	9	7		1			1								
08-Jun-17	WL11.1	11:21:00 AM	11:45:00 AM	0:48		PS		50	7	0		1						1						6		
06-Jul-17	WL11.1	4:30:00 PM	5:00:00 PM	1:00		PS	Sunny	0	30	0	0	1										1				
22 A== 10	VAII 4 4	1 FO OO DNA	2 00 00 014	0.20	Mostly open (not frozen) water,	DC	C		9	4	0	0														
23-Apr-18	WL11.1	1:50:00 PM	2:00:00 PM	0:20	snow and ice on edges; early in the year for amphibians	PS	Sunny		9	'	0	0														
02-Jul-18	WL11.1	3:30:00 PM	3:45:00 PM	0:30	, ,	PS	Overcast	100		3-4	Light rain	0														
02 Jul 10	VVZ.11.1	0.00.001101	0.10.001101	0.50	Abundant fish observed; +50	13	Overcust	100		0 1	Light ruin	Ü														
23-May-19	WL11.1	2:40:00 PM	3:15:00 PM	1:10	present; sandbag dam between	PS	Sunny	0	5	2		0														
					11.1 and 11.2; must be man-made																					
04-Jul-19	WL11.1	11.10.00 AM	11:46:00 AM	0:54		PS	Overcast	100	10	2	Rain at times (light and	3	2		1											
04-Jul-19	VVLII.I			0.54		rs	Overcast	100	10	3	heavy)	3	2		'											
07-Jul-19	WL11.1		3:25:00 PM	0:50		PS	Sunny	40	20			0														
10-Sep-19 10-Sep-19	WL11.1 WL11.1	11:35:00 AM	12:01:00 PM 12:01:00 PM	0:52 0:52		ES ES		100 100	7	0	Light rain Light rain	0														
	WL11.1 Tota			11:00			L				J	14	9		2			2				1		6		
05-Jun-14	WL11.2	1:00:00 PM	1:15:00 PM	0:30		PS	Sunny	0	Cold	0.0	11.11.	0						4								
03-Jul-14	WL11.2	2:00:00 PM	2:30:00 PM	1:00		PS	Overcast	100 High ceiling,	10	2-3	Light rain	3	2					1						_		
08-Jun-17	WL11.2	11:45:00 AM	12:10:00 PM	0:50		PS		50	7	0		0												5		
					Mixed open water (in deeper																					
23-Apr-18	WL11.2	2:00:00 PM	2:20:00 PM	0:40	pools) and frozen on edges and in shade, likely freezes over night;	PS	Sunny		9	1	0	0														
					early in the year for amphibians																					
23-May-19	WL11.2	3:15:00 PM	3:35:00 PM	0:40		PS	Sunny	0	40	2		0														
04-Jul-19	WL11.2	11:46:00 AM	11:56:00 AM	0:20		PS	Overcast	100	10	4	Rain at times (light and	7	4		3											
5 i 3ui i 7			. 1.55.55 AIVI				Overbust	130	15	, T	heavy)	,	·													
	WL11.2 Tota	ls:		4:00	Lake still frozen; march edge		1				ı	10	6		3			1						5		
					thaws during day, some limited																					
23-Apr-18	WL11.3	2:20:00 PM	2:30:00 PM	0:20	open water in edges of lake along	PS	Sunny		9	1	0	0														
					marsh; early in the year for amphibians																					
23-May-19	WL11.3	3:35:00 PM	3:45:00 PM	0:20		PS	Sunny	0	10	3		0														

								We	eather Conditi	ons			Columb	ia Spotted F	rog	Woo	od Frog		We	stern Toa	d	Lor	ng-toed Sa	amander		Unidentified	
Date	Survey Site	Start Time	End Time	Person Hours	Notes	Survey Purpose	Moathor	Cloud Cover	Temperature	Wind	Procinitation	Total Amphibians	, Adult T	adpolo Egg	mass Ad	lult Tac	dnolo	Egg 🛕	lult Toadl	ot Tadn	ole Egg	g	ult Tadpol	Egg mass	WF/CSF	Adult	Tadpole
						i ui pose	Weather	(%)	(°C)	(BU)	Precipitation	Observed	Addit	adpole Egg	IIIass Au	iuit Tac	apole	mass A	lult Toadl	et Taup	mas	SS	ult Tadpole	Egy IIIass	VVF/C3F	Adult	Taupole
04-Jul-19	WL11.3	11:46:00 AM	12:24:00 PM	1:16		PS	Overcast	100	10	5	Rain at times (light and heavy)	0															
	WL11.3 Tota	lls:		1:56				l .			1100177	0															
23-Apr-18	WL12	9:40:00 AM	10:10:00 AM	1:00	Mostly frozen water in body of wetland; little snow on edges; too early for amphibians	PS		High ceiling, 100	4	1	0	0															
08-May-18	WL12	9:00:00 AM	9:15:00 AM	0:30		PS		High ceiling, 70		0		0															
07-May-19	WL12	4:48:00 PM	4:58:00 PM	0:20	Water levels are very low; VAST ARU deployed in wetland	PS		50	14	3-4	Light rain	0															
09-May-19	WL12	12:28:00 PM	12:45:00 PM	0:34		PS		0	10	0		0															i
24-May-19	WL12	12:45:00 PM	12:55:00 PM	0:20	Water levels are very low	PS	Overcast	60	16	3		0															
04-Jul-19	WL12	4:42:00 PM	5:43:00 PM	2:02		PS	Overcast	100	10	7	Rain at times (light and heavy)	1				1											
07-Jul-19	WL12	4:45:00 PM	5:05:00 PM	0:40		PS	Sunny	40	20			0															
29-Jun-14	WL12 Total: WL13	12:40:00 PM	1:20:00 PM	5:26 1:20		PS	Sunny	40		2		1 5				1			2 2							2	
03-Jul-14	WL13	5:30:00 AM	5:45:00 AM	0:30		В	Junity	0	9	0		0				'										2	
08-Jun-17	WL13	5:20:00 AM	5:30:00 AM	0:20		В		High ceiling, 50	7	0		0															
08-Jun-17	WL13	12:50:00 PM	1:45:00 PM	1:50		PS		High ceiling, 50	7	0		5	1		;	3			1								
03-Jul-17	WL13	9:41:00 AM	10:15:00 AM	1:08		PS	Sunny	0	30	0	0	0															
23-Apr-18	WL13	10:58:00 AM	11:00:00 AM	0:04	Frozen in center pool; open water in outer ring (in the marsh);Early in the year for amphibians	PS		High ceiling, 100	5	1	0	0															
28-Apr-18	WL13	1:02:00 PM	12:00:00 AM	na	Leah-Anne from vast noted that she saw 3 wood frog egg masses and 1 Columbian spotted frog egg mass	PS						4	1					3									
08-May-18	WL13	8:06:00 AM	8:50:00 AM	1:28		В		High ceiling, 70		0		2				1			1								
08-May-18	WL13	2:00:00 PM	3:00:00 PM	2:00		PS		High ceiling, 70		0		5				1		2	2								
01-Jul-18	WL13	4:00:00 PM	na	na		PS		50	18	5		0															
30-Jul-18	WL13	9:00:00 AM	9:10:00 AM	0:20		PS	Sunny;	0				0															<u> </u>
07-May-19 24-May-19	WL13 WL13	3:40:00 PM 1:29:00 PM	4:40:00 PM 1:43:00 PM	2:00 0:28	Water levels are very low Water levels are very low	PS PS	Overcast	50 60	17 16	3-4	Light rain	0															
04-Jul-19	WL13	2:10:00 PM		0:40	water levels are very low	PS	Overcast	100	10	6	Rain at times (light and	5			;	3			2								
	WL13 Total	II S:		12:08							heavy)	26	2			9		5	5 5							2	
04-May-18	WL14	11:20:00 AM		0:38		В	Sunny	100	12	3		0															
04-Jul-18	WL14	4:15:00 PM		1:00		PS		30	20	2		0				_	-										
09-May-19 23-May-19	WL14 WL14	12:03:00 PM 9:40:00 AM		2:04 0:50		PS PS	Sunny	0	10 5	0	+	0	 					+	-		+	+	+			1	[
05-Jul-19	WL14	4:00:00 PM		0:30		PS	Overcast/S unny	100	12	2		0															
11-Sep-19	WL14	4:13:00 PM	4:34:00 PM	0:42		ES	unity	30	15	1	0	0															<u> </u>
11-Sep-19	WL14	4:13:00 PM		0:42		ES		30	15	1	0	0															
11-Sep-19	WL14 WL14 Total:	4:51:00 PM	4:54:00 PM	0:06 6:32		PS		30	15	1	0	0														1	
04-May-18	WL14 Total	1:12:00 PM	1:55:00 PM	1:26		PS	Sunny	50	12	3		8				4		4									
05-May-18	WL15	3:20:00 PM		0:50		PS		30	15	1		6						6									
03-Jul-18	WL15	5:15:00 PM		2:00		PS			10			3					3	10									
09-May-19 05-Jul-19	WL15 WL15	1:18:00 PM 10:45:00 AM	2:20:00 PM 11:42:00 AM	2:04 1:54		PS PS	Overcast	100	10 5	2	Rain	12 3	1			2		10	-	-	-	-	+	-		2	
11-Sep-19	WL15	3:16:00 PM		0:54		ES	Overbust	40	15	1	0	0	 			_		-+			_	+					
11-Sep-19	WL15	3:17:00 PM	3:43:00 PM	0:52		ES		30	15	1	0	0															
04 May 10	WL15 Total:		2.20.00 014	10:00		nc	Cuppy	EO	10	ာ		32	1			8	3	20								2	
04-May-18 05-May-18	WL16 WL16	2:00:00 PM 3:55:00 PM		0:40 2:06		PS PS	Sunny	50 30	12 15	3 1	+	0	 			-		+			+	+		+			
					1		1			· · · · ·	1		1 1		1												

								Wea	ather Condition	ons			Colum	nbia Spot	ted Frog	Wood Fro	og		Wester	n Toad	Long-	toed Sala	mander	U	nidentified	
Date	Survey Site	Start Time	End Time	Person Hours	Notes	Survey Purpose	Weather	Cloud Cover (%)	Temperature (°C)	Wind (BU)	Precipitation	Total Amphibians Observed	Adult	Tadpole	Egg mass Adult	Tadpole	Egg mass A	dult 1	Toadlet	Tadpole	Egg mass Adult	Tadpole	Egg mass	WF/CSF	Adult	Tadpole
09-May-19	WL16	2:20:00 PM	2:50:00 PM	1:00		PS	Overcast	50	10	2		14					11						3			
24-May-19	WL16	3:00:00 PM	4:18:00 PM	2:36	Difficult to see the long-toed salamander egg masses due to darkness of water, depth + glare; Sizes variable from 1-3 eggs to 10- 20 eggs. All attached to rush stems at or near surface. Pool is 1- 4ft deep. Rabid. Dark red to brown in colour. Own. Warm.	PS	Overcast	60	16	4-5		53											53			
05-Jul-19	WL16	9:40:00 AM	10:40:00 AM	2:00		PS	Overcast	100	8	2	Rain	11	1	6	4											
25-Jul-19	WL16	10:36:00 AM	11:50:00 AM	2:28	Dry	PS	Sunny	0	30	0	0	4										4				
11-Sep-19	WL16	2:12:00 PM	2:15:00 PM	0:06		ES		80	15	1	0	0														
11-Sep-19	WL16 WL16 Totals		3:15:00 PM	2:06		ES		80	15	11	0	0	4	,			11						F./			
29-Jun-14	WL17	11:53:00 AM	12:30:00 PM	13:02 1:14		PS	Sunny	40		2	Ī	82		6	4		11					4	56			47
03-Jul-14	WL17	2:34:00 PM	3:04:00 PM	1:00		PS	Sunny	0	20		Raied earlier in day	6		4	2											47
09-Jun-17	WL17	10:15:00 AM	11:00:00 AM	1:30		PS	Overcast	High ceiling, 50	8	2	Light rain at times	3			3											
02-Jul-17	WL17	1:50:00 PM	2:20:00 PM	1:00		PS	Sunny	0	20	0	0	5		5												
06-Jul-17	WL17	5:20:00 PM	6:00:00 PM	1:20		PS	Sunny	0	30	0	0	6		6												
05-May-18	WL17	5:00:00 PM	5:20:00 PM	0:40		PS		30	15	1		35			8		27		-							
05-Jul-18	WL17	na	na	na		PS		400				0														1
09-May-19	WL17	3:30:00 PM	4:00:00 PM	1:00		PS	Overcast	100	10	2-3	Rain	40		-	24		2						14			
24-May-19	WL17	2:22:00 PM	2:50:00 PM	0:56	Difficult to see into water due to wind-wave action; all of the egg masses from the last trip (the CSF) are gone! No tadpoles observed.	PS	Overcast	60	16	4-5		35			1								34			
05-Jul-19	WL17	12:10:00 PM	1:30:00 PM	2:40		PS	Overcast	100	9	2	Rain	8	1		4 3											
10-Sep-19	WL17	6:04:00 PM	6:38:00 PM	1:08		ES		90	10	0	Light rain	0														
10-Sep-19	WL17	6:38:00 PM	6:58:00 PM	0:40		ES		90	10	0	Light rain	0														
10-Sep-19	WL17 WL17 Totals	5:30:00 PM	6:04:00 PM	1:08 14:16		ES		90	13	1	0	0 138	1	15	36 9		20						48			48
		l I					T	High ceiling,			Light rain at		ı	15	30 9		29						48			48
09-Jun-17	WL18	11:15:00 AM	11:30:00 AM	0:30	Cattail culvert wetland along	PS	Overcast	50	8	2	times	0														
06-May-18 24-May-19	WL18 WL18	7:41:00 PM 5:28:00 PM	7:45:00 PM 5:37:00 PM	0:08	valley very turbid	RLS PS	Overcast	60	10 20	3	Recent rain	0														
05-Jul-19	WL18	2:20:00 PM	2:50:00 PM	1:00	Likely more tadpoles - difficult to	PS	Sunny	100	9	2		30										30				
10-Sep-19	WL18	8:28:00 AM		0:18	see	ES	, , ,	100	6	0	Light rain	0						-								
10-Sep-19	WL18	8:56:00 AM		0:08		ES		100	6	0	Light rain	0														-
10 000 17	WL18 Totals		71001007111	2:22				.00	<u> </u>		Lightrani	30										30				
09-May-19	WL19	2:50:00 PM	3:00:00 PM	0:20		PS	Overcast	80	10	2-3	Light rain	0														
11-Sep-19		2:50:00 PM	3:03:00 PM	0:26		ES		80	15	1	0	0														
	WL19 Totals			0:46							1	0														
07-Jul-19		6:40:00 AM	6:55:00 AM	0:30		PS	Foggy		10	1		0														
00 14 10	WL20 Totals		12-20-00 DM	0:30		DC		10	25	2		0						1								
09-Jul-19 13-Sep-19	WL21 WL21	9:06:00 AM	12:30:00 PM	1:00 2:32		PS ES		10 100	25 10	4	Light rain	0		+		1	+ +	1								
13-36p-17	WL21 Totals		10.22.00 AIVI	3:32		LJ		100	10	7	Ligittialli	1						1								
11-Jul-19			12:11:00 AM	0:02		PS						0														
	WL22 Totals			0:02								0														
07-Jun-14	EPH4.2		11:10:00 AM	0:20		PS	Sunny	0	4	1		0														
09-Jul-19	EPH4.2		1:50:00 PM	0:20		PS		10	25	2		0														
01-Jul-14	EPH4.2 Total Field north of WL5.4	l I	7:15:00 AM	0:40 0:20	Adjacent to small stream	В		High ceiling,	7			0														
01-Jul-14 02-Jul-14	Field north of WL5.4		3:10:00 PM	0:50	No open water	PS		25 0	30	2		0														
12-Sep-19	Field north of WL5.4		3:35:00 PM	0:18		ES		60	14	4	0	0		1												
	Field North of WL5.			1:28								0														
29-Jun-14	EPH100.1	11:36:00 AM	11:52:00 AM	0:32	Wetland Perimeter Searchof Black Creek FSR to Wetland 17 beaver dam	PS	Sunny	40		2		1			1											

								Wea	ther Condition	ons			Colum	bia Spot	ted Frog	Wood Fro	g		Weste	rn Toad	Long-	toed Sala	mander	l	Jnidentified	
Date	Survey Site	Start Time	End Time	Person Hours	Notes	Survey Purpose	Weather	Cloud Cover T (%)	emperature (°C)	Wind (BU)	Precipitation	Total Amphibians Observed	Adult	Tadpole	Egg mass Adult	Tadpole	Egg mass	Adult	Toadlet	Tadpole	Egg mass Adult	Tadpole	Egg mass	WF/CSF	Adult	Tadpole
06-May-18	EPH100.1	7:35:00 PM	7:39:00 PM	0:08	Pools and stream along road surrounded by mature mixed spruce aspen forest	RLS		0	10	0	Recent rain	0														
24-May-19	EPH100.1	4:35:00 PM	4:40:00 PM	0:10	spruce asperriorest	PS	Overcast	60	20	4-5		1	1													
05-Jul-19	EPH100.1	1:35:00 PM	1:45:00 PM	0:20		PS	Overcast	100	9	2	Rain	1			1											
10-Sep-19	EPH100.1 EPH100.1 Tot	5:06:00 PM	5:19:00 PM	0:26		ES		90	11	0	Light rain	1	1		1											
24-May-19	EPH100.1 100	4:50:00 PM	5:16:00 PM	1:36 0:52		PS	Overcast	60	20	2		2	1		3			1								
05-Jul-19	EPH100.2	1:45:00 PM	2:00:00 PM	0:30		PS	Overcast	100	9	2	Rain	2	1		1			'								
10-Sep-19	EPH100.2		5:30:00 PM	0:22		PS		90	11	0	Light rain	0														
·	EPH100.2 Tot	als:		1:44								4	2		1			1								
22-Apr-18	EPH101	12:00:00 PM	12:10:00 PM	0:20	Early in the year for amphibians - may freeze overnight, insect larvae present; Puddle; pool at side of forestry road near rail tracks (likely created as a result of); open aspen stand near rail tracks on Grave prairie; very small	PS	Sunny	High ceiling, 100	9	2-3	0	0														
22-Apr-18	EPH102	1:30:00 PM	1:50:00 PM	0:40	Early in the year for amphibians - may freeze overnight, insect larvae present; Puddle; pool at end of forestry road; open aspen stand near rail tracks on Grave prairie	PS	Sunny	High ceiling, 100	9	2-3	0	0														
04-May-18	EPH102	11:40:00 AM	11:50:00 AM	0:20	Dead moose carcass in puddle	PS	Sunny	50	12	3		0														1
	EPH102 Tota	nls:		1:00								0														
07-Jun-14	EPH103	7:30:00 AM	7:40:00 AM	0:20	Ephemeral wetted area	PS	Sunny	0	Cold (Ice			0														
06-Jun-17	EPH103	1:00:00 PM	1:15:00 PM	0:30	Ephemeral/floodplain	PS	Overcast	100	present) Cool	1		0														
00-Juli-17	EPH103 Tota		1.15.00 FIVI	0:50	Ернетнеган поочрын	гэ	Overcast	100	COOI	1		0														
06-Jun-17	EPH104.1	1:00:00 PM	1:10:00 PM	0:20	Ditch (across from WL6)	PS		0	3	1		0														
30-Jun-17	EPH104.1	11:19:00 AM	11:27:00 AM	0:16	Ditch across from WL6	PS	Sunny	0	20	0	0	0														
12-Sep-19	EPH104.1	1:17:00 PM	1:20:00 PM	0:06		ES		40	11	2	0	0														
	EPH 104.1 Tot			0:42			T					0														
12-Sep-19	EPH104.2	1:20:00 PM	1:24:00 PM	0:08	104.1-104.2	ES		40	11	2	0	0														
12-Sep-19	EPH104.2 EPH104.2 Tot	1:24:00 PM	1:30:00 PM	0:12 0:20		ES		40	11	2	0	0														
08-Jun-14		12:51:00 PM	1:01:00 PM	0:20	Riparian flooded area	В		60	13	2-4		0														
06-May-18	EPH105	8:30:00 AM		0:20	imparian needed dred	В	Sunny	0	6	0	0	0														
J	EPH105 Tota			0:40			,					0														
07-Jun-14	EPH106	10:00:00 AM	10:15:00 AM	0:30	Ephemeral wetted area	PS	Sunny	0	4	1		0														
08-Jun-14	EPH106	7:25:00 AM	7:35:00 AM	0:20	Riparian flooded area; covered by	В		0	0	1		0														1
	EPH106 Tota	nls.		0:50	ice							0														
02 1:1 14	Ī	П	11 41 00 414		Ephemeral, black spruce meadow;	DC	0	100	10	2.4	Links onin	Ü														
03-Jul-14 08-May-18	EPH112 EPH113	11:32:00 AM 7:24:00 AM	11:41:00 AM 7:34:00 AM	0:18	no standing water	PS PS	Overcast	100 High ceiling, 70	10	3-4 0	Light rain	0														
05-May-18	EPH114	10:40:00 AM	10:50:00 AM	0:20	Roadside puddles	PS	Sunny	0	20	3-4		0						+								
05-May-18	EPH115		8:15:00 AM	0:20	Culvert pool u/s side of FSR	PS	Sunny	0		1		0														
06-May-18	EPH1003	7:49:00 PM	7:53:00 PM	0:08	Roadside some ditches present	RLS		0	10	0	Recent rain	0														
	EPH1004		7:57:00 PM	0:08			-			-																<u> </u>
06-May-18 06-May-18	EPH1004 EPH1005	7:53:00 PM 8:07:00 PM	7:57:00 PM 8:11:00 PM	0:08	Railroad side pool spruce stands	RLS RLS	1	0	8	0	Recent rain Recent rain	0														
06-May-18	EPH1006	8:17:00 PM	8:21:00 PM	0:08	Mixed aspen and spruce open forest with pools along road side	RLS		0	8	0	Recent rain	0														
06-May-18	EPH1007	8:24:00 PM	8:28:00 PM	0:08	Wetland at road intersection	RLS		0	8	0	Recent rain	0														
06-May-18	EPH1008	8:37:00 PM	8:41:00 PM	0:08	Gate at Grave lake doughnut wetland some pooling water along road	RLS		0	8	0	Recent rain	0														

								We	ather Condition	ons			Colum	bia Spott	ed Frog	V	Wood Frog	J		Wester	rn Toad		Long-toed	Salamander		Unidentified	
Date	Survey Site	Start Time	End Time	Person Hours	Notes	Survey Purpose	Weather	Cloud Cover (%)	Temperature (°C)	Wind (BU)	Precipitation	Total Amphibians Observed	Adult	Tadpole	Egg mass	Adult	Tadpole	Egg mass	Adult	Toadlet	Tadpole	Egg mass	Adult Tadp	ole Egg mas	s WF/CSF	Adult	Tadpole
06-May-18	EPH1009	8:51:00 PM	8:55:00 PM	0:08	Road side pool in cut block	RLS		0	8	0	Recent rain	0		ĺ			ĺ										
06-May-18	EPH1010	7:26:00 PM	7:30:00 PM	0:08	Road side pool in cut block	RLS		0	12	0	Recent rain	0															
10-Jul-19	1994	na	na	na	Transect, Incidental	I						1							1								
17-Jul-19	1995	na	na	na	Transect, Incidental	I						1							1								
07-Jul-19	1996	11:21:00 AM	na	na	Steep cutblock (mostly pine; fairly high elevation; recent re-planted (last 10 years), thick dead grass layer)	I	Sunny		25	4		1							1								
12-Sep-19	1997	na	na	na	Incidental - Willows, mature and young spruce higher up in the valley	I						1							1								
10-Jul-19	1998	8:08:00 AM	na	na	Upper West Alexander Valley in steeping wet meadow adjacent (50m) to creek in open area (no trees) under colt's foot.	I		30	10	3		1								1							
03-Jul-18	1999	na	na	na	From Badger transects	I						1							1								
	Totals:			160:08:00								421	37	39	58	41	3	66	18	8	0	0	0	43 10	11	5	48

Notes:	Survey Type	Total T	ime No.	Surveys	Total Amphibians
D	Breeding Bird				
D	Survey	-		-	3
I	Incidental Visit	-		-	6
PS	Perimeter Search	127:50	:00	157	406
	Road Listening				
RLS	Survey	1:20:	00	10	0
ES	Emergence Survey	30:58	00	43	6
	Totals	160:08	:00	210	421
CC	Cloud Cover				
BU	Beaufort Wind Scale				
С	Degrees Celsius				

Appendix D

Amphibian eDNA Data

Master Sort	BV Case ID	Client Sample Name	Location name	Collection date	Collected by	Test for (TT)	Amplifiable DNA Frequency	Amplifiable DNA Call	Clean-Up Required	Amplifiable DNA Frequency	Amplifiable DNA Call	ANBO Frequency	Filter Date	Sample Contents	Preservation Method	Project Number	Comments
1	DI20190012	WL14A	Crown Mountain	2019/07/05	GRH	ANBO	4/4	Yes	No	N/A	N/A	0/8	2019/07/05		Silica	126231	
2	DI20190013	WL14B	Crown Mountain	2019/07/05	GRH	ANBO	4/4	Yes	No	N/A	N/A	0/8	2019/07/05		Silica	126231	
3	DI20190014	WL14C	Crown Mountain	2019/07/05	GRH	ANBO	0/4	No	Yes	4/4	Yes	0/8	2019/07/05		Silica	126231	
4	DI20190015	WL18A	Crown Mountain	2019/07/05	GRH	ANBO	4/4	Yes	No	N/A	N/A	0/8	2019/07/05		Silica	126231	
5	DI20190016	WL18B	Crown Mountain	2019/07/05	GRH	ANBO	4/4	Yes	No	N/A	N/A	0/8	2019/07/05		Silica	126231	
6	DI20190017	WL18C	Crown Mountain	2019/07/05	GRH	ANBO	4/4	Yes	No	N/A	N/A	0/8	2019/07/05		Silica	126231	
7	DI20190018	WL15A	Crown Mountain	2019/07/05	GRH	ANBO	4/4	Yes	No	N/A	N/A	0/8	2019/07/05		Silica	126231	
8	DI20190019	WL15B	Crown Mountain	2019/07/05	GRH	ANBO	4/4	Yes	No	N/A	N/A	0/8	2019/07/05		Silica	126231	
9	DI20190020	WL15C	Crown Mountain	2019/07/05	GRH	ANBO	4/4	Yes	No	N/A	N/A	0/8	2019/07/05		Silica	126231	
10	DI20190021	WL17A	Crown Mountain	2019/07/05	GRH	ANBO	4/4	Yes	No	N/A	N/A	0/8	2019/07/05		Silica	126231	
11	DI20190022	WL17B	Crown Mountain	2019/07/05	GRH	ANBO	4/4	Yes	No	N/A	N/A	0/8	2019/07/05		Silica	126231	
12	DI20190023	WL17C	Crown Mountain	2019/07/05	GRH	ANBO	4/4	Yes	No	N/A	N/A	0/8	2019/07/05		Silica	126231	
13	DI20190024	WL16A	Crown Mountain	2019/07/05	GRH	ANBO	4/4	Yes	No	N/A	N/A	0/8	2019/07/05		Silica	126231	
14	DI20190025	WL16B	Crown Mountain	2019/07/05	GRH	ANBO	4/4	Yes	No	N/A	N/A	0/8	2019/07/05		Silica	126231	
15	DI20190026	WL16C	Crown Mountain	2019/07/05	GRH	ANBO	4/4	Yes	No	N/A	N/A	0/8	2019/07/05		Silica	126231	
16	DI20190027	WLB_1	Crown Mountain	2019/07/05	GRH	IntegritE-DNA	0/4	No	Yes	0/4	No	Not Requested	2019/07/05		Silica	126231	Blank
17	DI20190028	WL11A	Crown Mountain	2019/07/07	GRH	ANBO	0/4	No	Yes	4/4	Yes	0/8	2019/07/07		Silica	126231	
18	DI20190029	WL11B	Crown Mountain	2019/07/07	GRH	ANBO	4/4	Yes	No	N/A	N/A	0/8	2019/07/07		Silica	126231	
19	DI20190030	WL11C	Crown Mountain	2019/07/07	GRH	ANBO	4/4	Yes	No	N/A	N/A	0/8	2019/07/07		Silica	126231	
20	DI20190031	WL12A	Crown Mountain	2019/07/07	GRH	ANBO	4/4	Yes	No	N/A	N/A	0/8	2019/07/07		Silica	126231	
21	DI20190032	WL12B	Crown Mountain	2019/07/07	GRH	ANBO	4/4	Yes	No	N/A	N/A	0/8	2019/07/07		Silica	126231	
22	DI20190033	WL12C	Crown Mountain	2019/07/07	GRH	ANBO	4/4	Yes	No	N/A	N/A	0/8	2019/07/07		Silica	126231	
23	DI20190034	WLB_2	Crown Mountain	2019/07/07	GRH	IntegritE-DNA	0/4	No	Yes	0/4	No	Not Requested	2019/07/07		Silica	126231	Blank
24	DI20190035	WL5.2A	Crown Mountain	2019/07/08	GRH	ANBO	4/4	Yes	No	N/A	N/A	0/8	2019/07/08		Silica	126231	
25	DI20190036	WL5.2B	Crown Mountain	2019/07/08	GRH	ANBO	4/4	Yes	No	N/A	N/A	0/8	2019/07/08		Silica	126231	
26	DI20190037	WL5.2C	Crown Mountain	2019/07/08	GRH	ANBO	4/4	Yes	No	N/A	N/A	0/8	2019/07/08		Silica	126231	
27	DI20190038	WL5.3A	Crown Mountain	2019/07/08	GRH	ANBO	4/4	Yes	No	N/A	N/A	0/8	2019/07/08		Silica	126231	
28	DI20190039	WL5.3B	Crown Mountain	2019/07/08	GRH	ANBO	4/4	Yes	No	N/A	N/A	0/8	2019/07/08		Silica	126231	
29	DI20190040	WL5.3C	Crown Mountain	2019/07/08	GRH	ANBO	4/4	Yes	No	N/A	N/A	2/8	2019/07/08		Silica	126231	
30	DI20190041	WLB_3	Crown Mountain	2019/07/08	GRH	IntegritE-DNA	0/4	No	Yes	0/4	No	Not Requested	2019/07/08		Silica	126231	Blank
31	DI20190042	WL4.1A	Crown Mountain	2019/07/09	GRH	ANBO	4/4	Yes	No	N/A	N/A	1/8	2019/07/09		Silica	126231	
32	DI20190043	WL4.1B	Crown Mountain	2019/07/09	GRH	ANBO	4/4	Yes	No	N/A	N/A	0/8	2019/07/09		Silica	126231	
33	DI20190044	WL4.1C	Crown Mountain	2019/07/09	GRH	ANBO	4/4	Yes	No	N/A	N/A	0/8	2019/07/09		Silica	126231	
34	DI20190045	WL21	Crown Mountain	2019/07/09	GRH	ANBO	0/4	No	Yes	4/4	Yes	8/8	2019/07/09		Silica	126231	
35	DI20190046	WL2A	Crown Mountain	2019/07/09	GRH	ANBO	4/4	Yes	No	N/A	N/A	0/8	2019/07/09		Silica	126231	
36	DI20190047	WL2B	Crown Mountain	2019/07/09	GRH	ANBO	0/4	No	Yes	0/4	No	IntegritE DNA failed	2019/07/09		Silica	126231	This sample was not processed for target species assay because of the IntegritE-DNA failure.
37	DI20190048	WL2C	Crown Mountain	2019/07/09	GRH	ANBO	4/4	Yes	No	N/A	N/A	0/8	2019/07/09		Silica	126231	
38	DI20190049	WLB_4	Crown Mountain	2019/07/09	GRH	IntegritE-DNA	0/4	No	Yes	0/4	No	Not Requested	2019/07/09		Silica	126231	Blank
39	DI20190050	WLN2A	Crown Mountain	2019/07/10	GRH	ANBO	4/4	Yes	No	N/A	N/A	0/8	2019/07/10		Silica	126231	
40	DI20190051	WLN2B	Crown Mountain	2019/07/10	GRH	ANBO	4/4	Yes	No	N/A	N/A	0/8	2019/07/10		Silica	126231	
41	DI20190052	WLN2C	Crown Mountain	2019/07/10	GRH	ANBO	4/4	Yes	No	N/A	N/A	0/8	2019/07/10		Silica	126231	
42	DI20190053	WLB_5	Crown Mountain	2019/07/10	GRH	IntegritE-DNA	0/4	No	Yes	0/4	No	Not Requested	2019/07/10		Silica	126231	Blank

Appendix E

Amphibian Tissue Data

		Tadpole	
Sample ID	CSF-TP-WL7	CSF-TP-WL9	WET21
Sample Date	2017-07-06	2017-07-06	2018-07-03
Lab Report Number	L1955497	L1955497	L2125502
2019 Location Name	4	17	15
Location Type	Wetland	Wetland	Wetland
Species	Columbia spotted frog	Columbia spotted frog	Wood frog

						frog	frog								
	Parameters								Summary Statistics						
Chemical Group	Chemical Name	Units	EQL	USEPA 2016 ¹ (mg/kg dw)		Con	centration (mg/kg dry	vwt)	Minimum	Maximum	Geometric Mean	Standard Deviation			
General Chemistry	y Phosphorus	mg/kg	2			13760.56	10620.69	6444.44	6444.44	13760.56	9802.23	3670.27			
	Aluminium	mg/kg	0.4		1	577.46	2420.69	1395.24	577.46	2420.69	1249.41	923.56			
	Antimony	mg/kg	0.002		1	0.08	0.07	0.08	0.07	0.08	0.08	0.01			
	Arsenic	mg/kg	0.004		1	5.72	1.00	0.52	0.52	5.72	1.44	2.87			
	Barium	mg/kg	0.01		1	271.83	103.45	130.48	103.45	271.83	154.24	90.43			
	Beryllium	mg/kg	0.002		1	0.04	0.12	0.07	0.04	0.12	0.07	0.04			
	Bismuth	mg/kg	0.002		1	<dl< td=""><td>0.05</td><td><dl< td=""><td>0.05</td><td>0.05</td><td>0.05</td><td>-</td></dl<></td></dl<>	0.05	<dl< td=""><td>0.05</td><td>0.05</td><td>0.05</td><td>-</td></dl<>	0.05	0.05	0.05	-			
	Boron	mg/kg	0.2		1	7.89	8.14	23.02	7.89	23.02	11.39	8.66			
	Cadmium	mg/kg	0.001		1	0.19	0.42	0.18	0.18	0.42	0.25	0.14			
	Calcium	mg/kg	4			13492.96	27793.10	27301.59	13492.96	27793.10	21714.21	8118.03			
	Cesium	mg/kg	0.001		1	0.13	0.28	0.40	0.13	0.40	0.25	0.13			
	Chromium Total (III+VI)	mg/kg	0.01		1	1.83	2.92	4.37	1.83	4.37	2.86	1.27			
	Cobalt	mg/kg	0.004		1	2.58	1.79	2.03	1.79	2.58	2.11	0.41			
	Copper	mg/kg	0.02		1	4.06	7.31	8.38	4.06	8.38	6.29	2.25			
	Iron	mg/kg	0.6		1	45352.11	3586.21	2253.97	2253.97	45352.11	7156.93	24507.20			
	Lead	mg/kg	0.004		1	1.42	2.37	1.98	1.42	2.37	1.88	0.47			
	Lithium	mg/kg	0.1			<dl< td=""><td>3.72</td><td>3.81</td><td>3.72</td><td>3.81</td><td>3.77</td><td>0.06</td></dl<>	3.72	3.81	3.72	3.81	3.77	0.06			
	Magnesium	mg/kg	0.4		1	2380.28	2013.79	3126.98	2013.79	3126.98	2465.60	567.31			
Metals	Manganese	mg/kg	0.01		1	1901.41	335.17	1373.02	335.17	1901.41	956.47	796.81			
	Mercury	mg/kg	0.001		1	0.10	0.04	<dl< td=""><td>0.04</td><td>0.10</td><td>0.06</td><td>0.04</td></dl<>	0.04	0.10	0.06	0.04			
	Molybdenum	mg/kg	0.004		1	1.49	0.72	0.80	0.72	1.49	0.95	0.43			
	Nickel	mg/kg	0.04		1	2.42	4.56	3.03	2.42	4.56	3.22	1.10			
	Potassium	mg/kg	4		1	13098.59	9586.21	4428.57	4428.57	13098.59	8223.28	4360.95			
	Rubidium	mg/kg	0.01		1	47.61	7.31	11.21	7.31	47.61	15.74	22.23			
	Selenium	mg/kg	0.01	8.5		2.39	2.72	5.33	2.39	5.33	3.26	1.61			
	Silver	mg/kg	0.001			0.04	0.06	0.27	0.04	0.27	0.08	0.13			
	Sodium	mg/kg	4		1	22957.75	8896.55	8841.27	8841.27	22957.75	12177.42	8134.24			
	Strontium	mg/kg	0.01			48.03	106.90	154.76	48.03	154.76	92.62	53.46			
	Tellurium	mg/kg	0.004			<dl< td=""><td><dl< td=""><td><dl< td=""><td>0.00</td><td>0.00</td><td>-</td><td>-</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>0.00</td><td>0.00</td><td>-</td><td>-</td></dl<></td></dl<>	<dl< td=""><td>0.00</td><td>0.00</td><td>-</td><td>-</td></dl<>	0.00	0.00	-	-			
	Thallium	mg/kg	0.0004]	0.03	0.16	0.06	0.03	0.16	0.06	0.07			
	Tin	mg/kg	0.02			1.37	0.50	3.14	0.50	3.14	1.29	1.35			
	Titanium	mg/kg	0.02]	8.39	14.90	34.92	8.39	34.92	16.35	13.83			
	Uranium	mg/kg	0.0004		1	0.29	0.12	0.22	0.12	0.29	0.20	0.08			
	Vanadium	mg/kg	0.02		1	2.13	7.24	2.90	2.13	7.24	3.55	2.76			
	Zinc	mg/kg	0.1		1	114.51	117.24	179.37	114.51	179.37	134.03	36.68			
	Zirconium	mg/kg	0.04]	0.68	1.14	1.54	0.68	1.54	1.06	0.43			

Comments:

Laboratory reported concentrations in mg/kg ww. Concentrations expressed here as mg/kg dw accroding to moisture content of tissue

¹ Chronic criteria

	Egg mass											
Sample ID	18-WF-WL9	18-WF-WL9B	18-WF-WL10	10-CSF-WL07	CSF-W17-19	WF-WL15-19	CSF-WL4.1-19					
Sample Date	2018-05-05	2018-05-05	2018-05-08	2018-05-09	2019-05-09	2019-05-09	2019-05-21					
Lab Report Number	L2093242	L2093242	L2093242	L2093242	L2279917	L2279917	L2279917					
2019 Location Name	17	15	13	4	17	15	4					
Location Type	Wetland	Wetland	Wetland	Wetland	Wetland	Wetland	Wetland					
Species	Wood frog	Wood frog	Wood frog	Columbia spotted frog	Columbia spotted frog	Wood frog	Columbia spotte					

								_		_	trog	Trog		rrog				
	Parameters			Amphib	oian Tissue Criteria (E	gg Mass)				'	1		1	'		Summa	ry Statistics	
Chemical Group	Chemical Name	Units	EQL	BC WQG 2014 (mg/kg dw)	USEPA 2016 ¹ (mg/kg dw)	Windward et al. (2014) (mg/kg dw)				Cor	ncentration (mg/kg dr	y wt)			Minimum	Maximum	Geometric Mean	Standard Deviation
General Chemistry	y Phosphorus	mg/kg	2				1	5448.28	10396.83	9303.03	5942.86	11447.37	13260.87	9136.36	5448.28	13260.87	8876.90	2817.56
	Aluminium	mg/kg	0.4				1	<dl< td=""><td><dl< td=""><td>68.79</td><td>42.29</td><td>42.11</td><td><dl< td=""><td>250.00</td><td>42.11</td><td>250.00</td><td>74.39</td><td>100.26</td></dl<></td></dl<></td></dl<>	<dl< td=""><td>68.79</td><td>42.29</td><td>42.11</td><td><dl< td=""><td>250.00</td><td>42.11</td><td>250.00</td><td>74.39</td><td>100.26</td></dl<></td></dl<>	68.79	42.29	42.11	<dl< td=""><td>250.00</td><td>42.11</td><td>250.00</td><td>74.39</td><td>100.26</td></dl<>	250.00	42.11	250.00	74.39	100.26
	Antimony	mg/kg	0.002]	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>0.06</td><td><dl< td=""><td><dl< td=""><td>0.06</td><td>0.06</td><td>0.06</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td>0.06</td><td><dl< td=""><td><dl< td=""><td>0.06</td><td>0.06</td><td>0.06</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>0.06</td><td><dl< td=""><td><dl< td=""><td>0.06</td><td>0.06</td><td>0.06</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td>0.06</td><td><dl< td=""><td><dl< td=""><td>0.06</td><td>0.06</td><td>0.06</td><td>-</td></dl<></td></dl<></td></dl<>	0.06	<dl< td=""><td><dl< td=""><td>0.06</td><td>0.06</td><td>0.06</td><td>-</td></dl<></td></dl<>	<dl< td=""><td>0.06</td><td>0.06</td><td>0.06</td><td>-</td></dl<>	0.06	0.06	0.06	-
	Arsenic	mg/kg	0.004					<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>0.28</td><td><dl< td=""><td>0.93</td><td>0.28</td><td>0.93</td><td>0.51</td><td>0.46</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td>0.28</td><td><dl< td=""><td>0.93</td><td>0.28</td><td>0.93</td><td>0.51</td><td>0.46</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>0.28</td><td><dl< td=""><td>0.93</td><td>0.28</td><td>0.93</td><td>0.51</td><td>0.46</td></dl<></td></dl<></td></dl<>	<dl< td=""><td>0.28</td><td><dl< td=""><td>0.93</td><td>0.28</td><td>0.93</td><td>0.51</td><td>0.46</td></dl<></td></dl<>	0.28	<dl< td=""><td>0.93</td><td>0.28</td><td>0.93</td><td>0.51</td><td>0.46</td></dl<>	0.93	0.28	0.93	0.51	0.46
	Barium	mg/kg	0.01					6.31	3.16	16.45	33.43	31.84	6.02	60.45	3.16	60.45	14.38	20.78
	Beryllium	mg/kg	0.002					<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<>	<dl< td=""><td>-</td><td>-</td></dl<>	-	-
	Bismuth	mg/kg	0.002					<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<>	<dl< td=""><td>-</td><td>-</td></dl<>	-	-
	Boron	mg/kg	0.2					<dl< td=""><td>3.49</td><td><dl< td=""><td><dl< td=""><td>10.00</td><td>5.22</td><td><dl< td=""><td>3.49</td><td>10.00</td><td>5.67</td><td>3.37</td></dl<></td></dl<></td></dl<></td></dl<>	3.49	<dl< td=""><td><dl< td=""><td>10.00</td><td>5.22</td><td><dl< td=""><td>3.49</td><td>10.00</td><td>5.67</td><td>3.37</td></dl<></td></dl<></td></dl<>	<dl< td=""><td>10.00</td><td>5.22</td><td><dl< td=""><td>3.49</td><td>10.00</td><td>5.67</td><td>3.37</td></dl<></td></dl<>	10.00	5.22	<dl< td=""><td>3.49</td><td>10.00</td><td>5.67</td><td>3.37</td></dl<>	3.49	10.00	5.67	3.37
	Cadmium	mg/kg	0.001					<dl< td=""><td><dl< td=""><td><dl< td=""><td>0.04</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>0.04</td><td>0.04</td><td>0.04</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>0.04</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>0.04</td><td>0.04</td><td>0.04</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td>0.04</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>0.04</td><td>0.04</td><td>0.04</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<>	0.04	<dl< td=""><td><dl< td=""><td><dl< td=""><td>0.04</td><td>0.04</td><td>0.04</td><td>-</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>0.04</td><td>0.04</td><td>0.04</td><td>-</td></dl<></td></dl<>	<dl< td=""><td>0.04</td><td>0.04</td><td>0.04</td><td>-</td></dl<>	0.04	0.04	0.04	-
	Calcium	mg/kg	4					7344.83	3809.52	3727.27	5457.14	19605.26	7695.65	14863.64	3727.27	19605.26	7452.10	6035.37
	Cesium	mg/kg	0.001					<dl< td=""><td>0.02</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>0.02</td><td>0.06</td><td>0.02</td><td>0.06</td><td>0.03</td><td>0.02</td></dl<></td></dl<></td></dl<></td></dl<>	0.02	<dl< td=""><td><dl< td=""><td><dl< td=""><td>0.02</td><td>0.06</td><td>0.02</td><td>0.06</td><td>0.03</td><td>0.02</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>0.02</td><td>0.06</td><td>0.02</td><td>0.06</td><td>0.03</td><td>0.02</td></dl<></td></dl<>	<dl< td=""><td>0.02</td><td>0.06</td><td>0.02</td><td>0.06</td><td>0.03</td><td>0.02</td></dl<>	0.02	0.06	0.02	0.06	0.03	0.02
	Chromium Total (III+VI)	mg/kg	0.01			12.7		0.52	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>0.52</td><td>0.52</td><td>0.52</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>0.52</td><td>0.52</td><td>0.52</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>0.52</td><td>0.52</td><td>0.52</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td>0.52</td><td>0.52</td><td>0.52</td><td>-</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>0.52</td><td>0.52</td><td>0.52</td><td>-</td></dl<></td></dl<>	<dl< td=""><td>0.52</td><td>0.52</td><td>0.52</td><td>-</td></dl<>	0.52	0.52	0.52	-
	Cobalt	mg/kg	0.004					<dl< td=""><td><dl< td=""><td><dl< td=""><td>0.14</td><td>1.04</td><td><dl< td=""><td>0.75</td><td>0.14</td><td>1.04</td><td>0.48</td><td>0.46</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>0.14</td><td>1.04</td><td><dl< td=""><td>0.75</td><td>0.14</td><td>1.04</td><td>0.48</td><td>0.46</td></dl<></td></dl<></td></dl<>	<dl< td=""><td>0.14</td><td>1.04</td><td><dl< td=""><td>0.75</td><td>0.14</td><td>1.04</td><td>0.48</td><td>0.46</td></dl<></td></dl<>	0.14	1.04	<dl< td=""><td>0.75</td><td>0.14</td><td>1.04</td><td>0.48</td><td>0.46</td></dl<>	0.75	0.14	1.04	0.48	0.46
	Copper	mg/kg	0.02]	3.79	6.56	5.06	4.86	6.50	5.50	9.23	3.79	9.23	5.73	1.74
	Iron	mg/kg	0.6]	131.72	66.67	113.64	188.29	1157.89	54.35	8136.36	54.35	8136.36	266.79	2993.24
	Lead	mg/kg	0.004]	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<>	<dl< td=""><td>-</td><td>-</td></dl<>	-	-
	Lithium	mg/kg	0.1]	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<>	<dl< td=""><td>-</td><td>-</td></dl<>	-	-
	Magnesium	mg/kg	0.4					1986.21	1603.17	1545.45	1565.71	3210.53	2165.22	2563.64	1545.45	3210.53	2020.17	619.78
Metals	Manganese	mg/kg	0.01]	20.31	3.68	12.82	605.71	507.89	21.02	442.27	3.68	605.71	59.82	273.70
	Mercury	mg/kg	0.001]	<dl< td=""><td>0.10</td><td>0.03</td><td>0.03</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>0.03</td><td>0.10</td><td>0.05</td><td>0.04</td></dl<></td></dl<></td></dl<></td></dl<>	0.10	0.03	0.03	<dl< td=""><td><dl< td=""><td><dl< td=""><td>0.03</td><td>0.10</td><td>0.05</td><td>0.04</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>0.03</td><td>0.10</td><td>0.05</td><td>0.04</td></dl<></td></dl<>	<dl< td=""><td>0.03</td><td>0.10</td><td>0.05</td><td>0.04</td></dl<>	0.03	0.10	0.05	0.04
	Molybdenum	mg/kg	0.004]	0.29	<dl< td=""><td><dl< td=""><td>0.16</td><td>1.15</td><td>0.21</td><td>0.69</td><td>0.16</td><td>1.15</td><td>0.38</td><td>0.42</td></dl<></td></dl<>	<dl< td=""><td>0.16</td><td>1.15</td><td>0.21</td><td>0.69</td><td>0.16</td><td>1.15</td><td>0.38</td><td>0.42</td></dl<>	0.16	1.15	0.21	0.69	0.16	1.15	0.38	0.42
	Nickel	mg/kg	0.04]	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<>	<dl< td=""><td>-</td><td>-</td></dl<>	-	-
	Potassium	mg/kg	4]	868.97	3111.11	2309.09	1045.71	631.58	2030.43	1100.00	631.58	3111.11	1373.22	912.83
	Rubidium	mg/kg	0.01]	<dl< td=""><td>1.73</td><td>1.39</td><td>0.57</td><td>0.42</td><td>1.85</td><td>3.14</td><td>0.42</td><td>3.14</td><td>1.22</td><td>0.99</td></dl<>	1.73	1.39	0.57	0.42	1.85	3.14	0.42	3.14	1.22	0.99
	Selenium	mg/kg	0.01	6	15.1]	1.86	2.59	2.09	2.17	5.00	3.57	3.77	1.86	5.00	2.83	1.15
	Silver	mg/kg	0.001]	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<>	<dl< td=""><td>-</td><td>-</td></dl<>	-	-
	Sodium	mg/kg	4					744.83	1619.05	1081.82	431.43	718.42	1193.48	390.91	390.91	1619.05	787.99	441.58
	Strontium	mg/kg	0.01					62.41	34.76	7.48	19.23	107.63	60.22	45.91	7.48	107.63	36.89	33.07
	Tellurium	mg/kg	0.004				_	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<>	<dl< td=""><td>-</td><td>-</td></dl<>	-	-
	Thallium	mg/kg	0.0004				_	<dl< td=""><td>0.01</td><td><dl< td=""><td>0.01</td><td>0.03</td><td><dl< td=""><td>0.02</td><td>0.01</td><td>0.03</td><td>0.02</td><td>0.01</td></dl<></td></dl<></td></dl<>	0.01	<dl< td=""><td>0.01</td><td>0.03</td><td><dl< td=""><td>0.02</td><td>0.01</td><td>0.03</td><td>0.02</td><td>0.01</td></dl<></td></dl<>	0.01	0.03	<dl< td=""><td>0.02</td><td>0.01</td><td>0.03</td><td>0.02</td><td>0.01</td></dl<>	0.02	0.01	0.03	0.02	0.01
	Tin	mg/kg	0.02				_	<dl< td=""><td><dl< td=""><td><dl< td=""><td>0.60</td><td>1.29</td><td><dl< td=""><td><dl< td=""><td>0.60</td><td>1.29</td><td>0.88</td><td>0.49</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>0.60</td><td>1.29</td><td><dl< td=""><td><dl< td=""><td>0.60</td><td>1.29</td><td>0.88</td><td>0.49</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td>0.60</td><td>1.29</td><td><dl< td=""><td><dl< td=""><td>0.60</td><td>1.29</td><td>0.88</td><td>0.49</td></dl<></td></dl<></td></dl<>	0.60	1.29	<dl< td=""><td><dl< td=""><td>0.60</td><td>1.29</td><td>0.88</td><td>0.49</td></dl<></td></dl<>	<dl< td=""><td>0.60</td><td>1.29</td><td>0.88</td><td>0.49</td></dl<>	0.60	1.29	0.88	0.49
	Titanium	mg/kg	0.02				_	<dl< td=""><td><dl< td=""><td>2.09</td><td>1.14</td><td>1.29</td><td>0.54</td><td>5.00</td><td>0.54</td><td>5.00</td><td>1.53</td><td>1.76</td></dl<></td></dl<>	<dl< td=""><td>2.09</td><td>1.14</td><td>1.29</td><td>0.54</td><td>5.00</td><td>0.54</td><td>5.00</td><td>1.53</td><td>1.76</td></dl<>	2.09	1.14	1.29	0.54	5.00	0.54	5.00	1.53	1.76
	Uranium	mg/kg	0.0004				_	<dl< td=""><td>0.02</td><td>0.04</td><td>0.04</td><td>0.12</td><td>0.08</td><td>0.19</td><td>0.02</td><td>0.19</td><td>0.06</td><td>0.06</td></dl<>	0.02	0.04	0.04	0.12	0.08	0.19	0.02	0.19	0.06	0.06
	Vanadium	mg/kg	0.02			6.5	_	<dl< td=""><td><dl< td=""><td>0.70</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>0.95</td><td>0.70</td><td>0.95</td><td>0.82</td><td>0.18</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td>0.70</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>0.95</td><td>0.70</td><td>0.95</td><td>0.82</td><td>0.18</td></dl<></td></dl<></td></dl<></td></dl<>	0.70	<dl< td=""><td><dl< td=""><td><dl< td=""><td>0.95</td><td>0.70</td><td>0.95</td><td>0.82</td><td>0.18</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>0.95</td><td>0.70</td><td>0.95</td><td>0.82</td><td>0.18</td></dl<></td></dl<>	<dl< td=""><td>0.95</td><td>0.70</td><td>0.95</td><td>0.82</td><td>0.18</td></dl<>	0.95	0.70	0.95	0.82	0.18
	Zinc	mg/kg	0.1				_	101.72	131.27	145.76	88.86	151.58	131.74	225.45	88.86	225.45	134.07	44.15
	Zirconium	mg/kg	0.04					<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>-</td><td>-</td></dl<></td></dl<>	<dl< td=""><td>-</td><td>-</td></dl<>	-	-

DILLON CONSULTING LIMITED

ATTN: Stacie Kalyn

510 - 3820 Cessna Drive Richmond BC V7B 0A2 Date Received: 09-JUL-17

Report Date: 20-SEP-17 12:17 (MT)

Version: FINAL

Client Phone: 604-278-7847

Certificate of Analysis

Lab Work Order #: L1955497
Project P.O. #: NOT SUBMITTED

Job Reference: 126231 C of C Numbers: 15-602165

Legal Site Desc:

<Original signed by>

Brent Mack, B.Sc. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

PAGE 2 of 3 20-SEP-17 12:17 (MT)

Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L1955497-1 Egg 04-JUL-17 15:36 SPSA-E-HCR	L1955497-2 Egg 30-JUN-17 12:30 SPSA-E-MACR	L1955497-3 Egg 06-JUL-17 16:05 SPSA-E-VACR	L1955497-4 Tadpoles 06-JUL-17 17:30 CSF-TP-WL9	L1955497-5 Tadpoles 06-JUL-17 18:00 CSF-TP-WL7		
Grouping	Analyte							
TISSUE								
Physical Tests	% Moisture (%)	70.3	68.6	72.0	85.5	92.9		
Metals	Aluminum (Al)-Total (mg/kg wwt)	2.8	1.2	1.2	351	41.0		
	Antimony (Sb)-Total (mg/kg wwt)	<0.0020	<0.0020	<0.0020	0.0095	0.0059		
	Arsenic (As)-Total (mg/kg wwt)	0.0069	0.0071	0.0092	0.145	0.406		
	Barium (Ba)-Total (mg/kg wwt)	4.83	19.9	15.4	15.0	19.3		
	Beryllium (Be)-Total (mg/kg wwt)	<0.0020	<0.0020	<0.0020	0.0177	0.0030		
	Bismuth (Bi)-Total (mg/kg wwt)	<0.0020	<0.0020	<0.0020	0.0066	<0.0020		
	Boron (B)-Total (mg/kg wwt)	<0.20	<0.20	<0.20	1.18	0.56		
	Cadmium (Cd)-Total (mg/kg wwt)	<0.0020	<0.0020	<0.0020	0.0613	0.0136		
	Calcium (Ca)-Total (mg/kg wwt)	20000	27700	21100	4030	958		
	Cesium (Cs)-Total (mg/kg wwt)	<0.0010	0.0011	0.0012	0.0408	0.0094		
	Chromium (Cr)-Total (mg/kg wwt)	<0.040	<0.040	<0.040	0.424	0.130		
	Cobalt (Co)-Total (mg/kg wwt)	0.0230	0.0411	0.0635	0.259	0.183		
	Copper (Cu)-Total (mg/kg wwt)	1.11	1.09	1.23	1.06	0.288		
	Iron (Fe)-Total (mg/kg wwt)	23.0	25.8	32.6	520	3220		
	Lead (Pb)-Total (mg/kg wwt)	<0.010	<0.010	<0.010	0.343	0.101		
	Lithium (Li)-Total (mg/kg wwt)	<0.10	<0.10	<0.10	0.54	<0.10		
	Magnesium (Mg)-Total (mg/kg wwt)	259	309	320	292	169		
	Manganese (Mn)-Total (mg/kg wwt)	1.08	0.711	0.559	48.6	135		
	Mercury (Hg)-Total (mg/kg wwt)	0.0257	0.0310	0.0434	0.0052	0.0069		
	Molybdenum (Mo)-Total (mg/kg wwt)	0.0273	0.0276	0.0327	0.104	0.106		
	Nickel (Ni)-Total (mg/kg wwt)	<0.040	<0.040	<0.040	0.661	0.172		
	Phosphorus (P)-Total (mg/kg wwt)	3040	3120	3190	1540	977		
	Potassium (K)-Total (mg/kg wwt)	1600	1650	1560	1390	930		
	Rubidium (Rb)-Total (mg/kg wwt)	0.516	0.496	0.497	1.06	3.38		
	Selenium (Se)-Total (mg/kg wwt)	4.15	0.879	0.871	0.395	0.170		
	Silver (Ag)-Total (mg/kg wwt)	0.0031	0.0074	0.0098	0.0083	0.0026		
	Sodium (Na)-Total (mg/kg wwt)	1560	1540	1870	1290	1630		
	Strontium (Sr)-Total (mg/kg wwt)	10.4	50.3	33.8	15.5	3.41		
	Tellurium (Te)-Total (mg/kg wwt)	<0.0040	<0.0040	0.0050	<0.0040	<0.0040		
	Thallium (TI)-Total (mg/kg wwt)	0.0137	0.0176	0.0185	0.0234	0.00205		
	Tin (Sn)-Total (mg/kg wwt)	0.046	<0.020	0.088	0.072	0.097		
	Titanium (Ti)-Total (mg/kg wwt)	0.033	<0.020	0.020	2.16	0.596		
	Uranium (U)-Total (mg/kg wwt)	<0.00040	<0.00040	<0.00040	0.0179	0.0207		
	Vanadium (V)-Total (mg/kg wwt)	<0.020	<0.020	<0.020	1.05	0.151		
	Zinc (Zn)-Total (mg/kg wwt)	13.2	14.3	13.0	17.0	8.13		
	Zirconium (Zr)-Total (mg/kg wwt)	<0.040	<0.040	<0.040	0.166	0.048		

Reference Information

L1955497 CONTD....

PAGE 3 of 3

20-SEP-17 12:17 (MT)

Version: FINAL

Test Method References:

ALS Test Code Matrix Test Description Method Reference**

AG-WET-CCMS-N-VA Tissue Silver in Tissue by CRC ICPMS (WET) EPA 200.3/6020A

This method is conducted following British Columbia Lab Manual method "Metals in Animal Tissue and Vegetation (Biota) - Prescriptive". Tissue samples are homogenized and sub-sampled prior to hotblock digestion with nitric and hydrochloric acids, in combination with addition of hydrogen peroxide. Instrumental analysis is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

Method Limitation: This method employs a strong acid/peroxide digestion, and is intended to provide a conservative estimate of bio-available metals. Near complete recoveries are achieved for most toxicologically important metals, but elements associated with recalcitrant minerals may be only partially recovered.

HG-WET-MICR-CVAF-VA Tissue Mercury in Tissue by CVAFS Micro (WET) EPA 200.3, EPA 245.7

This method is adapted from US EPA Method 200.3 "Sample Procedures for Spectrochemical Determination of Total Recoverable Elements in Biological Tissues" (1996). Tissue samples are homogenized and sub-sampled prior to hotblock digestion with nitric and hydrochloric acids, in combination with repeated additions of hydrogen peroxide. Analysis is by atomic fluorescence spectrophotometry or atomic absorption spectrophotometry, adapted from US EPA Method 245.7.

MET-WET-CCMS-MID-VA Tissue Metals in Tissue by CRC ICPMS (WET) EPA 200.3/6020A

This method is conducted following British Columbia Lab Manual method "Metals in Animal Tissue and Vegetation (Biota) - Prescriptive". Tissue samples are homogenized and sub-sampled prior to hotblock digestion with nitric and hydrochloric acids, in combination with addition of hydrogen peroxide. Instrumental analysis is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

Method Limitation: This method employs a strong acid/peroxide digestion, and is intended to provide a conservative estimate of bio-available metals. Near complete recoveries are achieved for most toxicologically important metals, but elements associated with recalcitrant minerals may be only partially recovered.

MOISTURE-MICR-VA Tissue Moisture in Tissue Puget Sound WQ Authority, Apr 1997

This analysis is carried out gravimetrically by drying the sample at <60 deg. C.

TI-WET-CCMS-N-VA Tissue Ti in Tissue by CRC ICPMS (WET) EPA 200.3/6020A

This method is conducted following British Columbia Lab Manual method "Metals in Animal Tissue and Vegetation (Biota) - Prescriptive". Tissue samples are homogenized and sub-sampled prior to hotblock digestion with nitric and hydrochloric acids, in combination with addition of hydrogen peroxide. Instrumental analysis is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

Method Limitation: This method employs a strong acid/peroxide digestion, and is intended to provide a conservative estimate of bio-available metals. Near complete recoveries are achieved for most toxicologically important metals, but elements associated with recalcitrant minerals may be only partially recovered

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

 Laboratory Definition Code
 Laboratory Location

 VA
 ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

15-602165

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

ALS

Chain of Custody (COC) / Analytical Request Form

L1955497-COFC

COC Number: 15 - 602165

Page of

Environmental

www.alsglobal.com

Canada Toll Free: 1 800 668 9878

	www.aisgiobai.com		. (
Report To	Contact and company name below will appear on the final report	Report Format / Distribution	Select Service Level Below - Please confirm all E&P TATs with your AM - surcharges will apply
Company:	WILLIAM CONSUM	Select Report Format: PDF EXCEL EDD (DIGITAL)	
Contact:	Stacic Kalun / Kichwell Pro	Quality Control (QC) Report with Report	2 4 day [P4] 1 Pusinees day [E4]
Phone:	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Compare Results to Criteria on Report - provide details below if box checked	4 day [P4] 1 Business day [E1] 3 day [P3] Same Day, Weekend or, Statutory beliefer [F0]
	Company address below will appear on the final report	Select Distribution: EMAIL MAIL FAX	
Street:		Email 1 or Fax Skalyin @ Oillon-co	Date and Time Required for all E&P TATs: 148 31 31
City/Province:		Email 2 huarde dillon- ca	For tests that can not be performed according to the service level selected, you will be contacted.
Postal Code:		Email 3 rappele dillan-la	Analysis Request
Invoice To	Same as Report To YES NO	Invoice Distribution	Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) below
	Copy of Invoice with Report YES NO	Select Invoice Distribution: EMAIL FAX	morcate filtered (P), Preserved (P) or Filtered and Preserved (F)P) below
Company:		Email 1 or Fax	
Contact:		Email 2	+ >
	Project Information	Oil and Gas Required Fields (client use)	
ALS Account #	/ Quote #:	AFE/Cost Center: PO#	
Job #:	the 2023	Major/Minor Code: Routing Code:	
PO / AFE:	TV IO TO TO	Requisitioner:	
LSD:		Location:	Vumber of Containers
		250ddoll.	49
ALS Lab Wo	rk Order # (lab use only)	ALS Contact: Sampler:	
ALS Sample #	Sample Identification and/or Coordinates	Date Time	
(lab use only)	(This description will appear on the report)	(dd-mmm-yy) (hh:mm) Sample Type	2
	SPSTER - HICL		
	SOCA-G-MACD		
		(Jul 4, 2017 1536 (Join	X
	DIST E VACK	Dely 6, 207 1605 11	
	(St-14-WL9	1 15-20 tadpoles	
	CSF-TP-WLZ	11 1800 1	
			
			
			
Drinkin	Special Instructions	Specify Criteria to add on report by clicking on the drop-down list below	SAMPLE CONDITION AS RECEIVED (lab use only)
	, , , , , , , , , , , , , , , , , , , ,	(electronic COC only)	
Are samples taken	from a Regulated DW System?		Frozen
L YES	NO		Cooling Initiated
	uman drinking water use?		INIITIAL COOLER TEMPERATURES °C FINAL COOLER TEMPERATURES °C
YES			4.8 10.1
Poloood bus	Original signed by	INITIAL SHIPMENT RECEPTION (lab use only)	FINAL SHIPMENT RECEPTION (lab use only)
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Time: Received by: Date: Time:
REFER TO BACK P	AGE FOR AMERICATIONS AND SAMPLING INFORMATION		Time: Received by: Date: Time:
	THE STATE STATE OF WATION	 WHITE - LABORATORY COPY YELLOW 	V - CLIENT COPY

Failure to complete all portions of the form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

DILLON CONSULTING LIMITED

ATTN: Richard Pope

510 - 3820 Cessna Drive Richmond BC V7B 0A2 Date Received: 11-MAY-18

Report Date: 27-JUN-18 15:01 (MT)

Version: FINAL

Client Phone: 604-278-7847

Certificate of Analysis

Lab Work Order #: L2093242
Project P.O. #: NOT SUBMITTED

Job Reference: 126231

C of C Numbers: Legal Site Desc:

<Original signed by>

Brent Mack, B.Sc. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

L2093242 CONTD....

PAGE 2 of 4 27-JUN-18 15:01 (MT)

Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L2093242-1 Tissues 05-MAY-18 10:00 18-WF-WL9B	L2093242-2 Tissues 05-MAY-18 17:00 18-WF-WL9	L2093242-3 Tissues 05-MAY-18 10:00 18-WF-WL10	L2093242-4 Tissues 05-MAY-18 10:00 10-CSF-WL07	
Grouping	Analyte	-				
TISSUE						
Physical Tests	% Moisture (%)	93.7	97.1	96.7	96.5	
Metals	Aluminum (Al)-Total (mg/kg wwt)	<1.0	<0.40	2.27	1.48	
	Antimony (Sb)-Total (mg/kg wwt)	<0.0020	<0.0020	<0.0020	<0.0020	
	Arsenic (As)-Total (mg/kg wwt)	<0.0060	<0.0040	<0.0040	<0.0040	
	Barium (Ba)-Total (mg/kg wwt)	0.199	0.183	0.543	1.17	
	Beryllium (Be)-Total (mg/kg wwt)	<0.0020	<0.0020	<0.0020	<0.0020	
	Bismuth (Bi)-Total (mg/kg wwt)	<0.0020	<0.0020	<0.0020	<0.0020	
	Boron (B)-Total (mg/kg wwt)	0.22	<0.20	<0.20	<0.20	
	Cadmium (Cd)-Total (mg/kg wwt)	<0.0020	<0.0010	<0.0010	0.0013	
	Calcium (Ca)-Total (mg/kg wwt)	240	213	123	191	
	Cesium (Cs)-Total (mg/kg wwt)	0.0012	<0.0010	<0.0010	<0.0010	
	Chromium (Cr)-Total (mg/kg wwt)	<0.040	0.015	<0.010	<0.010	
	Cobalt (Co)-Total (mg/kg wwt)	<0.0040	<0.0040	<0.0040	0.0048	
	Copper (Cu)-Total (mg/kg wwt)	0.413	0.110	0.167	0.170	
	Iron (Fe)-Total (mg/kg wwt)	4.2	3.82	3.75	6.59	
	Lead (Pb)-Total (mg/kg wwt)	<0.010	<0.0040	<0.0040	<0.0040	
	Lithium (Li)-Total (mg/kg wwt)	<0.10	<0.10	<0.10	<0.10	
	Magnesium (Mg)-Total (mg/kg wwt)	101	57.6	51.0	54.8	
	Manganese (Mn)-Total (mg/kg wwt)	0.232	0.589	0.423	21.2	
	Mercury (Hg)-Total (mg/kg wwt)	0.0061	<0.0010	0.0011	0.0012	
	Molybdenum (Mo)-Total (mg/kg wwt)	<0.0080	0.0085	<0.0040	0.0057	
	Nickel (Ni)-Total (mg/kg wwt)	<0.040	<0.040	<0.040	<0.040	
	Phosphorus (P)-Total (mg/kg wwt)	655	158	307	208	
	Potassium (K)-Total (mg/kg wwt)	196	25.2	76.2	36.6	
	Rubidium (Rb)-Total (mg/kg wwt)	0.109	<0.010	0.046	0.020	
	Selenium (Se)-Total (mg/kg wwt)	0.163	0.054	0.069	0.076	
	Silver (Ag)-Total (mg/kg wwt)	<0.0010	<0.0010	<0.0010	<0.0010	
	Sodium (Na)-Total (mg/kg wwt)	102	21.6	35.7	15.1	
	Strontium (Sr)-Total (mg/kg wwt)	2.19	1.81	0.247	0.673	
	Tellurium (Te)-Total (mg/kg wwt)	<0.0040	<0.0040	<0.0040	<0.0040	
	Thallium (TI)-Total (mg/kg wwt)	0.00074	<0.00040	<0.00040	0.00045	
	Tin (Sn)-Total (mg/kg wwt)	<0.020	<0.020	<0.020	0.021	
	Titanium (Ti)-Total (mg/kg wwt)	<0.10	<0.020	0.069	0.040	
	Uranium (U)-Total (mg/kg wwt)	0.00116	<0.00040	0.00147	0.00137	
	Vanadium (V)-Total (mg/kg wwt)	<0.020	<0.020	0.023	<0.020	
	Zinc (Zn)-Total (mg/kg wwt)	8.27	2.95	4.81	3.11	
	Zirconium (Zr)-Total (mg/kg wwt)	<0.040	<0.040	<0.040	<0.040	

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

Reference Information

L2093242 CONTD....

PAGE 3 of 4

27-JUN-18 15:01 (MT)

Version: FINAL

QC Samples with Qualifiers & Comments:

QC Type Description Method Blank		Parameter	Qualifier	Applies to Sample Number(s)				
		Mercury (Hg)-Total	В	L2093242-1				
Method Blank		Uranium (U)-Total	В	L2093242-2, -3, -4				
Qualifiers fo	r Individual Parameter	s Listed:						
Qualifier	Description							
B Method Blank exceeds ALS DQO. Associated sample results which are < Limit of Reporting or > 5 times blank level are cons								

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**	
AG-WET-CCMS-N-VA	Tissue	Silver in Tissue by CRC ICPMS (WET)	EPA 200.3/6020A	

This method is conducted following British Columbia Lab Manual method "Metals in Animal Tissue and Vegetation (Biota) - Prescriptive". Tissue samples are homogenized and sub-sampled prior to hotblock digestion with nitric and hydrochloric acids, in combination with addition of hydrogen peroxide. Instrumental analysis is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

Method Limitation: This method employs a strong acid/peroxide digestion, and is intended to provide a conservative estimate of bio-available metals. Near complete recoveries are achieved for most toxicologically important metals, but elements associated with recalcitrant minerals may be only partially recovered.

AG-WET-MICR-HRMS-VA Tissue Silver in Tissue by HR-ICPMS Micro (WET) EPA 200.3/200.8

Trace metals in tissue are analyzed by high resolution inductively coupled plasma mass spectrometry (HR-ICPMS) modified from US EPA Method 200.8, (Revision 5.5). The sample preparation procedure is modified from US EPA 200.3. Analytical results are reported on wet weight basis.

HG-WET-CVAFS-N-VA Tissue Mercury in Tissue by CVAFS (WET) EPA 200.3, EPA 245.7

This method is conducted following British Columbia Lab Manual method "Metals in Animal Tissue and Vegetation (Biota) - Prescriptive". Tissue samples are homogenized and sub-sampled prior to hotblock digestion with nitric and hydrochloric acids, in combination with addition of hydrogen peroxide. Analysis is by atomic fluorescence spectrophotometry or atomic absorption spectrophotometry, adapted from US EPA Method 245.7.

HG-WET-MICR-CVAF-VA Tissue Mercury in Tissue by CVAFS Micro (WET) EPA 200.3, EPA 245.7

This method is adapted from US EPA Method 200.3 "Sample Procedures for Spectrochemical Determination of Total Recoverable Elements in Biological Tissues" (1996). Tissue samples are homogenized and sub-sampled prior to hotblock digestion with nitric and hydrochloric acids, in combination with repeated additions of hydrogen peroxide. Analysis is by atomic fluorescence spectrophotometry or atomic absorption spectrophotometry, adapted from US EPA Method 245.7.

MET-WET-CCMS-N-VA Tissue Metals in Tissue by CRC ICPMS (WET) EPA 200.3/6020A

This method is conducted following British Columbia Lab Manual method "Metals in Animal Tissue and Vegetation (Biota) - Prescriptive". Tissue samples are homogenized and sub-sampled prior to hotblock digestion with nitric and hydrochloric acids, in combination with addition of hydrogen peroxide. Instrumental analysis is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

Method Limitation: This method employs a strong acid/peroxide digestion, and is intended to provide a conservative estimate of bio-available metals. Near complete recoveries are achieved for most toxicologically important metals, but elements associated with recalcitrant minerals may be only partially recovered.

MET-WET-MICR-HRMS-VA Tissue Metals in Tissue by HR-ICPMS Micro (WET) EPA 200.3/200.8

Trace metals in tissue are analyzed by high resolution inductively coupled plasma mass spectrometry (HR-ICPMS) modified from US EPA Method 200.8, (Revision 5.5). The sample preparation procedure is modified from US EPA 200.3. Analytical results are reported on wet weight basis.

Method Limitation: This method employs a strong acid/peroxide digestion, and is intended to provide a conservative estimate of bio-available metals. Near complete recoveries are achieved for most toxicologically important metals, but elements associated with recalcitrant minerals may be only partially recovered.

MOISTURE-MICR-VA Tissue Moisture in Tissue Puget Sound WQ Authority, Apr 1997

This analysis is carried out gravimetrically by drying the sample at <60 deg. C.

MOISTURE-TISS-VA Tissue % Moisture in Tissues Puget Sound WQ Authority, Apr 1997

This analysis is carried out gravimetrically by drying the sample at 105 C for a minimum of six hours.

TI-WET-CCMS-N-VA Tissue Ti in Tissue by CRC ICPMS (WET) EPA 200.3/6020A

This method is conducted following British Columbia Lab Manual method "Metals in Animal Tissue and Vegetation (Biota) - Prescriptive". Tissue samples are homogenized and sub-sampled prior to hotblock digestion with nitric and hydrochloric acids, in combination with addition of hydrogen peroxide. Instrumental analysis is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

Method Limitation: This method employs a strong acid/peroxide digestion, and is intended to provide a conservative estimate of bio-available metals.

Reference Information

L2093242 CONTD....

PAGE 4 of 4

27-JUN-18 15:01 (MT)

Version: FINAL

Near complete recoveries are achieved for most toxicologically important metals, but elements associated with recalcitrant minerals may be only partially recovered

TI-WET-MICR-HRMS-VA Tissue Ti in Tissue by HR-ICPMS Micro (WET) EPA 200.3/200.8

Trace metals in tissue are analyzed by high resolution inductively coupled plasma mass spectrometry (HR-ICPMS) modified from US EPA Method 200.8, (Revision 5.5). The sample preparation procedure is modified from US EPA 200.3. Analytical results are reported on wet weight basis.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code Laboratory Location

VA ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Environmental

Chain of Custody (CCC) / Analytical **Request Form**

Canada Toll Free: 1 800 668 9878

L2093242-COFC

COU Number: 17 -

	www.alsglobal.com				1					L										
port To	Contact and company name below will app	pear on the final report		<u> </u>	/ Distribution~	-	ı — ·- <u></u> -		· <u> </u>		Contac	t your A	M to cor	nfirm al	I E&P T/	ATs (sur	charge	s may	apply	<u>/) </u>
ompany:	Dillon Consulting limited		Select Report F	ormat: 🗸	☑ EXC€L ☐ I	EDD (DIGITAL)		Regular	R] 🗵	Standa	ırd TAT i	f received	by 3 pm	- busines	ss days - n	no surcharg	ges appl	у		
ontact:	Richard Pope, Laura Dilley		Quality Control	(QC) Report with Re	eport 🗹	□ NO	<u></u> 2 4	day [P4-2	:0%] []	ENCY	1 Busir	iess da	y [E1 -	100%]					匸
ione:	604 278 7846		Compare Res	sults to Criteria on Repor	t - provide details be	elow if box checked	PE 93	day [P3-2	!5%] <u> </u>]	E	Same D	ay, We	ekend	or Statu	itory ho	liday [E2 -20	00%	_
	Company address below will appear on the fir	nal report	Select Distribut	ion: 🗹 EMAIL	MAIL [FAX	E						tory op	ening f	fees ma	y apply))]			L
reet:	3820 Cessna Drive		Email 1 or Fax	rpope@dillon.ca			Date and Time Required for all E&P TATs: dd-mmm-yy hh:mm											_		
ty/Province:	Richmond BC		Email 2	Ldilley@dillon.ca			For tests t	hat ca n not b	e performed	d accordir	ng to the	service lev	el selecte	d, you wi	ill be conta	cted.				
ostal Code:	V7B 0A2		Email 3	mmcdougail@dillo	n.ca							Analy	sis Req	uest						_
voice To	Same as Report To	□ NO		Invoice Dis	stribution			Indica	te Filtered	(F), Pres	erved (F) or Filter	ed and Pr	eserved	(F/P) bek	w			iaji	Γ
	Copy of Invoice with Report	NO NO	Select Invoice [Distribution: 🗹 E	MAIL MAIL [FAX													er de	1
mpany:			Email 1 or Fax	rpope@dillon.ca									1					l 1	further	
ontact:			Email 2	salmeida@dillon.c			1								1			l 1		
	Project Information		Oi	l and Gas Require	nd Gas Required Fields (client use)										1			l 1	provide	1
_S Account #	# / Quote #:		AFE/Cost Center: PO#										İ		1			l 1		1
b#: .=	126231		Major/Minor Code:	<u> </u>	Routing Code:		i								1				(please	S S
D/AFE:			Requisitioner:				1								1			ا ہ ا	3.	🚆
3D:			Location:															림	용	Ę
ALS Lab Work Order # (lab use only):			ALS Contact:	Brent Mack	Sampler:	Jacqueline Hua	≃					}						HNOS	is hazaı	P OF CC
LS Sample # lab use only)	t to the state of			Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	Metals in											SAMPLE	Sample	NUMBER
<u></u>	18-WF-WL	<u> </u>	· · · · · · · · · · · · · · · · · · ·	OS-05-18	 	Tissurs	V	.					\top	\top		\neg	+	<u>"</u>	۳	厅
<u></u>							 	\dashv				-	+	+	- -		+	\vdash	$\vdash\vdash$	H
<u>-</u>			05-05-18 1700			15525						_	$+\!-$	+	$\vdash \vdash$	\dashv	+	\square	$\vdash \vdash$	ľ.
<u></u>	18-WF-W	1210	05-03-18 1000 7:56-5				×							\perp	\vdash		<u> </u>	Ш	\bigsqcup	Ľ
<u> </u>	18-CSF-1	NL07		05-09-19	1006	7.65.05	$ \rightarrow $											Ш		1
į	' "														 					
i,	<u> </u>	•									<u> </u>			1						Г
					 			-+				+	_	+ +		+	+		\vdash	H
				 			-				┼─┤		+-	+-+			+	\vdash	┌┤	\vdash
												_	+	+	\vdash	+	+	\square		╀
							$\vdash \bot$				$\downarrow \longrightarrow$				├ ──	\bot				↓_
!																				L
-				_	ļ															
•																				Г
		Special Instructions / Sp	ecify Criteria to	add on report by clic	king on the drop	-down list below	<u> </u>		S	AMPLE	CON	NOITION	AS REC	EIVEC) (lab us	e only)				 ,
Drinking Water (DW) Samples¹ (client use)				stronic COC only)	_		Frozen			_	SIFO	bservati	ons	Yes			No			7
e samples tak	en from a Regulated DW System?					ice Pac	ks 🖵	lce Cube	es 🔲	Custo	dy seal	intact	Yes			No			그!	
	☑ NO						Cooling	Initiated												•
e samples for human consumption/ use?			ŀ				INITIAL COOLER TEMPERATURES °C				°C	FINAL COOLER TEMPERA				JPERAT	URES °	°C		
	✓ NO												17	13			L			_ (
	SHIPMENT RELEASE (client use			INITIAL SHIPMEN	T RECEPTION ((lab use only)	FINAL SHIPMENT RECEPTION (lab use only)										丁			
	SHIPMENT RELEASE (client use Coriginal signed by Date: Mag	0, 2019 1700	Received by:		Date:		Time:	Rece	ived by:	w		D	ate M	w/ (1 th	201	Ŷ	Jime:	00 PK	1
FER TO BAC	K PAGE FOR AKS LOCATIONS AND SAMPLI	NG INFORMATION		WHI	TE - LABORATO	RY COPY YEL	LOW - C	LIENT CO	PY				1	T					SEPT 20	01 7 FR

Dillon Consulting Ltd.

ATTN: Mike Russum 200 - 334 11 Ave SE Calgary AB T2G 0Y2 Date Received: 07-JUL-18

Report Date: 09-AUG-18 17:48 (MT)

Version: FINAL

Client Phone: 403-215-8885

Certificate of Analysis

Lab Work Order #: L2125502
Project P.O. #: NOT SUBMITTED

Job Reference: CROWN MOUNTAIN TISSUE SAMPLING

C of C Numbers: 17-635882

Legal Site Desc:

<Original signed by>

Brent Mack, B.Sc. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

www.alsglobal.com

L2125502 CONTD....

PAGE 2 of 3 09-AUG-18 17:48 (MT) Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L2125502-1 TADPOLES 04-JUL-18 18:00 WET21	L2125502-2 EGG (BIRD) 04-JUL-18 18:00 WL1		
Grouping	Analyte				
TISSUE					
Physical Tests	% Moisture (%)	93.7	73.1		
Metals	Aluminum (Al)-Total (mg/kg wwt)	87.9	<1.0		
	Antimony (Sb)-Total (mg/kg wwt)	0.0052	<0.0020		
	Arsenic (As)-Total (mg/kg wwt)	0.0328	0.0069		
	Barium (Ba)-Total (mg/kg wwt)	8.22	2.05		
	Beryllium (Be)-Total (mg/kg wwt)	0.0041	<0.0020		
	Bismuth (Bi)-Total (mg/kg wwt)	<0.0020	<0.0020		
	Boron (B)-Total (mg/kg wwt)	1.45	<0.20		
	Cadmium (Cd)-Total (mg/kg wwt)	0.0116	<0.0020		
	Calcium (Ca)-Total (mg/kg wwt)	1720	881		
	Cesium (Cs)-Total (mg/kg wwt)	0.0249	<0.0010		
	Chromium (Cr)-Total (mg/kg wwt)	0.275	<0.040		
	Cobalt (Co)-Total (mg/kg wwt)	0.128	0.0546		
	Copper (Cu)-Total (mg/kg wwt)	0.528	1.24		
	Iron (Fe)-Total (mg/kg wwt)	142	29.5		
	Lead (Pb)-Total (mg/kg wwt)	0.125	<0.010		
	Lithium (Li)-Total (mg/kg wwt)	0.24	<0.10		
	Magnesium (Mg)-Total (mg/kg wwt)	197	98.7		
	Manganese (Mn)-Total (mg/kg wwt)	86.5	0.557		
	Mercury (Hg)-Total (mg/kg wwt)	<0.016	0.0264		
	Molybdenum (Mo)-Total (mg/kg wwt)	0.0503	0.0369		
	Nickel (Ni)-Total (mg/kg wwt)	0.191	<0.040		
	Phosphorus (P)-Total (mg/kg wwt)	406	2430		
	Potassium (K)-Total (mg/kg wwt)	279	1690		
	Rubidium (Rb)-Total (mg/kg wwt)	0.706	0.467		
	Selenium (Se)-Total (mg/kg wwt)	0.336	1.03		
	Silver (Ag)-Total (mg/kg wwt)	0.0170	0.0071		
	Sodium (Na)-Total (mg/kg wwt)	557	1600		
	Strontium (Sr)-Total (mg/kg wwt)	9.75	0.996		
	Tellurium (Te)-Total (mg/kg wwt)	<0.0040	<0.0040		
	Thallium (TI)-Total (mg/kg wwt)	0.00360	0.00282		
	Tin (Sn)-Total (mg/kg wwt)	0.198	<0.020		
	Titanium (Ti)-Total (mg/kg wwt)	2.20	<0.10		
	Uranium (U)-Total (mg/kg wwt)	0.0138	<0.00040		
	Vanadium (V)-Total (mg/kg wwt)	0.183	<0.020		
	Zinc (Zn)-Total (mg/kg wwt)	11.3	12.8		
	Zirconium (Zr)-Total (mg/kg wwt)	0.097	<0.040		

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2125502 CONTD.... PAGE 3 of 3

09-AUG-18 17:48 (MT) Version: FINΔI

Reference Information

QC Samples with Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)	
Method Blank	Silver (Ag)-Total	В	L2125502-1, -2	
Method Blank	Manganese (Mn)-Total	В	L2125502-2	
Method Blank	Thallium (TI)-Total	В	L2125502-2	

Qualifiers for Individual Parameters Listed:

Qualifier	Description

Method Blank exceeds ALS DQO. Associated sample results which are < Limit of Reporting or > 5 times blank level are considered

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
AG-WET-MICP-HPMS-VA	Tieeua	Silver in Tissue by HR-ICPMS Micro (WFT)	EPA 200 3/200 8

Trace metals in tissue are analyzed by high resolution inductively coupled plasma mass spectrometry (HR-ICPMS) modified from US EPA Method 200.8, (Revision 5.5). The sample preparation procedure is modified from US EPA 200.3. Analytical results are reported on wet weight basis.

Mercury in Tissue by CVAFS Micro (WET) **HG-WET-MICR-CVAF-VA** Tissue

This method is adapted from US EPA Method 200.3 "Sample Procedures for Spectrochemical Determination of Total Recoverable Elements in Biological Tissues" (1996). Tissue samples are homogenized and sub-sampled prior to hotblock digestion with nitric and hydrochloric acids, in combination with repeated additions of hydrogen peroxide. Analysis is by atomic fluorescence spectrophotometry or atomic absorption spectrophotometry, adapted from US EPA Method 245.7.

MET-WET-MICR-HRMS-VA Tissue Metals in Tissue by HR-ICPMS Micro (WET) EPA 200.3/200.8

Trace metals in tissue are analyzed by high resolution inductively coupled plasma mass spectrometry (HR-ICPMS) modified from US EPA Method 200.8, (Revision 5.5). The sample preparation procedure is modified from US EPA 200.3. Analytical results are reported on wet weight basis.

Method Limitation: This method employs a strong acid/peroxide digestion, and is intended to provide a conservative estimate of bio-available metals. Near complete recoveries are achieved for most toxicologically important metals, but elements associated with recalcitrant minerals may be only partially recovered.

MOISTURE-MICR-VA Tissue Moisture in Tissue Puget Sound WQ Authority, Apr 1997

This analysis is carried out gravimetrically by drying the sample at <60 deg. C.

TI-WET-MICR-HRMS-VA Tissue Ti in Tissue by HR-ICPMS Micro (WET) EPA 200.3/200.8

Trace metals in tissue are analyzed by high resolution inductively coupled plasma mass spectrometry (HR-ICPMS) modified from US EPA Method 200.8, (Revision 5.5). The sample preparation procedure is modified from US EPA 200.3. Analytical results are reported on wet weight basis.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
VA	ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

17-635882

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

ALS Environmental

Chain of Custody (COC) / Analytical Request Form

Canada Toll Free: 1 800 668 9878

1 2125502-COFC

coc Number: 17 - 635882

re d

					_						-									_
Report To Contact and company name below will appear on the final report		Report Format		<u> </u>	ļ	Se	ect Se	rvice i	_				AM to co					may a	pply)	
Company: Billon Consulting Ltd.	Select Report Fo	ormat: 🕍 POF		DD (DIGITAL)		Re	gular	[R]	<u> </u>	Standard	TAT If r	eceived b	y 3 pm + b	ousiness d	ays - no :	surcharge	es apply			
Contact: Mike Russum	Quality Control (QC) Report with Rep	ort FES	[_] NO	<u>}</u>	1	y [P4-				ENC	1 Bush	ness da	y [E-10	0%]					
Phone: 403 - 215 - 8885	Compare Resi	ults to Criteria on Report -			RICHE	3 da	y [P3-	25%]					ay, Wed					E2-2009	%	_
Company address below will appear on the final report	Select Distribution	_	MAJL []		1 4	2 da	y [P2-	50%]	<u>L</u> _			(Labora	atory op	ening f	ees ma	ay appl	y)]			
Street: 200 - 334 11 Ave SE	Email 1 or Fax	1 dilley	@ dillon		Date and Time Required for all ERP TATES dd-mnim-yy hh:mm For tosts that can not be performed according to the service level selected, you will be contacted.															
City/Province: Calyany 18	Email 2	か かびららいか	ne dillo-	1.CA	For tos	ts that co	ın not be	perform	ned acco	ording to	the servi	ce level se	elected, you	will be co	intacted.					
Postal Code: TZG DYZ	. Email 3	<u> </u>	<u>.</u>	·	<u> </u>								ysis Rec						.	
Invoice To Same as Report To A YES NO	·	Involce Dis	stribution	<u> </u>	<u> </u>			dicate	Filtered	(F), Pres) or Filter	ed and Pr	eserved (I	F/P) belo	w		_	details	
Copy of Invoice with Report 42 YES NO	Select Invoice D	<u> </u>	MAIL MAIL				F S	-	<u>_</u> _	Щ	无,		-						Į ž	
Company: Dillon Consulting Ltd.	Email 1 or Fax dilley @ dillon.cg												1				ĮĘ			
Contact: Laura D. Key Kidilley@ dillon.cg)	Email 1 or Fax Dilley @ dillon.cg													[١.	1	- £		
Project Information 644 -215 - 707		Oil and Gas Require		se)	<u> </u>	쿬)		7.550	۵	3				i l			-	provide further	
ALS Account # / Quote #: 0159	AFE/Cost Center:		PO#		15.	₹	35	3	12	Prep	5				1 .					
JOD# BRZITTAI Crown Moudain Tissue Simpling	Major/Minor Code:		Routing Code:] 🛴	3	Tissur	(1 score	'		3								ea ge	E
PO/AFE:	Requisitioner:				15		<	i	1.5	8	Tissur								E	<u>\$</u>
LSD:	Location:	· · · · · · · · · · · · · · · · · · ·			Hand);	٣		-~	J	Micro								_ [₹	Į	ह
ALS Lab Work Order # (lab use only):	ALS Contact:	•	Sampler:		<u>چ</u> پو	3	go vy	Metals	Moisture		۲.							SAMPLES ON HOLD	is hazardous (please	NUMBER OF CONTAINERS
ALS Sample # Sample Identification and/or Coordinates		Date	Time	CI- T	1 🐔	5. 1.85	Megeu	1	ف	TISSA				1				1 1	Sample	
(lab use only) (This description will appear on the report)		(dd-mmm-yy)	(hh:mm)	Sample Type	پر.	Į.	3-	2	~	ا۲	۳		_ .		<u> </u>			8	_sa_	Į ₹ .
WET 21		04-07-20R	18:60	tadpoles	P	Ċ6	eze n)			Ţ					- 1		7	T	T
WL		05-07-208	17:25	299 (bin	P	_	020×	/						-					1 -	T
			1-1	40	1		-				1							1	1	\vdash
					+-			<u> </u>			_	- †	1-	┼	1			╅	╁	
		-	 		+	 			├	-				+	\vdash		$\neg +$	+	╁	\vdash
		 	 	 	+		-		╁	 					\vdash		+		╁	╁
		<u> </u>			<u> </u>	ļ			ļ <u>.</u>	<u>. </u>								- -	┷	
					<u> </u>				<u> </u>						_		_		<u> </u>	<u> </u>
			<u> </u>							L					<u> </u>					
		Ţ							-		-				ΠΙ			"	7	ľ
														1	П					
		 	 		†				 					 	1 1	· · · -		1-	1	\vdash
		 	 	 	 	 			 	 			_	+-	┼╌┤			+	+	╀
	10 15 0 11 1	14	1		+-	<u> </u>	ļ	L	L	A MOI S	CON	DITION	AS RE	CEMER	l de u	se anti	<u></u>			Ь—
Drinking Water (DW) Samples¹ (client use)		add on report by clic extrenic COC only)	king on the drop-d	lown list below	Froze	en					_	bservati		Yes	, (lab u	_		0		T
Are samples taken from a Regulated DW System?					┥	acks		_	Cubes			dy seal	-	Yes		_		0	Ī	
☐ YES ☑ NO						ng Init	_	П		_		-,		100	_	-		•		_
Are samples for human consumption/ use?					\vdash			_	ER TEN	PERAT	URES °C	:		1	FINAL	COOLER	TEMPER	ATURES	<u>°C</u>	
YES NO					y 3		D.	5	C					2.1					T	
SHIPMENT RELEASE (client use)	***	INITIAL SHIPMEN	IT RECEPTION (I	ab use only)	and the same		A 1823	ang maga			FINAL	. SHIPN	ENT R	ECEPTI	ON (lal	b use o	nly)			
Released Original signed by Date: Time:	Received by:	***	Date:	J.14	Time	Ŷ	Rece	ived t	by:		* *		Date:	1	-			Time	9;	· ·
July 7, ZOIS		100	TE LABORATO	CODY VELLO	W CI	AVA) NPV									- :	<u>.</u>			

DILLON CONSULTING LIMITED

ATTN: Jacqueline Huard 510 - 3820 Cessna Drive Richmond BC V7B 0A2 Date Received: 27-MAY-19

Report Date: 24-JUN-19 13:05 (MT)

Version: FINAL

Client Phone: 604-278-7847

Certificate of Analysis

Lab Work Order #: L2279917
Project P.O. #: NOT SUBMITTED

Job Reference:

C of C Numbers: 17-701631

Legal Site Desc:

<Original signed by>

Brent Mack, B.Sc. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

L2279917 CONTD.... PAGE 2 of 3

ALS ENVIRONMENTAL ANALYTICAL REPORT

24-JUN-19 13:05 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2279917-1 Eggs 09-MAY-19 12:00 CSF-W17-19	L2279917-2 Eggs 09-MAY-19 13:45 WF-WL15-19	L2279917-3 Eggs 21-MAY-19 14:00 CSF-WL4.1-19	
Grouping	Analyte				
TISSUE					
Physical Tests	% Moisture (%)	96.2	95.4	97.8	
Metals	Aluminum (Al)-Total (mg/kg wwt)	1.6	<1.0	5.5	
	Antimony (Sb)-Total (mg/kg wwt)	0.0022	<0.0020	<0.0020	
	Arsenic (As)-Total (mg/kg wwt)	0.0105	<0.0060	0.0205	
	Barium (Ba)-Total (mg/kg wwt)	1.21	0.277	1.33	
	Beryllium (Be)-Total (mg/kg wwt)	<0.0020	<0.0020	<0.0020	
	Bismuth (Bi)-Total (mg/kg wwt)	<0.0020	<0.0020	<0.0020	
	Boron (B)-Total (mg/kg wwt)	0.38	0.24	<0.20	
	Cadmium (Cd)-Total (mg/kg wwt)	<0.0020	<0.0020	<0.0020	
	Calcium (Ca)-Total (mg/kg wwt)	745	354	327	
	Cesium (Cs)-Total (mg/kg wwt)	<0.0010	0.0011	0.0014	
	Chromium (Cr)-Total (mg/kg wwt)	<0.040	<0.040	<0.040	
	Cobalt (Co)-Total (mg/kg wwt)	0.0397	<0.0040	0.0166	
	Copper (Cu)-Total (mg/kg wwt)	0.247	0.253	0.203	
	Iron (Fe)-Total (mg/kg wwt)	44.0	2.5	179	
	Lead (Pb)-Total (mg/kg wwt)	<0.010	<0.010	<0.010	
	Lithium (Li)-Total (mg/kg wwt)	<0.10	<0.10	<0.10	
	Magnesium (Mg)-Total (mg/kg wwt)	122	99.6	56.4	
	Manganese (Mn)-Total (mg/kg wwt)	19.3	0.967	9.73	
	Mercury (Hg)-Total (mg/kg wwt)	<0.0010	<0.0010	<0.0010	
	Molybdenum (Mo)-Total (mg/kg wwt)	0.0438	0.0097	0.0151	
	Nickel (Ni)-Total (mg/kg wwt)	<0.040	<0.040	<0.040	
	Phosphorus (P)-Total (mg/kg wwt)	435	610	201	
	Potassium (K)-Total (mg/kg wwt)	24.0	93.4	24.2	
	Rubidium (Rb)-Total (mg/kg wwt)	0.016	0.085	0.069	
	Selenium (Se)-Total (mg/kg wwt)	0.190	0.164	0.083	
	Silver (Ag)-Total (mg/kg wwt)	<0.0010	<0.0010	<0.0010	
	Sodium (Na)-Total (mg/kg wwt)	27.3	54.9	8.6	
	Strontium (Sr)-Total (mg/kg wwt)	4.09	2.77	1.01	
	Tellurium (Te)-Total (mg/kg wwt)	<0.0040	<0.0040	<0.0040	
	Thallium (TI)-Total (mg/kg wwt)	0.00113	<0.00040	0.00053	
	Tin (Sn)-Total (mg/kg wwt)	0.049	<0.020	<0.020	
	Titanium (Ti)-Total (mg/kg wwt)	0.049	0.025	0.110	
	Uranium (U)-Total (mg/kg wwt)	0.00453	0.00371	0.00409	
	Vanadium (V)-Total (mg/kg wwt)	<0.020	<0.020	0.021	
	Zinc (Zn)-Total (mg/kg wwt)	5.76	6.06	4.96	
	Zirconium (Zr)-Total (mg/kg wwt)	<0.040	<0.040	<0.040	

Reference Information

L2279917 CONTD....

PAGE 3 of 3

24-JUN-19 13:05 (MT)

Version: FINAL

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**	
AG-WET-CCMS-MID-VA	Tissue	Silver in Tissue by CRC ICPMS (WET)	EPA 200.3/6020A	

This method is conducted following British Columbia Lab Manual method "Metals in Animal Tissue and Vegetation (Biota) - Prescriptive". Tissue samples are homogenized and sub-sampled prior to hotblock digestion with nitric and hydrochloric acids, in combination with addition of hydrogen peroxide. Instrumental analysis is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

Method Limitation: This method employs a strong acid/peroxide digestion, and is intended to provide a conservative estimate of bio-available metals. Near complete recoveries are achieved for most toxicologically important metals, but elements associated with recalcitrant minerals may be only partially recovered.

HG-WET-MICR-CVAF-VA Tissue Mercury in Tissue by CVAFS Micro (WET) EPA 200.3, EPA 245.7

This method is adapted from US EPA Method 200.3 "Sample Procedures for Spectrochemical Determination of Total Recoverable Elements in Biological Tissues" (1996). Tissue samples are homogenized and sub-sampled prior to hotblock digestion with nitric and hydrochloric acids, in combination with repeated additions of hydrogen peroxide. Analysis is by atomic fluorescence spectrophotometry or atomic absorption spectrophotometry, adapted from US EPA Method 245.7.

MET-WET-CCMS-MID-VA Tissue Metals in Tissue by CRC ICPMS (WET) EPA 200.3/6020A

This method is conducted following British Columbia Lab Manual method "Metals in Animal Tissue and Vegetation (Biota) - Prescriptive". Tissue samples are homogenized and sub-sampled prior to hotblock digestion with nitric and hydrochloric acids, in combination with addition of hydrogen peroxide. Instrumental analysis is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

Method Limitation: This method employs a strong acid/peroxide digestion, and is intended to provide a conservative estimate of bio-available metals. Near complete recoveries are achieved for most toxicologically important metals, but elements associated with recalcitrant minerals may be only partially recovered.

MOISTURE-MICR-VA Tissue Moisture in Tissue Puget Sound WQ Authority, Apr 1997

This analysis is carried out gravimetrically by drying the sample at <60 deg. C.

TI-WET-CCMS-MID-VA Tissue Ti in Tissue by CRC ICPMS (WET) EPA 200.3/6020A

This method is conducted following British Columbia Lab Manual method "Metals in Animal Tissue and Vegetation (Biota) - Prescriptive". Tissue samples are homogenized and sub-sampled prior to hotblock digestion with nitric and hydrochloric acids, in combination with addition of hydrogen peroxide. Instrumental analysis is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

Method Limitation: This method employs a strong acid/peroxide digestion, and is intended to provide a conservative estimate of bio-available metals. Near complete recoveries are achieved for most toxicologically important metals, but elements associated with recalcitrant minerals may be only partially recovered

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

 Laboratory Definition Code
 Laboratory Location

 VA
 ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

17-701631

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

ALS Environmental

Chain of Custody (COC) / Analytical Request Form

Canada Toil Free: 1 800 668 9878

L2279917-COFC

COC Number: 17 - 701631

Page of

_	www.alsglobal.com	•						<u> </u>	<u></u> .								
Report To	Contact and company name below will appear on the final report		Report Formus					_3elow	- Conta	act your /	AM to con	nfirm all E	&P TATs (surcharge	s may ar	pply)	
Company:	Dillon Consulting Limited	Select Report Fo	ormat: PDF	EXCEL	EDD (DIGITAL)	R	egular [R] 🕻	Standa	rd TAT if	received b	y 3 pm - bu	isiness days	- no surcha	rges apply			
Contact:	Sacqueline Huard	Quality Control ((QC) Report with Rep	ort YE	S ON	≥	ay [P4-20%]		ENCY	1 Busii	ness day	[E-100%	[ر				
Phone:	778 678 0637	Compare Resi	ults to Criteria on Report - I	provide details below	if box checked	हुँ <mark>।</mark> 3 d	ay [P3-25%]		ME RG	Same D	ay, Weel	kend or S	Statutory	holiday '	E2-200'	%	
	Company address below will appear on the final report	Select Distribution	on: K EMAIL	MA1L [FAX	<u>के ब</u> 2 d	ay [P2-50%]		_	(Labora	tory ope	ening fees	s may ap	ply)]	_		
Street:	3820 CESSIA DINE	Email 1 or Fax	huard@	0.1100-0	ca	Date and Time Required for all E&P TATs: dd-mmm-yy hh:mm							n				
City/Province:	Richmond, BC	Email 2	LD illeace	dillon.	(a	For tests that	can not be perform	ed according	to the serv	rice level se	lected, you	will be contar	cted.				
Postal Code:	V7BOAZ	Email 3	KPOORE	1000 a	ca					Analy	sis Req	uest					
Invoice To	Same as Report To		Invoice Dis	stribution	·		Indicate f	iltered (F), Pr	eserved ((P) or Filter	ed and Pres	served (F/P)	below			details	
	Copy of Invoice with Report YES NO	Select Invoice D	,		FAX									oxdot			
Company:	D.llon	Email 1 or Fax	~Salm	eidaed.	llon.ca	$ \mathcal{K} $		Τ				1				further	
Contact:		Email 2	1		·	3										5	
_	Project Information	· 188	Oil and Gas Required	d Fields (client :	use)	1 3										o vi	
ALS Account # /	Quote #:	AFE/Cost Center:	**	PO#		14										e pr	
Job#:		Major/Minor Code:	5	Routing Code:		بج										eas	RS.
PO / AFE:		Requisitioner:	* ***							.		 			٦	d) s	Ž
LSD:		Location:	<u> </u>			$[\checkmark]$					1				Ī₫	Ldou	Ę.
ALS Lab Wor	k Order# (lab use only):	ALS Contact)asmeen	Sampler:	RH	7									ES ON F	is hazaı	NUMBER OF CONTAINERS
ALS Sample #	Sample Identification and/or Coordinates		Date	Time	Sample Type	3									SAMPLES	eg m	MBE
(lab use only)	(This description will appear on the report)		(dd-mmm-yy)	(hh:mm)					1			₩-	—		& ₩	S.	ž
		<u> 19-19</u>	09-May-19	1200	Eggs	X											
	WF-WL	15-19	09-May-19	1345	00"	\bowtie											
	CSF-WL	4-1-19	2 - 1400 19		11	X									Т		П
			1 3	1,(0-			1-1-						\top		\top		
afy (M)		;		-									+		+	1	
			<u> </u>								_		+		+	†	
			<u> </u>	 								+-+	-	 	+-	+	
		<u>* , </u>				1	- 		 			++			+	+	
			-		 	 		-	+			+		┝╼┼╴	-	1	┝─┤
				-		 	 		 			++	-	\vdash	_	†	
			 	 			+		+	+ +		+-+		++			
			 	 		 - -	+		+	 		+-+	+	+-+		┼	_
	Special Instructions	/ Specify Critoria to	add on report by clici	king on the drop.	down list below	 		SAMP	LÉ CON	NOITION	AS REC	EIVED (la	ab use or	ılv)	—ـــــــــــــــــــــــــــــــــــــ		<u></u>
Drinking	g Water (DW) Samples¹ (client use)	(ele	ectronic COC only)	king on the grop-	down list below	Frozen				Observati		Yes			Vo .		<u> </u>
	n from a Regulated DW System?	· · ·				ice Packs		ubes 🔲				Yes	ā		No		_
YE	ES (TNO)					Cooling In										<u>.</u>	
Are samples for h	uman consumption/ use?						INITIAL COOL	R TEMPER/	TURES 6	Ċ		F)	NAL COOLE	RTEMPER	ATURES!	°C	
\	es No						_	-	. 🗔			11. A.T.			in a second		
	SHIPMENT RELEASE (client use)	2 4 000000000000000000000000000000000000	INITIAL SHIPMEN	TRECEPTION ((lab use only)			-	FINA	L SHIPN	ENT RE	CEPTION	(lab use	only)			
Released By <or< td=""><td>riginal signed by> Date You, 27, 2019 Time:</td><td>Received by:</td><td></td><td>Date:</td><td></td><td>Time:</td><td>Received b</td><td>y;</td><td>L)</td><td>Δ</td><td>ate:</td><td>1-</td><td></td><td></td><td>Time</td><td>714</td><td>00</td></or<>	riginal signed by> Date You, 27, 2019 Time:	Received by:		Date:		Time:	Received b	y;	L)	Δ	ate:	1-			Time	714	00
REFERMO BACK	PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION		WHI	TE - LABORATOR	V COBY VELLO	A CLENT	COBY	<u> </u>	- 4	r1	<u> </u>	:1 <u>L</u>	<u> </u>			JULY 2	2017 FRON

Appendix F

Water Quality Data

2018-05-09

Sample Date 2018-05-05

2018-05-05

2018-05-08

							Location Code	18-WF-WL9B	18-WL9	18-WF-10	18-CSF-07
							2019 Location Name	15	17	13	4
							Lab Report Number	B835235	B835235	B835678	B835678
				BC WQG Approved - Fresh Water Aquatic Life	BC WQG Working - Fresh Water Aquatic Life	CWQG Aquatic Life Freshwater - Long Term	<u>CWQG Aquatic Life</u> <u>Freshwater - Short Term</u>				
Chemical Group	Chemical Name	Units	EQL								
	Bicarbonate	mg/L	1					317	297	238	166
	Carbonate	mg/L	1					7.8	6.7	<1	<1
	Hydroxide	mg/L	1					<1	<1	<1	<1
	Alkalinity (total) as CaCO3	mg/L	1					273	255	195	136
	Phenolphthalein Alkalinity	mg/L	1					6.5	5.6	<1	<1
	Ammonia	mg/L	0.02			Range*		0.11	0.074	0.048	<0.02
	Ammonia (as N)	mg/L	0.005	Range*				-	-	-	-
	Nitrate (as N)	mg/L	0.005	32.8				<0.02	<0.02	<0.02	0.241
	Nitrate (as N) (Filtered)	mg/L	0.01	32.8				-	-	-	-
	Nitrate (as NO3-) (Filtered)	mg/L	0.044			13	<u>550</u>	-	-	-	-
	Nitrate + Nitrite (as N)	mg/L	0.0051					<0.02	<0.02	<0.02	0.241
	Nitrite (as N)	mg/L	0.001	Range*				<0.005	<0.005	<0.005	<0.005
	Nitrite (as N) (Filtered)	mg/L	0.01	Range*				-	-	-	-
	Nitrite (as NO2-) (Filtered)	mg/L	0.033			0.197		-	-	-	-
	Phosphorus	mg/L	0.002					0.0175	0.0388	0.11	0.0229
General Chemistry	Ortho Phosphorus (as P)	mg/L	0.003					0.0078	0.0134	0.0454	< 0.005
	Ortho Phosphorus (as P) (Filtered)	mg/L	0.001					-	-	-	-
	Electrical conductivity (lab)	μS/cm	2					806	735	358	286
	Chloride	mg/L	0.5	600		120	<u>640</u>	-	-	-	-
	Chloride (Filtered)	mg/L	1	600		120	<u>640</u>	4.9	2.4	1.6	<1
	Fluoride	mg/L	0.02	Range*		0.12		0.23	0.19	0.27	0.13
	Bromide	mg/L	0.05					-	-	-	-
	Bromide (Filtered)	mg/L	0.01					0.035	0.026	<0.01	<0.01
	Dissolved Organic Carbon (Filtered)	mg/L	0.5					17.2	13.7	13.4	2.86
	Total Organic Carbon (TOC)	mg/L	0.5					18.2	15	15.9	1.81
	pH (Lab)	pH Unit	0.1			6.5-9		8.41	8.41	8.24	8.23
	Sulphate (SO4)	mg/L	0.3	Range*				-	-	-	-
	Sulphate (SO4) (Filtered)	mg/L	1	Range*				183	157	<1	17.1
	Hardness, Total	mg/L	0.5					403	364	189	145
	Total Suspended Solids (TSS)	mg/L	1					3	7.4	4	2.5
	Turbidity	NTU	0.1					1.56	1.48	1.69	0.97
	Alkalinity (Bicarbonate as CaCO3)	mg/L	1					-	-	-	-
Calculated	Alkalinity (Carbonate as CaCO3)	mg/L	1					-	-	-	-
	Hardness (as CaCO3)	mg/L	0.5					-	-	-	-
Parameters	Hardness (as CaCO3) (Filtered)	mg/L	0.5					429	393	183	151
	Alkalinity (Hydroxide) as CaCO3	mg/L	1					-	-	-	-
	1-Methylnaphthalene	mg/L	0.00005					<0.00005	<0.00005	<0.00005	<0.0005
	2-Methylnaphthalene	mg/L	0.00002					<0.0001	<0.0001	<0.0001	<0.0001
	Acenaphthene	mg/L	0.00001	0.006		0.0058		<0.00005	<0.00005	<0.00005	<0.0005

				Sample D					2018-05-05	2018-05-08	2018-05-09
							Location Code	18-WF-WL9B	18-WL9	18-WF-10	18-CSF-07
							2019 Location Name	15	17	13	4
							Lab Report Number	B835235	B835235	B835678	B835678
Chemical Group	Chemical Name	Units	EQL	BC WQG Approved - Fresh Water Aquatic Life	BC WQG Working - Fresh Water Aquatic Life	CWQG Aquatic Life Freshwater - Long Term	CWQG Aquatic Life Freshwater - Short Term				
Crieffical Group	Acenaphthylene	mg/L	0.00001					<0.0005	<0.0005	<0.0005	<0.0005
	Acridine	mg/L	0.00001	0.003		0.0044		<0.00005	<0.00005	<0.00005	<0.00005
	Anthracene	mg/L	0.00001	0.003		0.000012		<0.00003	<0.00003	<0.00003	<0.00003
	Benzo(a)anthracene	mg/L	0.00001	0.0001		0.000012		<0.00001	<0.00001	<0.00001	<0.00001
	Benzo(a) pyrene	mg/L	0.00001	0.0001		0.000015		<0.00001	<0.00001	<0.00001	<0.00001
	Benzo(b+j)fluoranthene	mg/L	0.000003	0.00001		0.000013		<0.00003	<0.00003	<0.00003	<0.00003
	Benzo(g,h,i)perylene	mg/L	0.00001					<0.00005	<0.00005	<0.00005	<0.00005
	Benzo(k)fluoranthene	mg/L	0.00001					<0.00005	<0.00005	<0.00005	<0.00005
Polycyclic Aromatic		mg/L	0.00001					<0.00003	<0.00003	<0.00003	<0.00003
Hydrocarbons (PAHs)	Chrysene Dibenz(a,h)anthracene	mg/L	0.00001					<0.00002	<0.00002	<0.00002	<0.00002
	Fluoranthene	mg/L	0.000003	0.004		0.00004	-	<0.00003	<0.00003	<0.00003	<0.00003
	Fluorene	J	0.00001	0.012		0.003		<0.00002	<0.00002	<0.00002	<0.00002
	Indeno(1,2,3-c,d)pyrene	mg/L	0.00001	0.012		0.003	-	<0.00005	<0.00005	<0.00005	<0.00005
	Naphthalene	mg/L	0.00001	0.001		0.0011	-	<0.0003	<0.0001	<0.0001	<0.0003
	Phenanthrene	mg/L	0.00002			0.0011		<0.0001			<0.0001
		mg/L		0.0003					<0.00005	<0.00005	<0.00005
	Pyrene Quinoline	mg/L	0.00001 0.00002	0.00002	0.0034	0.000025 0.0034		<0.00002 <0.00002	<0.00002 <0.00002	<0.00002	<0.00002
		mg/L			0.0034	0.0034				0.000022	
	Light Molecular Weight (PAH Sum)	mg/L	0.0001					<0.0001	<0.0001	<0.0001	<0.0001
	Heavy Molecular Weight (PAH Sum)	mg/L	0.00005					<0.00005	<0.00005	<0.00005	<0.00005
	PAHs (Sum of total)	mg/L	0.0001			0.1		<0.0001	<0.0001	<0.0001	<0.0001
	Aluminium	mg/L	0.003	0.05		0.1		0.0187	0.01	0.0108	0.0127
	Aluminium (Filtered)	mg/L	0.0005	0.05	0.000	0.1		0.00463	0.00331	0.0048	0.0048
	Antimony	mg/L	0.00002		0.009			0.000115	0.000109	0.000158	0.000024
	Antimony (Filtered)	mg/L	0.00002	0.005	0.009	0.005		0.000118	0.000112	0.00015	0.000028
	Arsenic	mg/L	0.00002	0.005		0.005		0.000496	0.000507	0.000575	0.000105
	Barium	mg/L	0.00005					0.0956	0.07	0.168	0.0433
	Barium (Filtered)	mg/L	0.00002		0.00010		 	0.0955	0.0687	0.172	0.0541
	Beryllium (Filtered)	mg/L	0.00001		0.00013		 	<0.00001	<0.00001	<0.00001	<0.00001
	Beryllium (Filtered)	mg/L	0.00001		0.00013		 	<0.00001	<0.00001	<0.00001	<0.00001
	Bismuth	mg/L	0.00001					<0.00001	<0.00001	<0.00001	<0.00001
	Bismuth (Filtered)	mg/L	0.000005	1.0		1.5	20	<0.000005	<0.000005	<0.000005	<0.000005
	Boron	mg/L	0.01	1.2		1.5	<u>29</u>	0.107	0.092	<0.01	<0.01
	Boron (Filtered)	mg/L	0.01	1.2		1.5	<u>29</u>	0.131	0.109	<0.01	<0.01
	Cadmium (Filtered)	mg/L	0.000005	Range*		Range*	Range*	<0.000005	<0.000005	0.0000281	0.000174
	Calcium	mg/L	0.05					116	103	51.9	38.3
	Calcium (Filtered)	mg/L	0.05		2 2225			120	108	50.4	41.1
	Chromium Total (III+VI)	mg/L	0.0001		0.0089			<0.0001	<0.0001	<0.0001	0.0002
	Chromium Total (III+VI) (Filtered)	mg/L	0.0001	2.224	0.0089			<0.0001	<0.0001	<0.0001	0.00015
I	Cobalt	mg/L	0.00001	0.004				0.000104	0.000163	0.000074	0.000017

2018-05-09

Sample Date 2018-05-05

2018-05-05

2018-05-08

							Location Code	18-WF-WL9B	18-WL9	18-WF-10	18-CSF-07
							2019 Location Name	15	17	13	4
							Lab Report Number	B835235	B835235	B835678	B835678
				BC WQG Approved - Fresh Water Aquatic Life	BC WQG Working - Fresh Water Aquatic Life	CWQG Aquatic Life Freshwater - Long Term	CWQG Aquatic Life Freshwater - Short Term				
Chemical Group	Chemical Name	Units	EQL								
	Cobalt (Filtered)	mg/L	0.000005	0.11				0.0000937	0.0000999	0.0000687	0.0000283
	Copper	mg/L	0.0001	Range*		0.002		0.00038	0.00024	0.00102	0.0003
	Copper (Filtered)	mg/L	0.00005	0.002		0.002		0.000405	0.00017	0.000976	0.000174
	Iron	mg/L	0.005	1		0.3		0.0695	0.212	0.0324	0.0341
	Iron (Filtered)	mg/L	0.001	0.35		0.3		0.0542	0.0944	0.025	0.0228
	Lead	mg/L	0.00002	Range*		Range*		0.000031	0.000031	0.000029	<0.00002
	Lead (Filtered)	mg/L	0.000005	0.003		0.001		0.0000194	0.0000076	0.0000174	0.0000067
	Lithium	mg/L	0.0005		0.87			0.0543	0.0384	0.00374	0.00503
	Lithium (Filtered)	mg/L	0.0005		0.87			0.0613	0.0445	0.00364	0.00477
	Magnesium	mg/L	0.005					27.7	26	14.4	12
	Magnesium (Filtered)	mg/L	0.005					31.3	29.9	13.8	11.8
	Manganese	mg/L	0.0001	Range*				0.00793	0.0692	0.00875	0.005
Metals	Mercury	mg/L	0.000002			0.000026		<0.000002	<0.000002	0.0000021	<0.000002
Wictals	Mercury (Filtered)	mg/L	0.000002			0.000026		<0.000002	<0.00002	0.0000026	<0.000002
	Molybdenum	mg/L	0.00005	2		0.073		0.00163	0.00408	0.00128	0.000832
	Molybdenum (Filtered)	mg/L	0.00005	2		0.073		0.00181	0.00424	0.00125	0.000835
	Nickel	mg/L	0.0001		Range*	Range*		0.00055	0.00071	0.00083	0.00014
	Potassium	mg/L	0.05		373			2.84	2.76	1.64	0.48
	Potassium (Filtered)	mg/L	0.05		373			2.84	2.79	1.6	0.747
	Selenium	mg/L	0.00004	0.002		0.001		0.000335	0.000255	0.000383	0.000247
	Selenium (Filtered)	mg/L	0.00004	0.002		0.001		0.000307	0.000258	0.000388	0.000202
	Silicon	mg/L	0.05					10.5	7.51	10.7	2.01
	Silicon (Filtered)	mg/L	0.05					10.5	7.6	10.3	2.88
	Silver	mg/L	0.00001	Range*		Range*		<0.00001	<0.00001	<0.00001	<0.00001
	Silver (Filtered)	mg/L	0.000005	0.0001		0.00025		<0.000005	<0.00005	<0.00005	<0.000005
	Sodium	mg/L	0.05					18	10.8	2.1	1.74
	Sodium (Filtered)	mg/L	0.05					19.9	12.7	2.03	1.83
	Strontium	mg/L	0.00005					1.29	1.01	0.118	0.168
	Strontium (Filtered)	mg/L	0.00005					1.33	1.07	0.118	0.171
	Sulphur (as S)	mg/L	3					53.5	47.9	<3	5.1
	Sulphur (as S) (Filtered)	mg/L	3					57.4	50.4	<3	4.8
	Thallium	mg/L	0.000002		0.0008	0.0008		0.0000034	0.0000032	<0.000002	<0.000002
	Thallium (Filtered)	mg/L	0.000002		0.0008	0.0008		0.0000032	0.0000028	<0.000002	<0.000002
	Tin	mg/L	0.0001					<0.0002	<0.0002	<0.0002	<0.0002
	Tin (Filtered)	mg/L	0.0001					<0.0002	<0.0002	<0.0002	<0.0002
	Titanium	mg/L	0.0003		2			<0.002	< 0.002	<0.002	<0.002
	Titanium (Filtered)	mg/L	0.0003		2			<0.0005	<0.0005	<0.0005	<0.0005
	Uranium	mg/L	0.000005		0.0085	0.015	<u>0.033</u>	0.000713	0.000468	0.000422	0.000337
	Uranium (Filtered)	mg/L	0.000002		0.0085	0.015	<u>0.033</u>	0.000758	0.000505	0.000435	0.000322

							Sample Date	2018-05-05	2018-05-05	2018-05-08	2018-05-09
							Location Code	18-WF-WL9B	18-WL9	18-WF-10	18-CSF-07
							2019 Location Name	15	17	13	4
							Lab Report Number	B835235	B835235	B835678	B835678
				BC WQG Approved -	BC WQG Working -	CWQG Aquatic Life	CWQG Aquatic Life				
					Fresh Water Aquatic Life	· ·	Freshwater - Short Term				
Chemical Group	Chemical Name	Units	EQL								
	Vanadium	mg/L	0.0002					<0.0002	<0.0002	0.00048	<0.0002
	Vanadium (Filtered)	mg/L	0.0002					<0.0002	<0.0002	0.00045	<0.0002
	Zinc	mg/L	0.001	Range*		0.03		0.0041	0.0025	0.0019	0.0025
	Zinc (Filtered)	mg/L	0.0001	0.033		Range*		0.017	0.0015	0.00159	0.00424
	Zirconium	mg/L	0.0001					<0.0001	< 0.0001	0.00018	< 0.0001
	Zirconium (Filtered)	mg/L	0.0001					<0.0001	< 0.0001	0.00027	<0.0001

^{*}WQGs are dependent on sample-specific parameters. See Appendix G for WQG calculations.

							Sample Date	2018-07-04	2019-05-09	2019-05-09	2019-05-21
					Location Code	WET21	WF-WL15-19	CSF-WL17-19	CSF - 4.1-19		
							2019 Location Name	15	15	17	4
							Lab Report Number	B855658	L2271768	L2271768	L2278661
				BC WQG Approved - Fresh Water Aquatic Life	BC WQG Working - Fresh Water Aquatic Life	CWQG Aquatic Life Freshwater - Long Term	CWQG Aquatic Life Freshwater - Short Term				
Chemical Group	Chemical Name	Units	EQL								
	Bicarbonate	mg/L	1					404	-	-	-
	Carbonate	mg/L	1					<1	-	-	-
	Hydroxide	mg/L	1					<1	-	-	-
	Alkalinity (total) as CaCO3	mg/L	1					331	249	335	211
	Phenolphthalein Alkalinity	mg/L	1					<1	2.4	4	<2
	Ammonia	mg/L	0.02			Range*		0.042	-	-	-
	Ammonia (as N)	mg/L	0.005	Range*				-	0.0673	0.262	0.0984
	Nitrate (as N)	mg/L	0.005	32.8				-	0.081	<0.025	<0.005
	Nitrate (as N) (Filtered)	mg/L	0.01	32.8				<0.01	-	-	-
	Nitrate (as NO3-) (Filtered)	mg/L	0.044			13	<u>550</u>	<0.044	-	-	-
	Nitrate + Nitrite (as N)	mg/L	0.0051					<0.014	0.081	<0.025	<0.0051
	Nitrite (as N)	mg/L	0.001	Range*				-	<0.005	<0.005	<0.001
	Nitrite (as N) (Filtered)	mg/L	0.01	Range*				<0.01	-	-	-
	Nitrite (as NO2-) (Filtered)	mg/L	0.033			0.197		<0.033	-	-	-
	Phosphorus	mg/L	0.002					0.0107	0.0127	0.0483	0.0155
General Chemistry	Ortho Phosphorus (as P)	mg/L	0.003					0.0069	-	-	-
	Ortho Phosphorus (as P) (Filtered)	mg/L	0.001					-	<0.001	0.0137	0.0019
	Electrical conductivity (lab)	μS/cm	2					750	1010	660	399
	Chloride	mg/L	0.5	600		120	<u>640</u>	-	11.7	<2.5	<0.5
	Chloride (Filtered)	mg/L	1	600		120	<u>640</u>	5.6	-	-	-
	Fluoride	mg/L	0.02	Range*		0.12		0.26	0.21	0.23	0.11
	Bromide	mg/L	0.05					-	<0.25	<0.25	<0.05
	Bromide (Filtered)	mg/L	0.01					<0.01	-	-	-
	Dissolved Organic Carbon (Filtered)	mg/L	0.5					24	25	21.2	10.1
	Total Organic Carbon (TOC)	mg/L	0.5					24	25.2	21.7	10.5
	pH (Lab)	pH Unit	0.1			6.5-9		8.06	8.35	8.37	8.16
	Sulphate (SO4)	mg/L	0.3	Range*				-	332	128	9.43
	Sulphate (SO4) (Filtered)	mg/L	1	Range*				103	-	-	-
	Hardness, Total	mg/L	0.5					402	-	-	-
	Total Suspended Solids (TSS)	mg/L	1					<4	<1	5.7	1.6
	Turbidity	NTU	0.1					0.82	0.54	3.26	1.16
	Alkalinity (Bicarbonate as CaCO3)	mg/L	1					-	244	327	211
Calculated	Alkalinity (Carbonate as CaCO3)	mg/L	1					-	4.8	8	<1
Parameters	Hardness (as CaCO3)	mg/L	0.5					-	529	424	204
Tarameters	Hardness (as CaCO3) (Filtered)	mg/L	0.5					411	-	-	-
	Alkalinity (Hydroxide) as CaCO3	mg/L	1					-	<1	<1	<1
	1-Methylnaphthalene	mg/L	0.00005					<0.00005	<0.00005	<0.00005	<0.0005
	2-Methylnaphthalene	mg/L	0.00002					<0.0001	<0.00002	<0.00002	<0.00002
	Acenaphthene	mg/L	0.00001	0.006		0.0058		<0.00005	<0.00001	<0.00001	<0.00001

					Sample Date	2018-07-04	2019-05-09	2019-05-09	2019-05-21		
							Location Code	WET21	WF-WL15-19	CSF-WL17-19	CSF - 4.1-19
							2019 Location Name	15	15	17	4
							Lab Report Number	B855658	L2271768	L2271768	L2278661
				DC MOC Ammuni	DC MOC Manking	0\MOC A	OM/OC A				
				BC WQG Approved -	BC WQG Working -	CWQG Aquatic Life	CWQG Aquatic Life				
				Fresh water Aquatic Life	Fresh Water Aquatic Life	Freshwater - Long Term	<u>Freshwater - Short Term</u>				
Chemical Group	Chemical Name	Units	EQL								
	Acenaphthylene	mg/L	0.00001					<0.00005	<0.00001	<0.0001	<0.00001
	Acridine	mg/L	0.00001	0.003		0.0044		<0.00005	<0.0001	<0.0001	<0.00001
	Anthracene	mg/L	0.00001	0.004		0.000012		<0.00001	<0.0001	<0.0001	<0.00001
	Benzo(a)anthracene	mg/L	0.00001	0.0001		0.000018		<0.00001	<0.0001	<0.0001	<0.00001
	Benzo(a) pyrene	mg/L	0.000005	0.00001		0.000015		<0.00005	<0.00005	<0.00005	<0.000005
	Benzo(b+j)fluoranthene	mg/L	0.00001					<0.00003	<0.0001	<0.0001	<0.00001
	Benzo(g,h,i)perylene	mg/L	0.00001					<0.00005	<0.00001	<0.0001	<0.00001
	Benzo(k)fluoranthene	mg/L	0.00001					<0.0005	<0.00001	<0.0001	<0.0001
Polycyclic Aromatic	Chrysene	mg/L	0.00001					<0.0002	<0.00001	<0.0001	<0.0001
Hydrocarbons (PAHs)	Dibenz(a,h)anthracene	mg/L	0.000003					<0.000003	<0.000005	<0.000005	<0.000005
	Fluoranthene	mg/L	0.00001	0.004		0.00004		<0.00002	<0.00001	<0.00001	<0.00001
	Fluorene	mg/L	0.00001	0.012		0.003		<0.00005	<0.00001	<0.00001	<0.00001
	Indeno(1,2,3-c,d)pyrene	mg/L	0.00001	0.0.2		0.000		<0.00005	<0.00001	<0.00001	<0.00001
	Naphthalene	mg/L	0.00002	0.001		0.0011		<0.0001	<0.00002	<0.00002	<0.00002
	Phenanthrene	mg/L	0.00002	0.0003		0.0004		<0.00005	<0.00002	<0.00002	<0.00002
	Pyrene	mg/L	0.00001	0.00002		0.000025		<0.00002	<0.00001	<0.00001	<0.00001
	Quinoline	mg/L	0.00001	0.00002	0.0034	0.0034		<0.00002	<0.00001	<0.00005	<0.00001
	Light Molecular Weight (PAH Sum)	mg/L	0.0001		0.0001	0.0001		<0.0001	-	-	-
	Heavy Molecular Weight (PAH Sum)	mg/L	0.00005					<0.0001	_	-	_
	PAHs (Sum of total)	mg/L	0.0001					<0.0001	_		_
	Aluminium	mg/L	0.003			0.1		0.0065	<0.015	<0.015	0.0032
	Aluminium (Filtered)	mg/L	0.0005	0.05		0.1		0.0044	0.0073	<0.005	0.0032
	Antimony	mg/L	0.0003	0.00	0.009	0.1		<0.0005	<0.0005	<0.005	<0.0012
	Antimony (Filtered)	mg/L	0.00002		0.007			<0.0005	<0.0005	<0.0005	<0.0001
	Arsenic	mg/L	0.00002	0.005	0.007	0.005		0.00047	0.0005	0.00084	0.00032
	Barium	mg/L	0.00002	0.003	1	0.003		0.0642	0.0854	0.0704	0.0848
	Barium (Filtered)	mg/L	0.00003		1			0.0643	0.0894	0.0742	0.0774
	Beryllium	mg/L	0.00002		0.00013			<0.0043	<0.0005	<0.0005	<0.0001
	Beryllium (Filtered)	mg/L	0.00001		0.00013			<0.0001	<0.0005	<0.0005	<0.0001
	Bismuth	mg/L	0.00001		0.00013			<0.001	-	-	
	Bismuth (Filtered)	mg/L	0.00001				 	<0.001	-		-
	Boron	mg/L	0.000003	1.2		1.5	20	0.133	0.12	0.074	0.013
	Boron (Filtered)	mg/L	0.01	1.2		1.5	2 <u>9</u> 2 <u>9</u>	0.133	0.12	0.074	0.015
	Cadmium (Filtered)		0.000005	Range*		Range*	Range*	<0.00001	<0.000025	<0.00025	<0.00005
	Calcium	mg/L	0.000005	Kanye		Range	<u>ranye</u>	112	<0.000025 141	<0.000025 116	71.5
	Calcium (Filtered)	mg/L	0.05					114	148	118	59
	Chromium Total (III+VI)	mg/L	0.0001		0.0089						0.00013
	Chromium Total (III+VI) (Filtered)	mg/L	0.0001		0.0089			<0.001 <0.001	<0.0005 <0.0005	<0.0005	0.00013
	` ' ' '	mg/L		0.004	0.0089					<0.0005	
I	Cobalt	mg/L	0.00001	0.004		<u> </u>		<0.0002	<0.0005	0.00054	0.00015

2019-05-21

Sample Date 2018-07-04

2019-05-09

2019-05-09

							Location Code	WET21	WF-WL15-19	CSF-WL17-19	CSF - 4.1-19
							2019 Location Name	15	15	17	/si - 4.1-17
							Lab Report Number	B855658	L2271768	L2271768	L2278661
							Lab Report Number	D033030	L2271700	L2271700	L2270001
				BC WQG Approved - Fresh Water Aquatic Life	BC WQG Working - Fresh Water Aquatic Life	CWQG Aquatic Life Freshwater - Long Term	<u>CWQG Aquatic Life</u> <u>Freshwater - Short Term</u>				
Chemical Group	Chemical Name	Units	EQL								
	Cobalt (Filtered)	mg/L	0.000005	0.11				< 0.0002	<0.0005	0.00056	0.00013
	Copper	mg/L	0.0001	Range*		0.002		< 0.0005	<0.0025	< 0.0025	<0.0005
	Copper (Filtered)	mg/L	0.00005	0.002		0.002		0.00031	<0.001	<0.001	<0.0002
	Iron	mg/L	0.005	1		0.3		0.061	<0.05	0.908	0.669
	Iron (Filtered)	mg/L	0.001	0.35		0.3		0.0575	< 0.05	0.413	0.348
	Lead	mg/L	0.00002	Range*		Range*		< 0.0002	0.00035	<0.00025	<0.00005
	Lead (Filtered)	mg/L	0.000005	0.003		0.001		<0.0002	<0.00025	<0.00025	<0.00005
	Lithium	mg/L	0.0005		0.87			0.0687	0.064	0.0349	0.0057
	Lithium (Filtered)	mg/L	0.0005		0.87			0.065	0.0659	0.0357	0.0069
	Magnesium	mg/L	0.005					29.9	38.3	32	16.4
	Magnesium (Filtered)	mg/L	0.005					30.6	38.4	31.5	13.8
	Manganese	mg/L	0.0001	Range*				0.0036	0.00209	0.124	0.227
Metals	Mercury	mg/L	0.000002			0.000026		<0.00002	<0.000025	<0.000025	<0.000005
Wiotalo	Mercury (Filtered)	mg/L	0.000002			0.000026		<0.00002	<0.000025	<0.000025	<0.000005
	Molybdenum	mg/L	0.00005	2		0.073		<0.001	0.00375	0.00568	0.000892
	Molybdenum (Filtered)	mg/L	0.00005	2		0.073		<0.001	0.00394	0.0059	0.000835
	Nickel	mg/L	0.0001		Range*	Range*		<0.001	<0.0025	<0.0025	<0.0005
	Potassium	mg/L	0.05		373			2.2	2.75	2.15	0.814
	Potassium (Filtered)	mg/L	0.05		373			2.37	2.83	2.19	0.744
	Selenium	mg/L	0.00004	0.002		0.001		0.00055	0.00031	<0.00025	0.000081
	Selenium (Filtered)	mg/L	0.00004	0.002		0.001		0.00053	<0.00025	<0.00025	0.000115
	Silicon	mg/L	0.05					7.53	-	-	-
	Silicon (Filtered)	mg/L	0.05					7.93	-	-	-
	Silver	mg/L	0.00001	Range*		Range*		<0.00002	<0.00005	<0.00005	<0.00001
	Silver (Filtered)	mg/L	0.000005	0.0001		0.00025		<0.00002	<0.00005	<0.00005	<0.00001
	Sodium	mg/L	0.05					16.4	19	13.4	2.68
	Sodium (Filtered)	mg/L	0.05					17.4	19.3	12.7	2.49
	Strontium Strontium (Filtered)	mg/L	0.00005					1.13	-	-	-
	Strontium (Filtered)	mg/L	0.00005					1.11	-	-	-
	Sulphur (as S)	mg/L	3					28.8	-	-	-
	Sulphur (as S) (Filtered)	mg/L	3		0.0000	0.0000		31.1		- -0.0000E	-0.00001
	Thallium Thallium (Filtered)	mg/L	0.000002		0.0008	0.0008		<0.00001	<0.00005	<0.00005	<0.00001
	Thallium (Filtered) Tin	mg/L	0.000002		0.0008	0.0008		<0.0001 <0.005	<0.0005 <0.0005	<0.0005 <0.0005	<0.0001 <0.0001
	Tin (Filtered)	mg/L	0.0001				\vdash	<0.005	<0.0005	<0.0005	<0.0001
	Titanium	mg/L	0.0001		2		\vdash	<0.005	<0.0005	<0.005	<0.0001
	Titanium (Filtered)	mg/L mg/L	0.0003		2			<0.005	<0.0015	<0.0015	<0.0003
	Uranium	mg/L	0.00005		0.0085	0.015	0.033	0.0003	0.0015	0.000662	0.0003
	Uranium (Filtered)	mg/L	0.000003		0.0085	0.015	0.033	0.0003	0.00197	0.000647	0.000299
	oraniani (riiterea)	IIIy/L	0.000002		0.0003	0.013	<u>0.033</u>	0.00027	0.00170	0.000047	0.000227

							Sample Date	2018-07-04	2019-05-09	2019-05-09	2019-05-21
							Location Code	WET21	WF-WL15-19	CSF-WL17-19	CSF - 4.1-19
							2019 Location Name	15	15	17	4
							Lab Report Number	B855658	L2271768	L2271768	L2278661
				BC WQG Approved -	BC WQG Working -	CWQG Aquatic Life	CWQG Aquatic Life				
				Fresh Water Aquatic Life	Fresh Water Aquatic Life	Freshwater - Long Term	<u>Freshwater - Short Term</u>				
Chemical Group	Chemical Name	Units	EQL								
	Vanadium	mg/L	0.0002					< 0.005	<0.0025	< 0.0025	<0.0005
	Vanadium (Filtered)	mg/L	0.0002					< 0.005	<0.0025	< 0.0025	<0.0005
	Zinc	mg/L	0.001	Range*		0.03		<0.005	<0.015	<0.015	<0.003
	Zinc (Filtered)	mg/L	0.0001	0.033		Range*		<0.005	<0.005	<0.005	<0.001
	Zirconium	mg/L	0.0001					<0.0001	-	-	-
	Zirconium (Filtered)	mg/L	0.0001					<0.0001	-	-	-

^{*}WQGs are dependent on sample-specific parameters. See Appendix G for WQG calculations.

							Location Code				
							2019 Location Name				
							Lab Report Number				
				BC WQG Approved - Fresh Water Aquatic Life	BC WQG Working - Fresh Water Aquatic Life	CWQG Aquatic Life Freshwater - Long Term	CWQG Aquatic Life		Summa	ary Statistics	
Chemical Group	Chemical Name	Units	EQL	1			1 1	Minimum	Maximum	Average	Standard Deviation
	Bicarbonate	mg/L	1					166	404	284.40	89.019
	Carbonate	mg/L	1					<1	7.8	7.25	0.778
	Hydroxide	mg/L	1					<1	0	-	-
	Alkalinity (total) as CaCO3	mg/L	1					136	335	248.13	67.459
	Phenolphthalein Alkalinity	mg/L	1					<1	6.5	4.63	1.808
	Ammonia	mg/L	0.02			Range*		0.042	0.11	0.07	0.031
	Ammonia (as N)	mg/L	0.005	Range*		Ţ		0.0673	0.262	0.14	0.105
	Nitrate (as N)	mg/L	0.005	32.8				0.081	0.241	0.16	0.113
	Nitrate (as N) (Filtered)	mg/L	0.01	32.8				<0.01	<0.01	-	-
	Nitrate (as NO3-) (Filtered)	mg/L	0.044			13	<u>550</u>	<0.044	<0.044	-	-
	Nitrate + Nitrite (as N)	mg/L	0.0051					<0.02	0.241	0.16	0.113
	Nitrite (as N)	mg/L	0.001	Range*				<0.001	<0.005	-	-
	Nitrite (as N) (Filtered)	mg/L	0.01	Range*				<0.01	<0.01	-	-
	Nitrite (as NO2-) (Filtered)	mg/L	0.033	J		0.197		<0.033	< 0.033	-	-
	Phosphorus	mg/L	0.002					0.0107	0.11	0.03	0.033
General Chemistry	Ortho Phosphorus (as P)	mg/L	0.003					0.0069	0.0454	0.02	0.018
1	Ortho Phosphorus (as P) (Filtered)	mg/L	0.001					0.0019	0.0137	0.01	0.008
	Electrical conductivity (lab)	μS/cm	2					286	1010	625.50	252.762
	Chloride	mg/L	0.5	600		120	<u>640</u>	<0.5	11.7	11.70	-
	Chloride (Filtered)	mg/L	1	600		120	640	<1	5.6	3.63	1.926
	Fluoride	mg/L	0.02	Range*		0.12	9.10	0.11	0.27	0.20	0.058
	Bromide	mg/L	0.05	rango		V.12		<0.05	<0.25	-	-
	Bromide (Filtered)	mg/L	0.01					<0.01	0.035	0.03	0.006
	Dissolved Organic Carbon (Filtered)	mg/L	0.5					2.86	25	15.93	7.493
	Total Organic Carbon (TOC)	mg/L	0.5					1.81	25.2	16.54	7.711
	pH (Lab)	pH Unit	0.1			6.5-9		8.06	8.41	8.28	0.127
	Sulphate (SO4)	mg/L	0.3	Range*		0.0 7		9.43	332	156.48	163.160
	Sulphate (SO4) (Filtered)	mg/L	1	Range*				<1	183	115.03	73.295
	Hardness, Total	mg/L	0.5	riarigo				145	403	300.60	123.949
	Total Suspended Solids (TSS)	mg/L	1					<1	7.4	4.03	2.166
	Turbidity	NTU	0.1					0.54	3.26	1.44	0.835
	Alkalinity (Bicarbonate as CaCO3)	mg/L	1					211	327	260.67	59.769
	Alkalinity (Carbonate as CaCO3)	mg/L	1					<1	8	6.40	2.263
Calculated	Hardness (as CaCO3)	mg/L	0.5					204	529	385.67	165.856
Parameters	Hardness (as CaCO3) (Filtered)	mg/L	0.5					151	429	313.40	134.725
	Alkalinity (Hydroxide) as CaCO3	mg/L	1					<1	<1	-	-
	1-Methylnaphthalene	mg/L	0.00005					<0.0005	<0.00005	-	-
	2-Methylnaphthalene	mg/L	0.00003					<0.00003	<0.001	-	_
	Acenaphthene	mg/L	0.00002	0.006		0.0058		<0.00001	<0.0005	-	-
1	лостиришено	1119/ L	0.00001	0.000	I	0.0000		.5.55001	.5.55555		I

Sample Date

							Sample Date				
							Location Code				
							2019 Location Name				
							Lab Report Number				
							<u> </u>				
				DOM/OO A	DO MOO M. I.	0)4/00 4 11 116	0,4,00,4, 1, 1,1		0	0	
				BC WQG Approved -	BC WQG Working -	CWQG Aquatic Life	CWQG Aquatic Life		Summ	ary Statistics	
				Fresh Water Aquatic Life	Fresh Water Aquatic Life	Freshwater - Long Term	<u>Freshwater - Short Term</u>				
Chemical Group	Chemical Name	Units	EQL					Minimum	Maximum	Average	Standard Deviation
	Acenaphthylene	mg/L	0.00001					<0.00001	<0.00005	-	-
	Acridine	mg/L	0.00001	0.003		0.0044		<0.00001	<0.00005	-	-
	Anthracene	mg/L	0.00001	0.004		0.000012		<0.00001	<0.00001	-	-
	Benzo(a)anthracene	mg/L	0.00001	0.0001		0.000018		<0.00001	<0.00001	-	-
	Benzo(a) pyrene	mg/L	0.000005	0.00001		0.000015		<0.000005	<0.00005	-	-
	Benzo(b+j)fluoranthene	mg/L	0.00001					<0.0001	< 0.00003	-	-
	Benzo(g,h,i)perylene	mg/L	0.00001					<0.0001	<0.00005	-	-
Delvevelle Assessit	Benzo(k)fluoranthene	mg/L	0.00001					<0.00001	<0.00005	-	-
Polycyclic Aromatic	Chrysene	mg/L	0.00001					<0.0001	<0.00002	-	-
Hydrocarbons (PAHs)	Dibenz(a,h)anthracene	mg/L	0.000003					<0.00003	<0.00005	-	-
	Fluoranthene	mg/L	0.00001	0.004		0.00004		<0.0001	<0.00002	-	-
	Fluorene	mg/L	0.00001	0.012		0.003		<0.0001	<0.00005	-	-
	Indeno(1,2,3-c,d)pyrene	mg/L	0.00001					<0.0001	<0.00005	-	-
	Naphthalene	mg/L	0.00002	0.001		0.0011		<0.0001	<0.00002	-	-
	Phenanthrene	mg/L	0.00002	0.0003		0.0004		<0.00002	<0.00005	-	-
	Pyrene	mg/L	0.00001	0.00002		0.000025		<0.0001	<0.00002	-	-
	Quinoline	mg/L	0.00002	0.0000	0.0034	0.0034		<0.00002	0.000022	-	-
	Light Molecular Weight (PAH Sum)	mg/L	0.0001					<0.0001	<0.0001	-	-
	Heavy Molecular Weight (PAH Sum)	mg/L	0.00005					<0.00005	<0.0005	-	-
	PAHs (Sum of total)	mg/L	0.0001					<0.0001	<0.0001	-	-
	Aluminium	mg/L	0.003			0.1		<0.015	0.0187	0.01	0.005
	Aluminium (Filtered)	mg/L	0.0005	0.05		0.1		<0.005	0.0073	0.00435	0.002
	Antimony	mg/L	0.00002		0.009			<0.001	0.000158	0.00010	0.000
	Antimony (Filtered)	mg/L	0.00002		0.009			<0.001	0.00015	0.00010	0.000
	Arsenic	mg/L	0.00002	0.005	0.007	0.005		<0.0001	0.00084	0.00048	0.000
	Barium	mg/L	0.00005	0.000	1	0.000		0.0433	0.168	0.09	0.037
	Barium (Filtered)	mg/L	0.00002		1			0.0541	0.172	0.09	0.037
	Beryllium	mg/L	0.00002		0.00013			<0.0001	<0.005	-	-
	Beryllium (Filtered)	mg/L	0.00001		0.00013			<0.00001	<0.005	-	-
	Bismuth	mg/L	0.00001		3.00010			<0.00001	<0.001	-	
	Bismuth (Filtered)	mg/L	0.000005					<0.00005	<0.001	-	-
	Boron	mg/L	0.01	1.2		1.5	<u>29</u>	<0.01	0.133	0.09	0.043
	Boron (Filtered)	mg/L	0.01	1.2		1.5	29	<0.05	0.131	0.10	0.045
	Cadmium (Filtered)	mg/L	0.000005	Range*		Range*	Range*	<0.00005	0.000174	0.0001	0.000
	Calcium	mg/L	0.000003	Nullyc		Nully	<u>range</u>	38.3	141	93.71	35.782
	Calcium (Filtered)	mg/L	0.05				 	41.1	148	94.81	39.066
	Chromium Total (III+VI)	mg/L	0.0001		0.0089		 	<0.0001	0.0002	0.0002	0.000
	Chromium Total (III+VI) (Filtered)	mg/L	0.0001		0.0089		 	<0.0001	0.0002	0.0002	0.000
	Cobalt	mg/L	0.0001	0.004	0.0007		 	<0.0001	0.00017	0.0002	0.000
I	CODAIL	∥ IIIg/L	0.00001	0.004		<u> </u>		\U.UUUZ	0.00034	0.0002	0.000

							Sample Date				
							Location Code				
							2019 Location Name				
							Lab Report Number				
				BC WQG Approved -	BC WQG Working -	CWQG Aquatic Life	CWQG Aquatic Life		Summ	ary Statistics	
				Fresh Water Aquatic Life	Fresh Water Aquatic Life	Freshwater - Long Term	<u>Freshwater - Short Term</u>				
Chemical Group	Chemical Name	Units	EQL					Minimum	Maximum	Average	Standard Deviation
	Cobalt (Filtered)	mg/L	0.000005	0.11				<0.0002	0.00056	0.0002	0.000
	Copper	mg/L	0.0001	Range*		0.002		<0.0005	0.00102	0.0005	0.000
	Copper (Filtered)	mg/L	0.00005	0.002		0.002		<0.0002	0.000976	0.0004	0.000
	Iron	mg/L	0.005	1		0.3		<0.01	0.908	0.28	0.357
	Iron (Filtered)	mg/L	0.001	0.35		0.3		0.0063	0.413	0.14	0.164
	Lead	mg/L	0.00002	Range*		Range*		<0.00002	0.00035	0.00011	0.000
	Lead (Filtered)	mg/L	0.000005	0.003		0.001		<0.00005	0.0000194	0.00001	0.000
	Lithium	mg/L	0.0005		0.87			0.00503	0.0687	0.03	0.027
	Lithium (Filtered)	mg/L	0.0005		0.87			0.00477	0.0659	0.04	0.028
	Magnesium	mg/L	0.005					12	38.3	24.59	9.351
	Magnesium (Filtered)	mg/L	0.005					11.8	38.4	25.14	10.295
	Manganese	mg/L	0.0001	Range*				0.00209	0.227	0.06	0.082
N.A. L. L.	Mercury	mg/L	0.000002	Ü		0.000026		<0.00002	0.0000021	0.000002	-
Metals	Mercury (Filtered)	mg/L	0.000002			0.000026		<0.00002	0.0000026	0.000003	-
	Molybdenum	mg/L	0.00005	2		0.073		<0.001	0.00568	0.0026	0.002
	Molybdenum (Filtered)	mg/L	0.00005	2		0.073		<0.001	0.0059	0.0027	0.002
	Nickel	mg/L	0.0001		Range*	Range*		<0.001	0.00083	0.0006	0.000
	Potassium	mg/L	0.05		373	, and the second		0.48	2.84	1.95	0.905
	Potassium (Filtered)	mg/L	0.05		373			0.744	2.84	2.01	0.886
	Selenium	mg/L	0.00004	0.002		0.001		<0.00025	0.00055	0.0003	0.000
	Selenium (Filtered)	mg/L	0.00004	0.002		0.001		0.00012	0.00053	0.0003	0.000
	Silicon	mg/L	0.05					2.01	10.7	7.65	3.510
	Silicon (Filtered)	mg/L	0.05					2.29	10.5	7.84	3.074
	Silver	mg/L	0.00001	Range*		Range*		<0.00001	<0.00005	-	-
	Silver (Filtered)	mg/L	0.000005	0.0001		0.00025		<0.00005	<0.00002	-	-
	Sodium	mg/L	0.05					1.74	19	10.52	7.370
	Sodium (Filtered)	mg/L	0.05					1.83	19.9	11.04	7.854
	Strontium	mg/L	0.00005					0.168	1.13	0.74	0.557
	Strontium (Filtered)	mg/L	0.00005					0.171	1.11	0.76	0.571
	Sulphur (as S)	mg/L	3					<3	47.9	33.83	21.875
	Sulphur (as S) (Filtered)	mg/L	3					<3	50.4	35.93	23.542
	Thallium	mg/L	0.000002		0.0008	0.0008		<0.000002	0.0000032	0.0000033	0.0000014
	Thallium (Filtered)	mg/L	0.000002		0.0008	0.0008		<0.000002	0.0000028	0.0000030	0.00000028
	Tin	mg/L	0.0001					<0.00002	<0.0002	-	-
	Tin (Filtered)	mg/L	0.0001					<0.0001	<0.0002	-	-
	Titanium	mg/L	0.0003		2			<0.003	<0.002	-	-
	Titanium (Filtered)	mg/L	0.0003		2			<0.0005	<0.0005	-	-
	Uranium	mg/L	0.000005		0.0085	0.015	0.033	0.000299	0.000468	0.0006	0.001
	Uranium (Filtered)	mg/L	0.000002		0.0085	0.015	0.033	0.000229	0.000505	0.0006	0.001

Sample Date

							Sample Date				
							Location Code				
							2019 Location Name				
							Lab Report Number				
				BC WQG Approved - Fresh Water Aquatic Life	BC WQG Working - Fresh Water Aquatic Life	CWQG Aquatic Life Freshwater - Long Term	CWQG Aquatic Life Freshwater - Short Term		Summ	ary Statistics	
Chemical Group	Chemical Name	Units	EQL					Minimum	Maximum	Average	Standard Deviation
	Vanadium	mg/L	0.0002					< 0.0002	<0.0002	0.0005	-
	Vanadium (Filtered)	mg/L	0.0002					<0.0002	<0.0002	0.0005	-
	Zinc	mg/L	0.001	Range*		0.03		< 0.003	0.0025	0.0028	0.001
	Zinc (Filtered)	mg/L	0.0001	0.033		Range*		<0.001	0.0015	0.0061	0.007
	Zirconium	mg/L	0.0001					<0.0001	<0.0001	0.0002	-
	Zirconium (Filtered)	mg/L	0.0001					<0.0001	<0.0001	0.0003	-

^{*}WQGs are dependent on sample-specific parameters. See Appendix G for WQG calculations.

Your Project #: 126231 Site#: Crown Mountain Your C.O.C. #: 552776-01-01

Attention: Jacqueline Huard

DILLON CONSULTING LTD. 510 - 3820 CESSNA DRIVE Richmond, BC CANADA V7B 0A2

Report Date: 2018/05/16

Report #: R2555339 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B835235 Received: 2018/05/09, 08:30

Sample Matrix: Water # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity - Water	2	2018/05/12	2018/05/13	BBY6SOP-00026	SM 22 2320 B m
Bromide by IC (1)	2	N/A	2018/05/11	AB SOP-00052	SM 22 4110 B m
Chloride by Automated Colourimetry	2	N/A	2018/05/10	BBY6SOP-00011	SM 22 4500-Cl- E m
Carbon (DOC) - field filtered/preserved (2)	2	N/A	2018/05/14	BBY6SOP-00003	SM 22 5310 C m
Conductance - water	2	2018/05/12	2018/05/13	BBY6SOP-00026	SM 22 2510 B m
Fluoride	2	N/A	2018/05/10	BBY6SOP-00048	SM 22 4500-F C m
Hardness Total (calculated as CaCO3) (3)	2	N/A	2018/05/12	BBY WI-00033	Auto Calc
Hardness (calculated as CaCO3)	2	N/A	2018/05/14	BBY WI-00033	Auto Calc
Mercury (Dissolved) by CVAF	2	N/A	2018/05/10	BBY7SOP-00015	BCMOE BCLM Oct2013 m
Mercury (Total) by CVAF	2	2018/05/10	2018/05/10	BBY7SOP-00015	BCMOE BCLM Oct2013 m
Na, K, Ca, Mg, S by CRC ICPMS (diss.)	2	N/A	2018/05/14	BBY WI-00033	Auto Calc
Elements by ICPMS Low Level (dissolved)	2	N/A	2018/05/12	BBY7SOP-00002	EPA 6020b R2 m
Elements by ICPMS Digested LL (total)	2	2018/05/11	2018/05/12	BBY7SOP-00003,	EPA 6020b R2 m
Na, K, Ca, Mg, S by CRC ICPMS (total)	2	N/A	2018/05/12	BBY WI-00033	Auto Calc
Ammonia-N (Preserved)	2	N/A	2018/05/14	BBY6SOP-00009	EPA 350.1 m
Nitrate + Nitrite (N)	2	N/A	2018/05/10	BBY6SOP-00010	SM 23 4500-NO3- I m
Nitrite (N) by CFA	2	N/A	2018/05/10	BBY6SOP-00010	SM 22 4500-NO3- I m
Nitrogen - Nitrate (as N)	1	N/A	2018/05/10	BBY WI-00033	Auto Calc
Nitrogen - Nitrate (as N)	1	N/A	2018/05/11	BBY WI-00033	Auto Calc
PAH in Water by GC/MS (SIM)	2	2018/05/14	2018/05/14	BBY8SOP-00021	BCMOE BCLM Jul2017m
Total LMW, HMW, Total PAH Calc (4)	2	N/A	2018/05/15	BBY WI-00033	Auto Calc
Filter and HNO3 Preserve for Metals	2	N/A	2018/05/12	BBY7 WI-00004	BCMOE Reqs 08/14
pH Water (5)	2	2018/05/12	2018/05/13	BBY6SOP-00026	SM 22 4500-H+ B m
Orthophosphate by Konelab	2	N/A	2018/05/10	BBY6SOP-00013	SM 22 4500-P E m
Sulphate by Automated Colourimetry	2	N/A	2018/05/11	BBY6SOP-00017	SM 22 4500-SO42- E m
Carbon (Total Organic) (6)	2	N/A	2018/05/14	BBY6SOP-00003	SM 22 5310 C m
Total Phosphorus	2	N/A	2018/05/15	BBY6SOP-00013	SM 22 4500-P E m
Total Suspended Solids-Low Level	2	2018/05/11	2018/05/12	BBY6SOP-00034	SM 22 2540 D
Turbidity	2	N/A	2018/05/09	BBY6SOP-00027	SM 22 2130 B m

Remarks:

Your Project #: 126231 Site#: Crown Mountain Your C.O.C. #: 552776-01-01

Attention: Jacqueline Huard DILLON CONSULTING LTD.

510 - 3820 CESSNA DRIVE Richmond, BC CANADA V7B 0A2

Report Date: 2018/05/16

Report #: R2555339 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B835235 Received: 2018/05/09, 08:30

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Maxxam Calgary Environmental
- (2) DOC present in the sample should be considered as non-purgeable DOC.
- (3) "Total Hardness" was calculated from Total Ca and Mg concentrations and may be biased high (Hardness, or Dissolved Hardness, calculated from Dissolved Ca and Mg, should be used for compliance if available).
- (4) Total PAHs in Water include: Quinoline, Naphthalene, 1-Methylnaphthalene, 2-Methylnaphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Acridine, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(b&j)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenz(a,h)anthracene, and Benzo(g,h,i)perylene.
- (5) The BC-MOE and APHA Standard Method require pH to be analysed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the BC-MOE/APHA Standard Method holding time.
- (6) TOC present in the sample should be considered as non-purgeable TOC.

Encryption Key

Maxxam 16 May 2018 16:24:44

Please direct all questions regarding this Certificate of Analysis of Project Manager.
Nahed Amer, Project Manager

Email: NAmer@maxxam.ca Phone# (604) 734 7276

This report has been generated and distributed using a secure automated process.

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E),

Your Project #: 126231 Site#: Crown Mountain Your C.O.C. #: 552776-01-01

Attention: Jacqueline Huard
DILLON CONSULTING LTD.
510 - 3820 CESSNA DRIVE
Richmond, BC

V7B 0A2

CANADA

Report Date: 2018/05/16

Report #: R2555339 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B835235 Received: 2018/05/09, 08:30

signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

DILLON CONSULTING LTD. Client Project #: 126231

RESULTS OF CHEMICAL ANALYSES OF WATER

Maxxam ID		TK0833		TK0834		
Campling Date		2018/05/05		2018/05/05		
Sampling Date		15:30		17:00		
COC Number		552776-01-01		552776-01-01		
	UNITS	18-WF-WL9B	QC Batch	18-WL9	RDL	QC Batch
ANIONS						
Nitrite (N)	mg/L	<0.0050	8985631	<0.0050	0.0050	8985607
Calculated Parameters						
Nitrate (N)	mg/L	<0.020	8983367	<0.020	0.020	8983367
Misc. Inorganics						
Fluoride (F)	mg/L	0.230	8985399	0.190	0.020	8985399
Dissolved Organic Carbon (C)	mg/L	17.2	8988904	13.7	0.50	8988904
Alkalinity (Total as CaCO3)	mg/L	273	8987650	255	1.0	8987650
Total Organic Carbon (C)	mg/L	18.2	8988905	15.0	0.50	8988905
Alkalinity (PP as CaCO3)	mg/L	6.5	8987650	5.6	1.0	8987650
Bicarbonate (HCO3)	mg/L	317	8987650	297	1.0	8987650
Carbonate (CO3)	mg/L	7.8	8987650	6.7	1.0	8987650
Hydroxide (OH)	mg/L	<1.0	8987650	<1.0	1.0	8987650
Anions						
Dissolved Bromide (Br)	mg/L	0.035	8987008	0.026	0.010	8987008
Dissolved Sulphate (SO4)	mg/L	183	8987790	157	1.0	8987790
Dissolved Chloride (Cl)	mg/L	4.9	8986711	2.4	1.0	8986711
Nutrients						
Orthophosphate (P)	mg/L	0.0078	8985852	0.0134	0.0050	8985852
Total Ammonia (N)	mg/L	0.11	8989303	0.074	0.020	8989303
Nitrate plus Nitrite (N)	mg/L	<0.020	8985630	<0.020	0.020	8985604
Total Phosphorus (P)	mg/L	0.0175	8990239	0.0388	0.0050	8990239
Physical Properties						
Conductivity	uS/cm	806	8987648	735	2.0	8987648
рН	рН	8.41	8987647	8.41		8987647
Physical Properties	•				•	
Total Suspended Solids	mg/L	3.0	8985182	7.4	1.0	8985182
Turbidity	NTU	1.56	8984306	1.48	0.10	8984306
RDL = Reportable Detection Li	mit		•		•	

DILLON CONSULTING LTD. Client Project #: 126231

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Maxxam ID		TK0833	TK0834		
Sampling Date		2018/05/05	2018/05/05		
Jamping Date		15:30	17:00		
COC Number		552776-01-01	552776-01-01		
	UNITS	18-WF-WL9B	18-WL9	RDL	QC Batch
Total Metals by ICPMS					
Total Aluminum (AI)	ug/L	18.7	10.0	3.0	8986003
Total Antimony (Sb)	ug/L	0.115	0.109	0.020	8986003
Total Arsenic (As)	ug/L	0.496	0.507	0.020	8986003
Total Barium (Ba)	ug/L	95.6	70.0	0.050	8986003
Total Beryllium (Be)	ug/L	<0.010	<0.010	0.010	8986003
Total Bismuth (Bi)	ug/L	<0.010	<0.010	0.010	8986003
Total Boron (B)	ug/L	107	92	10	8986003
Total Cadmium (Cd)	ug/L	0.0051	0.0055	0.0050	8986003
Total Chromium (Cr)	ug/L	<0.10	<0.10	0.10	8986003
Total Cobalt (Co)	ug/L	0.104	0.163	0.010	8986003
Total Copper (Cu)	ug/L	0.38	0.24	0.10	8986003
Total Iron (Fe)	ug/L	69.5	212	5.0	8986003
Total Lead (Pb)	ug/L	0.031	0.031	0.020	8986003
Total Lithium (Li)	ug/L	54.3	38.4	0.50	8986003
Total Manganese (Mn)	ug/L	7.93	69.2	0.10	8986003
Total Molybdenum (Mo)	ug/L	1.63	4.08	0.050	8986003
Total Nickel (Ni)	ug/L	0.55	0.71	0.10	8986003
Total Phosphorus (P)	ug/L	27.8	68.3	5.0	8986003
Total Selenium (Se)	ug/L	0.335	0.255	0.040	8986003
Total Silicon (Si)	ug/L	10500	7510	50	8986003
Total Silver (Ag)	ug/L	<0.010	<0.010	0.010	8986003
Total Strontium (Sr)	ug/L	1290	1010	0.050	8986003
Total Thallium (TI)	ug/L	0.0034	0.0032	0.0020	8986003
Total Tin (Sn)	ug/L	<0.20	<0.20	0.20	8986003
Total Titanium (Ti)	ug/L	<2.0	<2.0	2.0	8986003
Total Uranium (U)	ug/L	0.713	0.468	0.0050	8986003
Total Vanadium (V)	ug/L	<0.20	<0.20	0.20	8986003
Total Zinc (Zn)	ug/L	4.1	2.5	1.0	8986003
Total Zirconium (Zr)	ug/L	<0.10	<0.10	0.10	8986003
RDL = Reportable Detection I	imit				
L					

DILLON CONSULTING LTD. Client Project #: 126231

LOW LEVEL DISSOLVED METALS WITH CV HG (WATER)

Maxxam ID		TK0833	TK0834		
Sampling Date		2018/05/05 15:30	2018/05/05 17:00		
COC Number		552776-01-01	552776-01-01		
	UNITS	18-WF-WL9B	18-WL9	RDL	QC Batch
Calculated Parameters					
Filter and HNO3 Preservation	N/A	FIELD	FIELD		ONSITE
Dissolved Hardness (CaCO3)	mg/L	429	393	0.50	8983013
Elements					
Dissolved Mercury (Hg)	ug/L	<0.0020	<0.0020	0.0020	8984805
Dissolved Metals by ICPMS	•			•	
Dissolved Aluminum (Al)	ug/L	4.63	3.31	0.50	8985000
Dissolved Antimony (Sb)	ug/L	0.118	0.112	0.020	8985000
Dissolved Arsenic (As)	ug/L	0.504	0.494	0.020	8985000
Dissolved Barium (Ba)	ug/L	95.5	68.7	0.020	8985000
Dissolved Beryllium (Be)	ug/L	<0.010	<0.010	0.010	8985000
Dissolved Bismuth (Bi)	ug/L	<0.0050	<0.0050	0.0050	8985000
Dissolved Boron (B)	ug/L	131	109	10	8985000
Dissolved Cadmium (Cd)	ug/L	<0.0050	<0.0050	0.0050	8985000
Dissolved Chromium (Cr)	ug/L	<0.10	<0.10	0.10	8985000
Dissolved Cobalt (Co)	ug/L	0.0937	0.0999	0.0050	8985000
Dissolved Copper (Cu)	ug/L	0.405	0.170	0.050	8985000
Dissolved Iron (Fe)	ug/L	54.2	94.4	1.0	8985000
Dissolved Lead (Pb)	ug/L	0.0194	0.0076	0.0050	8985000
Dissolved Lithium (Li)	ug/L	61.3	44.5	0.50	8985000
Dissolved Manganese (Mn)	ug/L	7.01	18.8	0.050	8985000
Dissolved Molybdenum (Mo)	ug/L	1.81	4.24	0.050	8985000
Dissolved Nickel (Ni)	ug/L	0.549	0.654	0.020	8985000
Dissolved Phosphorus (P)	ug/L	14.4	18.6	2.0	8985000
Dissolved Selenium (Se)	ug/L	0.307	0.258	0.040	8985000
Dissolved Silicon (Si)	ug/L	10500	7600	50	8985000
Dissolved Silver (Ag)	ug/L	<0.0050	<0.0050	0.0050	8985000
Dissolved Strontium (Sr)	ug/L	1330	1070	0.050	8985000
Dissolved Thallium (TI)	ug/L	0.0032	0.0028	0.0020	8985000
Dissolved Tin (Sn)	ug/L	<0.20	<0.20	0.20	8985000
Dissolved Titanium (Ti)	ug/L	<0.50	<0.50	0.50	8985000
Dissolved Uranium (U)	ug/L	0.758	0.505	0.0020	8985000
Dissolved Vanadium (V)	ug/L	<0.20	<0.20	0.20	8985000
RDL = Reportable Detection Lir				ı	

DILLON CONSULTING LTD. Client Project #: 126231

LOW LEVEL DISSOLVED METALS WITH CV HG (WATER)

Maxxam ID		TK0833	TK0834		
Compline Date		2018/05/05	2018/05/05		
Sampling Date		15:30	17:00		
COC Number		552776-01-01	552776-01-01		
	UNITS	18-WF-WL9B	18-WL9	RDL	QC Batch
Dissolved Zinc (Zn)	ug/L	17.0 (1)	1.50	0.10	8985000
Dissolved Zirconium (Zr)	ug/L	<0.10	<0.10	0.10	8985000
Dissolved Calcium (Ca)	mg/L	120	108	0.050	8983008
Dissolved Magnesium (Mg)	mg/L	31.3	29.9	0.050	8983008
Dissolved Potassium (K)	mg/L	2.84	2.79	0.050	8983008
Dissolved Sodium (Na)	mg/L	19.9	12.7	0.050	8983008
Dissolved Sulphur (S)	mg/L	57.4	50.4	3.0	8983008

RDL = Reportable Detection Limit

⁽¹⁾ Dissolved greater than total. Reanalysis yields similar results.

DILLON CONSULTING LTD. Client Project #: 126231

LOW LEVEL TOTAL METALS WITH CV HG (WATER)

Maxxam ID		TK0833	TK0834		
Sampling Date		2018/05/05	2018/05/05		
Sampling Date		15:30	17:00		
COC Number		552776-01-01	552776-01-01		
	UNITS	18-WF-WL9B	18-WL9	RDL	QC Batch
Calculated Parameters					
Total Hardness (CaCO3)	mg/L	403	364	0.50	8983096
Elements					
Total Mercury (Hg)	ug/L	<0.0020	<0.0020	0.0020	8985145
Total Metals by ICPMS					
Total Calcium (Ca)	mg/L	116	103	0.25	8983450
Total Magnesium (Mg)	mg/L	27.7	26.0	0.25	8983450
Total Potassium (K)	mg/L	2.84	2.76	0.25	8983450
Total Sodium (Na)	mg/L	18.0	10.8	0.25	8983450
Total Sulphur (S)	mg/L	53.5	47.9	3.0	8983450
RDL = Reportable Detection L	imit				

DILLON CONSULTING LTD. Client Project #: 126231

CSR PAH IN WATER BY GC-MS (WATER)

Maxxam ID		TK0833	TK0834		
Sampling Date		2018/05/05 15:30	2018/05/05 17:00		
COC Number		552776-01-01	552776-01-01		
	UNITS	18-WF-WL9B	18-WL9	RDL	QC Batch
Calculated Parameters					
Low Molecular Weight PAH`s	ug/L	<0.10	<0.10	0.10	8983674
High Molecular Weight PAH`s	ug/L	<0.050	<0.050	0.050	8983674
Total PAH	ug/L	<0.10	<0.10	0.10	8983674
Polycyclic Aromatics			1		
Quinoline	ug/L	<0.020	<0.020	0.020	8988210
Naphthalene	ug/L	<0.10	<0.10	0.10	8988210
1-Methylnaphthalene	ug/L	<0.050	<0.050	0.050	8988210
2-Methylnaphthalene	ug/L	<0.10	<0.10	0.10	8988210
Acenaphthylene	ug/L	<0.050	<0.050	0.050	8988210
Acenaphthene	ug/L	<0.050	<0.050	0.050	8988210
Fluorene	ug/L	<0.050	<0.050	0.050	8988210
Phenanthrene	ug/L	<0.050	<0.050	0.050	8988210
Anthracene	ug/L	<0.010	<0.010	0.010	8988210
Acridine	ug/L	<0.050	<0.050	0.050	8988210
Fluoranthene	ug/L	<0.020	<0.020	0.020	8988210
Pyrene	ug/L	<0.020	<0.020	0.020	8988210
Benzo(a)anthracene	ug/L	<0.010	<0.010	0.010	8988210
Chrysene	ug/L	<0.020	<0.020	0.020	8988210
Benzo(b&j)fluoranthene	ug/L	<0.030	<0.030	0.030	8988210
Benzo(k)fluoranthene	ug/L	<0.050	<0.050	0.050	8988210
Benzo(a)pyrene	ug/L	<0.0050	<0.0050	0.0050	8988210
Indeno(1,2,3-cd)pyrene	ug/L	<0.050	<0.050	0.050	8988210
Dibenz(a,h)anthracene	ug/L	<0.0030	<0.0030	0.0030	8988210
Benzo(g,h,i)perylene	ug/L	<0.050	<0.050	0.050	8988210
Surrogate Recovery (%)	•		•		
D10-ANTHRACENE (sur.)	%	90	96		8988210
D8-ACENAPHTHYLENE (sur.)	%	96	98		8988210
D8-NAPHTHALENE (sur.)	%	70	75		8988210
TERPHENYL-D14 (sur.)	%	98	102		8988210
RDL = Reportable Detection Lir	nit				

DILLON CONSULTING LTD. Client Project #: 126231

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	8.3°C
-----------	-------

Sample TK0833 [18-WF-WL9B] : Sample was analyzed past method specified hold time for Turbidity. {Exceedance of hold time increases the uncertainty of test results but does not necessarily imply that results are compromised.} Sample received past method specified hold time for Turbidity. Sample was analyzed past method specified hold time for Nitrate + Nitrite (N). Sample received past method specified hold time for Nitrate + Nitrite (N). Sample was analyzed past method specified hold time for Nitrite (N) by CFA. Sample received past method specified hold time for Orthophosphate by Konelab. Sample was analyzed past method specified hold time for Orthophosphate by Konelab.

Sample TK0834 [18-WL9]: Sample was analyzed past method specified hold time for Turbidity. {Exceedance of hold time increases the uncertainty of test results but does not necessarily imply that results are compromised.} Sample received past method specified hold time for Turbidity. Sample was analyzed past method specified hold time for Nitrate + Nitrite (N). Sample received past method specified hold time for Nitrite (N) by CFA. Sample received past method specified hold time for Nitrite (N) by CFA. Sample received past method specified hold time for Orthophosphate by Konelab. Sample was analyzed past method specified hold time for Orthophosphate by Konelab.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

DILLON CONSULTING LTD. Client Project #: 126231

			Matrix	Spike	Spiked	Blank	Method I	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8988210	D10-ANTHRACENE (sur.)	2018/05/14	88	50 - 140	93	50 - 140	90	%		
8988210	D8-ACENAPHTHYLENE (sur.)	2018/05/14	97	50 - 140	100	50 - 140	99	%		
8988210	D8-NAPHTHALENE (sur.)	2018/05/14	67	50 - 140	69	50 - 140	74	%		
8988210	TERPHENYL-D14 (sur.)	2018/05/14	99	50 - 140	103	50 - 140	100	%		
8984306	Turbidity	2018/05/09			101	80 - 120	<0.10	NTU	2.1	20
8984805	Dissolved Mercury (Hg)	2018/05/10	97	80 - 120	103	80 - 120	<0.0020	ug/L	NC	20
8985000	Dissolved Aluminum (AI)	2018/05/12	93	80 - 120	98	80 - 120	<0.50	ug/L		
8985000	Dissolved Antimony (Sb)	2018/05/12	NC	80 - 120	101	80 - 120	<0.020	ug/L		
8985000	Dissolved Arsenic (As)	2018/05/12	NC	80 - 120	102	80 - 120	<0.020	ug/L	0.17	20
8985000	Dissolved Barium (Ba)	2018/05/12	93	80 - 120	101	80 - 120	<0.020	ug/L		
8985000	Dissolved Beryllium (Be)	2018/05/12	96	80 - 120	99	80 - 120	<0.010	ug/L		
8985000	Dissolved Bismuth (Bi)	2018/05/12	89	80 - 120	100	80 - 120	<0.0050	ug/L		
8985000	Dissolved Boron (B)	2018/05/12	NC	80 - 120	96	80 - 120	<10	ug/L		
8985000	Dissolved Cadmium (Cd)	2018/05/12	93	80 - 120	100	80 - 120	<0.0050	ug/L		
8985000	Dissolved Chromium (Cr)	2018/05/12	90	80 - 120	96	80 - 120	<0.10	ug/L		
8985000	Dissolved Cobalt (Co)	2018/05/12	90	80 - 120	99	80 - 120	<0.0050	ug/L		
8985000	Dissolved Copper (Cu)	2018/05/12	88	80 - 120	96	80 - 120	<0.050	ug/L		
8985000	Dissolved Iron (Fe)	2018/05/12	96	80 - 120	100	80 - 120	<1.0	ug/L		
8985000	Dissolved Lead (Pb)	2018/05/12	90	80 - 120	100	80 - 120	<0.0050	ug/L		
8985000	Dissolved Lithium (Li)	2018/05/12	91	80 - 120	97	80 - 120	<0.50	ug/L		
8985000	Dissolved Manganese (Mn)	2018/05/12	92	80 - 120	99	80 - 120	<0.050	ug/L		
8985000	Dissolved Molybdenum (Mo)	2018/05/12	95	80 - 120	104	80 - 120	<0.050	ug/L		
8985000	Dissolved Nickel (Ni)	2018/05/12	90	80 - 120	101	80 - 120	<0.020	ug/L		
8985000	Dissolved Phosphorus (P)	2018/05/12	96	80 - 120	98	80 - 120	<2.0	ug/L		
8985000	Dissolved Selenium (Se)	2018/05/12	94	80 - 120	99	80 - 120	<0.040	ug/L		
8985000	Dissolved Silicon (Si)	2018/05/12	NC	80 - 120	101	80 - 120	<50	ug/L		
8985000	Dissolved Silver (Ag)	2018/05/12	94	80 - 120	99	80 - 120	<0.0050	ug/L		
8985000	Dissolved Strontium (Sr)	2018/05/12	NC	80 - 120	101	80 - 120	<0.050	ug/L		
8985000	Dissolved Thallium (TI)	2018/05/12	90	80 - 120	100	80 - 120	<0.0020	ug/L		
8985000	Dissolved Tin (Sn)	2018/05/12	94	80 - 120	99	80 - 120	<0.20	ug/L		
8985000	Dissolved Titanium (Ti)	2018/05/12	94	80 - 120	102	80 - 120	<0.50	ug/L		
8985000	Dissolved Uranium (U)	2018/05/12	90	80 - 120	102	80 - 120	<0.0020	ug/L		

QUALITY ASSURANCE REPORT(CONT'D)

DILLON CONSULTING LTD. Client Project #: 126231

			Matrix	Spike	Spiked	Blank	Method I	Blank	RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8985000	Dissolved Vanadium (V)	2018/05/12	94	80 - 120	100	80 - 120	<0.20	ug/L		
8985000	Dissolved Zinc (Zn)	2018/05/12	92	80 - 120	99	80 - 120	<0.10	ug/L		
8985000	Dissolved Zirconium (Zr)	2018/05/12	97	80 - 120	101	80 - 120	<0.10	ug/L		
8985145	Total Mercury (Hg)	2018/05/10	99	80 - 120	99	80 - 120	<0.0020	ug/L	NC	20
8985182	Total Suspended Solids	2018/05/12			101	80 - 120	<1.0	mg/L		
8985399	Fluoride (F)	2018/05/10	97	80 - 120	102	80 - 120	<0.020	mg/L	0	20
8985604	Nitrate plus Nitrite (N)	2018/05/10	107	80 - 120	106	80 - 120	<0.020	mg/L	3.0	25
8985607	Nitrite (N)	2018/05/10	105	80 - 120	102	80 - 120	<0.0050	mg/L	NC	20
8985630	Nitrate plus Nitrite (N)	2018/05/10	NC	80 - 120	108	80 - 120	<0.020	mg/L	0.18	25
8985631	Nitrite (N)	2018/05/10	104	80 - 120	105	80 - 120	<0.0050	mg/L	1.5	20
8985852	Orthophosphate (P)	2018/05/10	NC	80 - 120	89	80 - 120	<0.0050	mg/L	0.33	20
8986003	Total Aluminum (AI)	2018/05/12	101	80 - 120	94	80 - 120	<3.0	ug/L	1.7	20
8986003	Total Antimony (Sb)	2018/05/12	NC	80 - 120	98	80 - 120	<0.020	ug/L	2.1	20
8986003	Total Arsenic (As)	2018/05/12	NC	80 - 120	99	80 - 120	<0.020	ug/L	0.77	20
8986003	Total Barium (Ba)	2018/05/12	101	80 - 120	99	80 - 120	<0.050	ug/L	1.9	20
8986003	Total Beryllium (Be)	2018/05/12	92	80 - 120	86	80 - 120	<0.010	ug/L	NC	20
8986003	Total Bismuth (Bi)	2018/05/12	95	80 - 120	96	80 - 120	<0.010	ug/L	NC	20
8986003	Total Boron (B)	2018/05/12	NC	80 - 120	85	80 - 120	<10	ug/L	1.4	20
8986003	Total Cadmium (Cd)	2018/05/12	99	80 - 120	97	80 - 120	<0.0050	ug/L	NC	20
8986003	Total Chromium (Cr)	2018/05/12	98	80 - 120	95	80 - 120	<0.10	ug/L	NC	20
8986003	Total Cobalt (Co)	2018/05/12	95	80 - 120	93	80 - 120	<0.010	ug/L	2.6	20
8986003	Total Copper (Cu)	2018/05/12	95	80 - 120	94	80 - 120	<0.10	ug/L	4.4	20
8986003	Total Iron (Fe)	2018/05/12	104	80 - 120	101	80 - 120	<5.0	ug/L	2.2	20
8986003	Total Lead (Pb)	2018/05/12	97	80 - 120	96	80 - 120	<0.020	ug/L	7.6	20
8986003	Total Lithium (Li)	2018/05/12	98	80 - 120	87	80 - 120	<0.50	ug/L	0.34	20
8986003	Total Manganese (Mn)	2018/05/12	99	80 - 120	94	80 - 120	<0.10	ug/L	0.42	20
8986003	Total Molybdenum (Mo)	2018/05/12	107	80 - 120	100	80 - 120	<0.050	ug/L	10	20
8986003	Total Nickel (Ni)	2018/05/12	98	80 - 120	94	80 - 120	<0.10	ug/L	3.7	20
8986003	Total Phosphorus (P)	2018/05/12	104	80 - 120	96	80 - 120	<5.0	ug/L		
8986003	Total Selenium (Se)	2018/05/12	100	80 - 120	97	80 - 120	<0.040	ug/L	3.5	20
8986003	Total Silicon (Si)	2018/05/12	NC	80 - 120	98	80 - 120	<50	ug/L	1.1	20
8986003	Total Silver (Ag)	2018/05/12	97	80 - 120	96	80 - 120	<0.010	ug/L	NC	20

QUALITY ASSURANCE REPORT(CONT'D)

DILLON CONSULTING LTD. Client Project #: 126231

			Matrix	Spike	Spiked	Blank	Method I	Blank	RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8986003	Total Strontium (Sr)	2018/05/12	NC	80 - 120	98	80 - 120	<0.050	ug/L	0.88	20
8986003	Total Thallium (TI)	2018/05/12	95	80 - 120	95	80 - 120	<0.0020	ug/L	NC	20
8986003	Total Tin (Sn)	2018/05/12	96	80 - 120	97	80 - 120	<0.20	ug/L	NC	20
8986003	Total Titanium (Ti)	2018/05/12	109	80 - 120	98	80 - 120	<2.0	ug/L	NC	20
8986003	Total Uranium (U)	2018/05/12	95	80 - 120	98	80 - 120	<0.0050	ug/L	8.5	20
8986003	Total Vanadium (V)	2018/05/12	101	80 - 120	96	80 - 120	<0.20	ug/L	NC	20
8986003	Total Zinc (Zn)	2018/05/12	94	80 - 120	96	80 - 120	<1.0	ug/L	NC	20
8986003	Total Zirconium (Zr)	2018/05/12	100	80 - 120	99	80 - 120	<0.10	ug/L	NC	20
8986711	Dissolved Chloride (CI)	2018/05/10	NC	80 - 120	96	80 - 120	<1.0	mg/L	0.61	20
8987008	Dissolved Bromide (Br)	2018/05/11	NC	80 - 120	101	80 - 120	<0.010	mg/L	1.4	20
8987647	рН	2018/05/13			101	97 - 103			0.12	20
8987648	Conductivity	2018/05/13			99	80 - 120	<2.0	uS/cm	0.091	20
8987650	Alkalinity (PP as CaCO3)	2018/05/13					<1.0	mg/L	0.17	20
8987650	Alkalinity (Total as CaCO3)	2018/05/13			88	80 - 120	<1.0	mg/L	0.21	20
8987650	Bicarbonate (HCO3)	2018/05/13					<1.0	mg/L	0.21	20
8987650	Carbonate (CO3)	2018/05/13					<1.0	mg/L	0.17	20
8987650	Hydroxide (OH)	2018/05/13					<1.0	mg/L	NC	20
8987790	Dissolved Sulphate (SO4)	2018/05/11			102	80 - 120	<1.0	mg/L		
8988210	1-Methylnaphthalene	2018/05/14	80	50 - 140	83	50 - 140	<0.050	ug/L		
8988210	2-Methylnaphthalene	2018/05/15	76	50 - 140	80	50 - 140	<0.10	ug/L	NC	40
8988210	Acenaphthene	2018/05/15	90	50 - 140	93	50 - 140	<0.050	ug/L	NC	40
8988210	Acenaphthylene	2018/05/15	89	50 - 140	91	50 - 140	<0.050	ug/L	NC	40
8988210	Acridine	2018/05/15	69	50 - 140	91	50 - 140	<0.050	ug/L	NC	40
8988210	Anthracene	2018/05/15	93	50 - 140	88	50 - 140	<0.010	ug/L	NC	40
8988210	Benzo(a)anthracene	2018/05/15	82	50 - 140	84	50 - 140	<0.010	ug/L	NC	40
8988210	Benzo(a)pyrene	2018/05/15	71	50 - 140	86	50 - 140	<0.0050	ug/L	NC	40
8988210	Benzo(b&j)fluoranthene	2018/05/15	75	50 - 140	89	50 - 140	<0.030	ug/L	NC	40
8988210	Benzo(g,h,i)perylene	2018/05/15	61	50 - 140	86	50 - 140	<0.050	ug/L	NC	40
8988210	Benzo(k)fluoranthene	2018/05/15	78	50 - 140	93	50 - 140	<0.050	ug/L	NC	40
8988210	Chrysene	2018/05/15	87	50 - 140	89	50 - 140	<0.020	ug/L	NC	40
8988210	Dibenz(a,h)anthracene	2018/05/15	66	50 - 140	91	50 - 140	<0.0030	ug/L	NC	40
8988210	Fluoranthene	2018/05/15	85	50 - 140	86	50 - 140	<0.020	ug/L	NC	40

QUALITY ASSURANCE REPORT(CONT'D)

DILLON CONSULTING LTD. Client Project #: 126231

			Matrix	Spike	Spiked	Blank	Method E	Blank	RPE	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8988210	Fluorene	2018/05/15	84	50 - 140	87	50 - 140	<0.050	ug/L	NC	40
8988210	Indeno(1,2,3-cd)pyrene	2018/05/15	63	50 - 140	87	50 - 140	<0.050	ug/L	NC	40
8988210	Naphthalene	2018/05/15	64	50 - 140	68	50 - 140	<0.10	ug/L	NC	40
8988210	Phenanthrene	2018/05/15	78	50 - 140	87	50 - 140	<0.050	ug/L	NC	40
8988210	Pyrene	2018/05/15	89	50 - 140	90	50 - 140	<0.020	ug/L	NC	40
8988210	Quinoline	2018/05/15	100	50 - 140	102	50 - 140	<0.020	ug/L	NC	40
8988904	Dissolved Organic Carbon (C)	2018/05/14	93	80 - 120	104	80 - 120	<0.50	mg/L		
8988905	Total Organic Carbon (C)	2018/05/14	89	80 - 120	104	80 - 120	<0.50	mg/L	3.4	20
8989303	Total Ammonia (N)	2018/05/14	92	80 - 120	97	80 - 120	<0.020	mg/L	NC	20
8990239	Total Phosphorus (P)	2018/05/15	·		89	80 - 120	<0.0050	mg/L		

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

DILLON CONSULTING LTD. Client Project #: 126231

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Original signed by>	
Andy Lu, Ph.D., P.Chem., Scientific Specialist	
<original by="" signed=""></original>	
Harry (Peng) Liang, Senior Analyst	

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

		NVOICE TO:		- 3		Report Inf	ormatic	n n	MHE.	1 5	V2			Project I	nformation	1		III B 16 9 III.	. 1.4.4.4.19 C. (14.1. 14.10 M	na - mnly	Page
y Name #	15986 DILLO	N CONSULTING LTD.	Comp	any Nam	. Dillon	Len.	Sul	Dra	LM	11/10		Quotation #		B70427	-		7.0				Bottle Order
1.0000000	ccounts Payab	Acceptance of the control of the con	Contr	act Name	Jacqueline	Huard		-				20.#							# B.DKS 13/50 11	8	LUUUUU
100	10 - 3820 CES Richmond BC V		Addre	886			_	_	_		_	Project #		126231			- B		5_COC	-	552776
	604) 278-7847		204 v		-			St -				roject Name		Crown N	lountnin					The second second	Project Mana
7.0	almeida@dillor		594 X Phon		jhuard@dill	on ca: Idill	ev@d	Fax:	: moneli	adillon o	22	ilte#		Crown N	lountain			_ 1	C#562776-01-01		Nahed Ame
8 5900		1,446	Lmai		Instructions	orrido, idii	T	mon.ce	1 Iboboli		-	Sampled By QUESTED (DIEASEB	E SPECIEIO			-		Tumaround Time ((TAT) Postuland	
atory Criteri	a.		M 01	-			1 1		1000	710	I TOLO TOL	I	CEMOL D	I					Please provide advance n		
SR			# Sho	M.	hold tiv	res	П		ે	완			0		19			Complex (C)	tandard) TAT:		
CME							П	(A)	-F	5	- a	1 1	Nitrite	9	Level		J. J.	100	lied if Rush TAT is not specified):		
							2	GC-MS	als	#	de	Total	ø	pha	NO.			/1 = 100.00	AT = 5-7 Working days for most to	ests	
C Water C	humity						2	8	Met	90	20	12	itta	Sul	Sp				: Standard TAT for certain tests s		Dioxins/Furar
ither.							21	ģ	Level Dissolved Metals with CV	Metals with	Bromide, Chloride, ity, Fluoride	, 200	+ Nitrite (N), Nitrate,	Orthophosphate, pH, Sulphate, Turbidity	Suspended Solids-Low				act your Project Manager for deta		
							ered	Water	solv	2 €	luo I	Li i	Z	<u>a</u>	P			Job Speci	fic Rush TAT (if applies to entir	re submission)	
							是	5	Dis	100	Bror Iy. F	TOC,	iti	pha	end			1 DAY	2 Day 3 Day	Date Required:	
CAMDI	CC WHET OF VCO	T COOL (< 4/05) EROM TIME OF SAN	name and the	UE DY TO			꾪	PAH	svel	Level Total	CENT.	nia, horu	2	hos	nsb			Rush Conf	Irmation Number		
SAMP	ES MOST DE KEP	T COOL (< 10°C) FROM TIME OF SAN	PLING UNTIL DEL	VERY IC	MAXXAM	v	tals	α. σ.	N Le	/ Le	Alkalinity, Bro Conductivity,	Ammonia, TC Phosphorus	Nitrate	do di				# of Bottles		(call lab	for #)
Sample Ba	ercode Label	Sample (Location) Identification	Date Samp	led	Time Sampled	Matrix	8 8	CSR	₹ P	Low	₹ö	P. P.	耋	PP	Total			# Of DOORS	1	Comments	
		18-WF-WL96	2 M. C	19	1530	160	4	V	X	X	~	X	X	\sim	X						
		18 WT-WL 11	> / Wy 5	10	1000	1120	1	\triangle		(. >	1	1	/ \						
	*	(8-W)19	May 5	18	1700	H20	4	\propto	X	X	X	X	X	X	\times						
		10 0001	170	,00	1700	1.20	1		-		1		-					-			
			1																		
							\Box														
				-			1	_	_	_	-										
			1																		
				-						-		1									
				-			-			-		1									
			1	1			\Box														
		a)	E (YY/MM/DD)	-	1 77						1	1			1	لـــــا			100000000000000000000000000000000000000		
<or< td=""><td>iginal s</td><td>igned by> 📆</td><td>105/07</td><td>Time</td><td>0 70</td><td>LLIM</td><td>Chi</td><td>Signatu</td><td>re/Print)</td><td></td><td>- 0</td><td>Date: IYYN</td><td>111111111111111111111111111111111111111</td><td>08:30</td><td></td><td>used and submitted</td><td>Time Sen</td><td>Two</td><td>Lab Use Only</td><td>Custody Seal</td><td>ntact on For</td></or<>	iginal s	igned by> 📆	105/07	Time	0 70	LLIM	Chi	Signatu	re/Print)		- 0	Date: IYYN	111111111111111111111111111111111111111	08:30		used and submitted	Time Sen	Two	Lab Use Only	Custody Seal	ntact on For
	J	7 170	1001VT	101	2 6	VIV	UV	1				Collin	107	NP - N	_	111	V	/ Tem	persture (°C) on Receipt	Yes	- A

Maxxa | Analytics International Corporation of Maxxam Analytics

Your Project #: 126231

Site Location: CROWN MOUNTAIN SPARWOOD

Your C.O.C. #: G069689

Attention: RICHARD POPE
DILLON CONSULTING LTD.
510 - 3820 CESSNA DRIVE
Richmond, BC
CANADA V7B 0A2

Report Date: 2018/05/16

Report #: R2555396 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B835678 Received: 2018/05/10, 10:45

Sample Matrix: Water # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity - Water	2	2018/05/12	2018/05/13	BBY6SOP-00026	SM 22 2320 B m
Bromide by IC (1)	2	N/A	2018/05/12	AB SOP-00052	SM 22 4110 B m
Chloride by Automated Colourimetry	2	N/A	2018/05/11	BBY6SOP-00011	SM 22 4500-Cl- E m
Carbon (DOC) - field filtered/preserved (2)	2	N/A	2018/05/14	BBY6SOP-00003	SM 22 5310 C m
Conductance - water	2	2018/05/12	2018/05/13	BBY6SOP-00026	SM 22 2510 B m
Fluoride	2	N/A	2018/05/11	BBY6SOP-00048	SM 22 4500-F C m
Hardness Total (calculated as CaCO3) (3)	2	N/A	2018/05/15	BBY WI-00033	Auto Calc
Hardness (calculated as CaCO3)	2	N/A	2018/05/15	BBY WI-00033	Auto Calc
Mercury (Dissolved) by CVAF	2	N/A	2018/05/11	BBY7SOP-00015	BCMOE BCLM Oct2013 m
Mercury (Total) by CVAF	2	2018/05/14	2018/05/14	BBY7SOP-00015	BCMOE BCLM Oct2013 m
Na, K, Ca, Mg, S by CRC ICPMS (diss.)	2	N/A	2018/05/15	BBY WI-00033	Auto Calc
Elements by ICPMS Low Level (dissolved)	2	N/A	2018/05/15	BBY7SOP-00002	EPA 6020b R2 m
Elements by ICPMS Digested LL (total)	2	2018/05/14	2018/05/15	BBY7SOP-00003,	EPA 6020b R2 m
Na, K, Ca, Mg, S by CRC ICPMS (total)	2	N/A	2018/05/15	BBY WI-00033	Auto Calc
Ammonia-N (Preserved)	2	N/A	2018/05/14	BBY6SOP-00009	EPA 350.1 m
Nitrate + Nitrite (N)	2	N/A	2018/05/11	BBY6SOP-00010	SM 23 4500-NO3- I m
Nitrite (N) by CFA	2	N/A	2018/05/11	BBY6SOP-00010	SM 22 4500-NO3- I m
Nitrogen - Nitrate (as N)	2	N/A	2018/05/11	BBY WI-00033	Auto Calc
PAH in Water by GC/MS (SIM)	2	2018/05/14	2018/05/14	BBY8SOP-00021	BCMOE BCLM Jul2017m
Total LMW, HMW, Total PAH Calc (4)	2	N/A	2018/05/15	BBY WI-00033	Auto Calc
Filter and HNO3 Preserve for Metals	2	N/A	2018/05/15	BBY7 WI-00004	BCMOE Reqs 08/14
pH Water (5)	2	2018/05/12	2018/05/13	BBY6SOP-00026	SM 22 4500-H+ B m
Orthophosphate by Konelab	2	N/A	2018/05/12	BBY6SOP-00013	SM 22 4500-P E m
Sulphate by Automated Colourimetry	2	N/A	2018/05/11	BBY6SOP-00017	SM 22 4500-SO42- E m
Carbon (Total Organic) (6)	2	N/A	2018/05/14	BBY6SOP-00003	SM 22 5310 C m
Total Phosphorus	2	N/A	2018/05/15	BBY6SOP-00013	SM 22 4500-P E m
Total Suspended Solids-Low Level	1	2018/05/14	2018/05/15	BBY6SOP-00034	SM 22 2540 D
Total Suspended Solids-Low Level	1	2018/05/15	2018/05/16	BBY6SOP-00034	SM 22 2540 D
Turbidity	2	N/A	2018/05/11	BBY6SOP-00027	SM 22 2130 B m

Remarks:

Your Project #: 126231

Site Location: CROWN MOUNTAIN SPARWOOD

Your C.O.C. #: G069689

Attention: RICHARD POPE
DILLON CONSULTING LTD.
510 - 3820 CESSNA DRIVE
Richmond, BC
CANADA V7B 0A2

Report Date: 2018/05/16

Report #: R2555396 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B835678 Received: 2018/05/10, 10:45

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Maxxam Calgary Environmental
- (2) DOC present in the sample should be considered as non-purgeable DOC.
- (3) "Total Hardness" was calculated from Total Ca and Mg concentrations and may be biased high (Hardness, or Dissolved Hardness, calculated from Dissolved Ca and Mg, should be used for compliance if available).
- (4) Total PAHs in Water include: Quinoline, Naphthalene, 1-Methylnaphthalene, 2-Methylnaphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Acridine, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(b&j)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenz(a,h)anthracene, and Benzo(g,h,i)perylene.
- (5) The BC-MOE and APHA Standard Method require pH to be analysed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the BC-MOE/APHA Standard Method holding time.
- (6) TOC present in the sample should be considered as non-purgeable TOC.

Encryption Key

Maxxam 16 May 2018 17:14:05

Please direct all questions regarding this Certificate of Analysis of Project Manager.
Nahed Amer, Project Manager

Email: NAmer@maxxam.ca Phone# (604) 734 7276

This report has been generated and distributed using a secure outsmated process

This report has been generated and distributed using a secure automated process.

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E),

Your Project #: 126231

Site Location: CROWN MOUNTAIN SPARWOOD

Your C.O.C. #: G069689

Attention: RICHARD POPE
DILLON CONSULTING LTD.
510 - 3820 CESSNA DRIVE
Richmond, BC
CANADA V7B 0A2

Report Date: 2018/05/16

Report #: R2555396 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B835678 Received: 2018/05/10, 10:45

signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

DILLON CONSULTING LTD. Client Project #: 126231

Site Location: CROWN MOUNTAIN SPARWOOD

RESULTS OF CHEMICAL ANALYSES OF WATER

			 					
Maxxam ID		TK2635		TK2636				
Sampling Date		2018/05/08		2018/05/09				
		10:00		09:00				
COC Number		G069689		G069689				
	UNITS	18-WF-10	QC Batch	18-CSF-07	RDL	QC Batch		
ANIONS								
Nitrite (N)	mg/L	<0.0050	8986807	<0.0050	0.0050	8986807		
Calculated Parameters								
Filter and HNO3 Preservation	N/A	FIELD	ONSITE	FIELD		ONSITE		
Nitrate (N)	mg/L	<0.020	8984747	0.241	0.020	8984747		
Misc. Inorganics								
Fluoride (F)	mg/L	0.270	8987399	0.130	0.020	8987399		
Dissolved Organic Carbon (C)	mg/L	13.4	8988904	2.86 (1)	0.50	8988904		
Alkalinity (Total as CaCO3)	mg/L	195	8987603	136	1.0	8987603		
Total Organic Carbon (C)	mg/L	15.9	8988908	1.81	0.50	8988908		
Alkalinity (PP as CaCO3)	mg/L	<1.0	8987603	<1.0	1.0	8987603		
Bicarbonate (HCO3)	mg/L	238	8987603	166	1.0	8987603		
Carbonate (CO3)	mg/L	<1.0	8987603	<1.0	1.0	8987603		
Hydroxide (OH)	mg/L	<1.0	8987603	<1.0	1.0	8987603		
Anions								
Dissolved Bromide (Br)	mg/L	<0.010	8987623	<0.010	0.010	8987623		
Dissolved Sulphate (SO4)	mg/L	<1.0	8987772	17.1	1.0	8987772		
Dissolved Chloride (CI)	mg/L	1.6	8987771	<1.0	1.0	8987771		
Nutrients								
Orthophosphate (P)	mg/L	0.0454	8987580	<0.0050	0.0050	8987580		
Total Ammonia (N)	mg/L	0.048	8989304	<0.020	0.020	8989303		
Nitrate plus Nitrite (N)	mg/L	<0.020	8986805	0.241	0.020	8986805		
Total Phosphorus (P)	mg/L	0.110	8990239	0.0229	0.0050	8990239		
Physical Properties								
Conductivity	uS/cm	358	8987600	286	2.0	8987600		
рН	рН	8.24	8987599	8.23		8987599		
Physical Properties								
Total Suspended Solids	mg/L	4.0	8988383	2.5	1.0	8990110		
Turbidity	NTU	1.69	8986909	0.97	0.10	8986909		
RDL = Reportable Detection Lir	nit							
(1) Dissolved greater than tota	l. Reana	lysis yields sim	ilar results.					

DILLON CONSULTING LTD. Client Project #: 126231

Site Location: CROWN MOUNTAIN SPARWOOD

LOW LEVEL DISSOLVED METALS WITH CV HG (WATER)

Maxxam ID		TK2635	TK2636		
Sampling Date		2018/05/08 10:00	2018/05/09 09:00		
COC Number		G069689	G069689		
	UNITS	18-WF-10	18-CSF-07	RDL	QC Batcl
Calculated Parameters					
Dissolved Hardness (CaCO3)	mg/L	183	151	0.50	8985446
Elements					
Dissolved Mercury (Hg)	ug/L	0.0026	<0.0020	0.0020	8986384
Dissolved Metals by ICPMS					
Dissolved Aluminum (Al)	ug/L	4.80	4.80	0.50	8988003
Dissolved Antimony (Sb)	ug/L	0.150	0.028	0.020	8988003
Dissolved Arsenic (As)	ug/L	0.590	0.139 (1)	0.020	8988003
Dissolved Barium (Ba)	ug/L	172	54.1 (1)	0.020	8988003
Dissolved Beryllium (Be)	ug/L	<0.010	<0.010	0.010	8988003
Dissolved Bismuth (Bi)	ug/L	<0.0050	<0.0050	0.0050	8988003
Dissolved Boron (B)	ug/L	<10	<10	10	8988003
Dissolved Cadmium (Cd)	ug/L	0.0281	0.174 (1)	0.0050	8988003
Dissolved Chromium (Cr)	ug/L	<0.10	0.15	0.10	8988003
Dissolved Cobalt (Co)	ug/L	0.0687	0.0283 (1)	0.0050	8988003
Dissolved Copper (Cu)	ug/L	0.976	0.174	0.050	8988003
Dissolved Iron (Fe)	ug/L	25.0	22.8	1.0	8988003
Dissolved Lead (Pb)	ug/L	0.0174	0.0067	0.0050	8988003
Dissolved Lithium (Li)	ug/L	3.64	4.77	0.50	8988003
Dissolved Manganese (Mn)	ug/L	7.02	48.0 (1)	0.050	8988003
Dissolved Molybdenum (Mo)	ug/L	1.25	0.835	0.050	8988003
Dissolved Nickel (Ni)	ug/L	0.831	0.132	0.020	8988003
Dissolved Phosphorus (P)	ug/L	72.1	17.8 (1)	2.0	8988003
Dissolved Selenium (Se)	ug/L	0.388	0.202	0.040	8988003
Dissolved Silicon (Si)	ug/L	10300	2880 (1)	50	8988003
Dissolved Silver (Ag)	ug/L	<0.0050	<0.0050	0.0050	8988003
Dissolved Strontium (Sr)	ug/L	118	171	0.050	8988003
Dissolved Thallium (TI)	ug/L	<0.0020	<0.0020	0.0020	8988003
Dissolved Tin (Sn)	ug/L	<0.20	<0.20	0.20	8988003
Dissolved Titanium (Ti)	ug/L	<0.50	<0.50	0.50	8988003
Dissolved Uranium (U)	ug/L	0.435	0.322	0.0020	8988003
Dissolved Vanadium (V)	ug/L	0.45	<0.20	0.20	898800

(1) Dissolved greater than total. Reanalysis yields similar results.

DILLON CONSULTING LTD. Client Project #: 126231

Site Location: CROWN MOUNTAIN SPARWOOD

LOW LEVEL DISSOLVED METALS WITH CV HG (WATER)

Maxxam ID		TK2635	TK2636		
Sampling Date		2018/05/08	2018/05/09		
		10:00	09:00		
COC Number		G069689	G069689		
	UNITS	18-WF-10	18-CSF-07	RDL	QC Batch
Dissolved Zinc (Zn)	ug/L	1.59	4.24 (1)	0.10	8988003
Dissolved Zirconium (Zr)	ug/L	0.27	<0.10	0.10	8988003
Dissolved Calcium (Ca)	mg/L	50.4	41.1	0.050	8984540
Dissolved Magnesium (Mg)	mg/L	13.8	11.8	0.050	8984540
Dissolved Potassium (K)	mg/L	1.60	0.747 (1)	0.050	8984540
Dissolved Sodium (Na)	mg/L	2.03	1.83	0.050	8984540
Dissolved Sulphur (S)	mg/L	<3.0	4.8	3.0	8984540

RDL = Reportable Detection Limit

⁽¹⁾ Dissolved greater than total. Reanalysis yields similar results.

DILLON CONSULTING LTD. Client Project #: 126231

Site Location: CROWN MOUNTAIN SPARWOOD

LL TOTAL METALS (DIGESTED) WITH CV HG

Maxxam ID		TK2635	TK2636						
Sampling Date		2018/05/08	2018/05/09						
		10:00	09:00						
COC Number		G069689	G069689						
	UNITS	18-WF-10	18-CSF-07	RDL	QC Batch				
Calculated Parameters									
Total Hardness (CaCO3)	mg/L	189	145	0.50	8985441				
Elements									
Total Mercury (Hg)	ug/L	0.0021	<0.0020	0.0020	8989328				
Total Metals by ICPMS									
Total Aluminum (Al)	ug/L	10.8	12.7	3.0	8988115				
Total Antimony (Sb)	ug/L	0.158	0.024	0.020	8988115				
Total Arsenic (As)	ug/L	0.575	0.105	0.020	8988115				
Total Barium (Ba)	ug/L	168	43.3	0.050	8988115				
Total Beryllium (Be)	ug/L	<0.010	<0.010	0.010	8988115				
Total Bismuth (Bi)	ug/L	<0.010	<0.010	0.010	8988115				
Total Boron (B)	ug/L	<10	<10	10	8988115				
Total Cadmium (Cd)	ug/L	0.0679	<0.0050	0.0050	8988115				
Total Chromium (Cr)	ug/L	<0.10	0.20	0.10	8988115				
Total Cobalt (Co)	ug/L	0.074	0.017	0.010	8988115				
Total Copper (Cu)	ug/L	1.02	0.30	0.10	8988115				
Total Iron (Fe)	ug/L	32.4	34.1	5.0	8988115				
Total Lead (Pb)	ug/L	0.029	<0.020	0.020	8988115				
Total Lithium (Li)	ug/L	3.74	5.03	0.50	8988115				
Total Manganese (Mn)	ug/L	8.75	5.00	0.10	8988115				
Total Molybdenum (Mo)	ug/L	1.28	0.832	0.050	8988115				
Total Nickel (Ni)	ug/L	0.83	0.14	0.10	8988115				
Total Phosphorus (P)	ug/L	109	7.3	5.0	8988115				
Total Selenium (Se)	ug/L	0.383	0.247	0.040	8988115				
Total Silicon (Si)	ug/L	10700	2010	50	8988115				
Total Silver (Ag)	ug/L	<0.010	<0.010	0.010	8988115				
Total Strontium (Sr)	ug/L	118	168	0.050	8988115				
Total Thallium (TI)	ug/L	<0.0020	<0.0020	0.0020	8988115				
Total Tin (Sn)	ug/L	<0.20	<0.20	0.20	8988115				
Total Titanium (Ti)	ug/L	<2.0	<2.0	2.0	8988115				
Total Uranium (U)	ug/L	0.422	0.337	0.0050	8988115				
Total Vanadium (V)	ug/L	0.48	<0.20	0.20	8988115				
Total Zinc (Zn)	ug/L	1.9	2.5	1.0	8988115				
RDL = Reportable Detection			·						

DILLON CONSULTING LTD. Client Project #: 126231

Site Location: CROWN MOUNTAIN SPARWOOD

LL TOTAL METALS (DIGESTED) WITH CV HG

Maxxam ID		TK2635	TK2636		
Sampling Date		2018/05/08 10:00	2018/05/09 09:00		
COC Number		G069689	G069689		
	UNITS	18-WF-10	18-CSF-07	RDL	QC Batch
Total Zirconium (Zr)	ug/L	0.18	<0.10	0.10	8988115
Total Calcium (Ca)	mg/L	51.9	38.3	0.25	8984543
Total Magnesium (Mg)	mg/L	14.4	12.0	0.25	8984543
Total Potassium (K)	mg/L	1.64	0.48	0.25	8984543
Total Sodium (Na)	mg/L	2.10	1.74	0.25	8984543
Total Sulphur (S)	mg/L	<3.0	5.1	3.0	8984543
RDL = Reportable Detection L	.imit				

DILLON CONSULTING LTD. Client Project #: 126231

Site Location: CROWN MOUNTAIN SPARWOOD

CSR PAH IN WATER BY GC-MS (WATER)

Maxxam ID		TK2635	TK2636		
Sampling Date		2018/05/08	2018/05/09		
Janipinig Date		10:00	09:00		
COC Number		G069689	G069689		
	UNITS	18-WF-10	18-CSF-07	RDL	QC Batch
Calculated Parameters					
Low Molecular Weight PAH's	ug/L	<0.10	<0.10	0.10	8984588
High Molecular Weight PAH's	ug/L	<0.050	<0.050	0.050	8984588
Total PAH	ug/L	<0.10	<0.10	0.10	8984588
Polycyclic Aromatics					
Quinoline	ug/L	0.022	<0.020	0.020	8988210
Naphthalene	ug/L	<0.10	<0.10	0.10	8988210
1-Methylnaphthalene	ug/L	<0.050	<0.050	0.050	8988210
2-Methylnaphthalene	ug/L	<0.10	<0.10	0.10	8988210
Acenaphthylene	ug/L	<0.050	<0.050	0.050	8988210
Acenaphthene	ug/L	<0.050	<0.050	0.050	8988210
Fluorene	ug/L	<0.050	<0.050	0.050	8988210
Phenanthrene	ug/L	<0.050	<0.050	0.050	8988210
Anthracene	ug/L	<0.010	<0.010	0.010	8988210
Acridine	ug/L	<0.050	<0.050	0.050	8988210
Fluoranthene	ug/L	<0.020	<0.020	0.020	8988210
Pyrene	ug/L	<0.020	<0.020	0.020	8988210
Benzo(a)anthracene	ug/L	<0.010	<0.010	0.010	8988210
Chrysene	ug/L	<0.020	<0.020	0.020	8988210
Benzo(b&j)fluoranthene	ug/L	<0.030	<0.030	0.030	8988210
Benzo(k)fluoranthene	ug/L	<0.050	<0.050	0.050	8988210
Benzo(a)pyrene	ug/L	<0.0050	<0.0050	0.0050	8988210
Indeno(1,2,3-cd)pyrene	ug/L	<0.050	<0.050	0.050	8988210
Dibenz(a,h)anthracene	ug/L	<0.0030	<0.0030	0.0030	8988210
Benzo(g,h,i)perylene	ug/L	<0.050	<0.050	0.050	8988210
Surrogate Recovery (%)					
D10-ANTHRACENE (sur.)	%	96	95		8988210
D8-ACENAPHTHYLENE (sur.)	%	98	98		8988210
D8-NAPHTHALENE (sur.)	%	74	75		8988210
TERPHENYL-D14 (sur.)	%	105	101		8988210
RDL = Reportable Detection Lin	nit		•		

DILLON CONSULTING LTD. Client Project #: 126231

Site Location: CROWN MOUNTAIN SPARWOOD

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	4.7°C
-----------	-------

Sample TK2635 [18-WF-10]: Sample was analyzed past method specified hold time for Orthophosphate by Konelab. {Exceedance of hold time increases the uncertainty of test results but does not necessarily imply that results are compromised.}

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

DILLON CONSULTING LTD. Client Project #: 126231

Site Location: CROWN MOUNTAIN SPARWOOD

			Matrix	Spike	Spiked	Blank	Method E	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8988210	D10-ANTHRACENE (sur.)	2018/05/14	88	50 - 140	93	50 - 140	90	%		
8988210	D8-ACENAPHTHYLENE (sur.)	2018/05/14	97	50 - 140	100	50 - 140	99	%		
8988210	D8-NAPHTHALENE (sur.)	2018/05/14	67	50 - 140	69	50 - 140	74	%		
8988210	TERPHENYL-D14 (sur.)	2018/05/14	99	50 - 140	103	50 - 140	100	%		
8986384	Dissolved Mercury (Hg)	2018/05/11	96	80 - 120	102	80 - 120	<0.0020	ug/L	1.1	20
8986805	Nitrate plus Nitrite (N)	2018/05/11			105	80 - 120	<0.020	mg/L		
8986807	Nitrite (N)	2018/05/11			102	80 - 120	<0.0050	mg/L		
8986909	Turbidity	2018/05/11			102	80 - 120	<0.10	NTU	1.3	20
8987399	Fluoride (F)	2018/05/11	110	80 - 120	106	80 - 120	<0.020	mg/L	0	20
8987580	Orthophosphate (P)	2018/05/12	64 (1)	80 - 120	98	80 - 120	<0.0050	mg/L	2.2	20
8987599	pH	2018/05/12			101	97 - 103			0.26	20
8987600	Conductivity	2018/05/12			101	80 - 120	<2.0	uS/cm		
8987603	Alkalinity (PP as CaCO3)	2018/05/12					<1.0	mg/L		
8987603	Alkalinity (Total as CaCO3)	2018/05/12	NC	80 - 120	102	80 - 120	<1.0	mg/L		
8987603	Bicarbonate (HCO3)	2018/05/12					<1.0	mg/L		
8987603	Carbonate (CO3)	2018/05/12					<1.0	mg/L		
8987603	Hydroxide (OH)	2018/05/12					<1.0	mg/L		
8987623	Dissolved Bromide (Br)	2018/05/12	103	80 - 120	102	80 - 120	<0.010	mg/L	NC	20
8987771	Dissolved Chloride (CI)	2018/05/11	107	80 - 120	98	80 - 120	<1.0	mg/L	0.92	20
8987772	Dissolved Sulphate (SO4)	2018/05/11			101	80 - 120	<1.0	mg/L	0.0022	20
8988003	Dissolved Aluminum (Al)	2018/05/15	95	80 - 120	96	80 - 120	<0.50	ug/L	9.1	20
8988003	Dissolved Antimony (Sb)	2018/05/15	103	80 - 120	104	80 - 120	<0.020	ug/L	0.27	20
8988003	Dissolved Arsenic (As)	2018/05/15	104	80 - 120	104	80 - 120	<0.020	ug/L	1.8	20
8988003	Dissolved Barium (Ba)	2018/05/15	100	80 - 120	103	80 - 120	<0.020	ug/L	0.077	20
8988003	Dissolved Beryllium (Be)	2018/05/15	94	80 - 120	96	80 - 120	<0.010	ug/L	NC	20
8988003	Dissolved Bismuth (Bi)	2018/05/15	98	80 - 120	102	80 - 120	<0.0050	ug/L	NC	20
8988003	Dissolved Boron (B)	2018/05/15	93	80 - 120	94	80 - 120	<10	ug/L	0.12	20
8988003	Dissolved Cadmium (Cd)	2018/05/15	102	80 - 120	103	80 - 120	<0.0050	ug/L	NC	20
8988003	Dissolved Chromium (Cr)	2018/05/15	104	80 - 120	105	80 - 120	<0.10	ug/L	NC	20
8988003	Dissolved Cobalt (Co)	2018/05/15	101	80 - 120	104	80 - 120	<0.0050	ug/L	3.1	20
8988003	Dissolved Copper (Cu)	2018/05/15	98	80 - 120	102	80 - 120	<0.050	ug/L	2.3	20

QUALITY ASSURANCE REPORT(CONT'D)

DILLON CONSULTING LTD. Client Project #: 126231

Site Location: CROWN MOUNTAIN SPARWOOD

			Matrix	Spike	Spiked	Blank	Method E	Blank	RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8988003	Dissolved Iron (Fe)	2018/05/15	102	80 - 120	107	80 - 120	<1.0	ug/L	3.6	20
8988003	Dissolved Lead (Pb)	2018/05/15	99	80 - 120	103	80 - 120	<0.0050	ug/L	NC	20
8988003	Dissolved Lithium (Li)	2018/05/15	95	80 - 120	99	80 - 120	<0.50	ug/L	0.46	20
8988003	Dissolved Manganese (Mn)	2018/05/15	103	80 - 120	106	80 - 120	<0.050	ug/L	2.9	20
8988003	Dissolved Molybdenum (Mo)	2018/05/15	NC	80 - 120	107	80 - 120	<0.050	ug/L	1.6	20
8988003	Dissolved Nickel (Ni)	2018/05/15	103	80 - 120	106	80 - 120	<0.020	ug/L	18	20
8988003	Dissolved Phosphorus (P)	2018/05/15	98	80 - 120	95	80 - 120	<2.0	ug/L	NC	20
8988003	Dissolved Selenium (Se)	2018/05/15	104	80 - 120	103	80 - 120	<0.040	ug/L	1.2	20
8988003	Dissolved Silicon (Si)	2018/05/15	100	80 - 120	101	80 - 120	<50	ug/L	2.2	20
8988003	Dissolved Silver (Ag)	2018/05/15	101	80 - 120	103	80 - 120	<0.0050	ug/L	NC	20
8988003	Dissolved Strontium (Sr)	2018/05/15	NC	80 - 120	105	80 - 120	<0.050	ug/L	0.52	20
8988003	Dissolved Thallium (Tl)	2018/05/15	99	80 - 120	102	80 - 120	<0.0020	ug/L	NC	20
8988003	Dissolved Tin (Sn)	2018/05/15	102	80 - 120	101	80 - 120	<0.20	ug/L	NC	20
8988003	Dissolved Titanium (Ti)	2018/05/15	107	80 - 120	103	80 - 120	<0.50	ug/L	NC	20
8988003	Dissolved Uranium (U)	2018/05/15	104	80 - 120	107	80 - 120	<0.0020	ug/L	0.28	20
8988003	Dissolved Vanadium (V)	2018/05/15	106	80 - 120	106	80 - 120	<0.20	ug/L	1.3	20
8988003	Dissolved Zinc (Zn)	2018/05/15	102	80 - 120	105	80 - 120	<0.10	ug/L	NC	20
8988003	Dissolved Zirconium (Zr)	2018/05/15	105	80 - 120	104	80 - 120	<0.10	ug/L	16	20
8988115	Total Aluminum (AI)	2018/05/15	100	80 - 120	103	80 - 120	<3.0	ug/L	2.0	20
8988115	Total Antimony (Sb)	2018/05/15	104	80 - 120	105	80 - 120	<0.020	ug/L	12	20
8988115	Total Arsenic (As)	2018/05/15	105	80 - 120	104	80 - 120	<0.020	ug/L	1.9	20
8988115	Total Barium (Ba)	2018/05/15	101	80 - 120	104	80 - 120	<0.050	ug/L	0.64	20
8988115	Total Beryllium (Be)	2018/05/15	101	80 - 120	101	80 - 120	<0.010	ug/L	NC	20
8988115	Total Bismuth (Bi)	2018/05/15	98	80 - 120	104	80 - 120	<0.010	ug/L	NC	20
8988115	Total Boron (B)	2018/05/15	100	80 - 120	104	80 - 120	<10	ug/L	NC	20
8988115	Total Cadmium (Cd)	2018/05/15	103	80 - 120	104	80 - 120	<0.0050	ug/L	8.0	20
8988115	Total Chromium (Cr)	2018/05/15	103	80 - 120	105	80 - 120	<0.10	ug/L	7.9	20
8988115	Total Cobalt (Co)	2018/05/15	99	80 - 120	102	80 - 120	<0.010	ug/L	0.74	20
8988115	Total Copper (Cu)	2018/05/15	97	80 - 120	102	80 - 120	<0.10	ug/L	3.2	20
8988115	Total Iron (Fe)	2018/05/15	98	80 - 120	104	80 - 120	<5.0	ug/L	2.5	20
8988115	Total Lead (Pb)	2018/05/15	99	80 - 120	103	80 - 120	<0.020	ug/L	0.14	20

QUALITY ASSURANCE REPORT(CONT'D)

DILLON CONSULTING LTD. Client Project #: 126231

Site Location: CROWN MOUNTAIN SPARWOOD

			Matrix Spike		Spiked	Blank	Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8988115	Total Lithium (Li)	2018/05/15	103	80 - 120	103	80 - 120	<0.50	ug/L	4.6	20
8988115	Total Manganese (Mn)	2018/05/15	98	80 - 120	106	80 - 120	<0.10	ug/L	0.92	20
8988115	Total Molybdenum (Mo)	2018/05/15	107	80 - 120	107	80 - 120	<0.050	ug/L	6.3	20
8988115	Total Nickel (Ni)	2018/05/15	98	80 - 120	102	80 - 120	<0.10	ug/L	2.9	20
8988115	Total Phosphorus (P)	2018/05/15	102	80 - 120	101	80 - 120	<5.0	ug/L		
8988115	Total Selenium (Se)	2018/05/15	103	80 - 120	104	80 - 120	<0.040	ug/L	5.7	20
8988115	Total Silicon (Si)	2018/05/15	NC	80 - 120	106	80 - 120	<50	ug/L		
8988115	Total Silver (Ag)	2018/05/15	102	80 - 120	104	80 - 120	<0.010	ug/L	NC	20
8988115	Total Strontium (Sr)	2018/05/15	NC	80 - 120	106	80 - 120	<0.050	ug/L	3.0	20
8988115	Total Thallium (TI)	2018/05/15	100	80 - 120	102	80 - 120	<0.0020	ug/L	NC	20
8988115	Total Tin (Sn)	2018/05/15	99	80 - 120	104	80 - 120	<0.20	ug/L	NC	20
8988115	Total Titanium (Ti)	2018/05/15	105	80 - 120	108	80 - 120	<2.0	ug/L		
8988115	Total Uranium (U)	2018/05/15	105	80 - 120	106	80 - 120	<0.0050	ug/L	1.6	20
8988115	Total Vanadium (V)	2018/05/15	104	80 - 120	105	80 - 120	<0.20	ug/L	4.8	20
8988115	Total Zinc (Zn)	2018/05/15	101	80 - 120	106	80 - 120	<1.0	ug/L	1.4	20
8988115	Total Zirconium (Zr)	2018/05/15	105	80 - 120	104	80 - 120	<0.10	ug/L		
8988210	1-Methylnaphthalene	2018/05/14	80	50 - 140	83	50 - 140	<0.050	ug/L		
8988210	2-Methylnaphthalene	2018/05/15	76	50 - 140	80	50 - 140	<0.10	ug/L	NC	40
8988210	Acenaphthene	2018/05/15	90	50 - 140	93	50 - 140	<0.050	ug/L	NC	40
8988210	Acenaphthylene	2018/05/15	89	50 - 140	91	50 - 140	<0.050	ug/L	NC	40
8988210	Acridine	2018/05/15	69	50 - 140	91	50 - 140	<0.050	ug/L	NC	40
8988210	Anthracene	2018/05/15	93	50 - 140	88	50 - 140	<0.010	ug/L	NC	40
8988210	Benzo(a)anthracene	2018/05/15	82	50 - 140	84	50 - 140	<0.010	ug/L	NC	40
8988210	Benzo(a)pyrene	2018/05/15	71	50 - 140	86	50 - 140	< 0.0050	ug/L	NC	40
8988210	Benzo(b&j)fluoranthene	2018/05/15	75	50 - 140	89	50 - 140	<0.030	ug/L	NC	40
8988210	Benzo(g,h,i)perylene	2018/05/15	61	50 - 140	86	50 - 140	<0.050	ug/L	NC	40
8988210	Benzo(k)fluoranthene	2018/05/15	78	50 - 140	93	50 - 140	<0.050	ug/L	NC	40
8988210	Chrysene	2018/05/15	87	50 - 140	89	50 - 140	<0.020	ug/L	NC	40
8988210	Dibenz(a,h)anthracene	2018/05/15	66	50 - 140	91	50 - 140	<0.0030	ug/L	NC	40
8988210	Fluoranthene	2018/05/15	85	50 - 140	86	50 - 140	<0.020	ug/L	NC	40
8988210	Fluorene	2018/05/15	84	50 - 140	87	50 - 140	<0.050	ug/L	NC	40

QUALITY ASSURANCE REPORT(CONT'D)

DILLON CONSULTING LTD. Client Project #: 126231

Site Location: CROWN MOUNTAIN SPARWOOD

			Matrix	Spike	Spiked	Blank	Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8988210	Indeno(1,2,3-cd)pyrene	2018/05/15	63	50 - 140	87	50 - 140	<0.050	ug/L	NC	40
8988210	Naphthalene	2018/05/15	64	50 - 140	68	50 - 140	<0.10	ug/L	NC	40
8988210	Phenanthrene	2018/05/15	78	50 - 140	87	50 - 140	<0.050	ug/L	NC	40
8988210	Pyrene	2018/05/15	89	50 - 140	90	50 - 140	<0.020	ug/L	NC	40
8988210	Quinoline	2018/05/15	100	50 - 140	102	50 - 140	<0.020	ug/L	NC	40
8988383	Total Suspended Solids	2018/05/15			97	80 - 120	<1.0	mg/L		
8988904	Dissolved Organic Carbon (C)	2018/05/14	93	80 - 120	104	80 - 120	<0.50	mg/L	12	20
8988908	Total Organic Carbon (C)	2018/05/14	101	80 - 120	103	80 - 120	<0.50	mg/L	13	20
8989303	Total Ammonia (N)	2018/05/14	92	80 - 120	97	80 - 120	<0.020	mg/L	NC	20
8989304	Total Ammonia (N)	2018/05/14	81	80 - 120	106	80 - 120	<0.020	mg/L	NC	20
8989328	Total Mercury (Hg)	2018/05/14	97	80 - 120	107	80 - 120	<0.0020	ug/L	NC	20
8990110	Total Suspended Solids	2018/05/16			97	80 - 120	<1.0	mg/L		
8990239	Total Phosphorus (P)	2018/05/15			89	80 - 120	<0.0050	mg/L		

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

DILLON CONSULTING LTD. Client Project #: 126231

Site Location: CROWN MOUNTAIN SPARWOOD

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

<original by="" signed=""></original>
<u> </u>
Ghayasuddin Khan, M.Sc., P.Chem., QP, Scientific Specialist, Inorganics
<original by="" signed=""></original>
I ~ was a symmetry
Nahed Amer, Project Manager
<original by="" signed=""></original>
Rob Reinert, B.Sc., Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

chain of custody record
Page: 1 of 1
G 069689

Invoice To:	Consulfo		Company N	lame:	ij			-	•					PO	N=		0/00/2						A-0		
Contact Name:		7	Contact Na	me:										Quo	tation #	_ £	623	142	7_						
Address:		V	Address:											Proj	ect # :	12	623	31							
CONTROL CONTRO	PC:		VON BRIDGIST							PC:				Proj	Name:	in sev	SOUTH TO	- 700							
Phone / Fax#: Ph.	Fax:		Phone / Fa	X#:	P					Fax:				Loca	ation: (Cra	uh	N	100	1tain	1	50	aus	200	
	dillon-ca		E-mail		-										pled By		SRH		\$5.00 C		ii	- 1			
REGULATORY REQUIREMENTS		STED.																							
CSR T	Regular Turn A		/TAT\																						
COME	(5 days for mos		((A))									Al	NALY	SIS	REQ	UES	TED		9		/				
BC Water Quality	RUSH (Please		(tab)											7	I	X			T	22	N				
Other		2 Day	3 Day		- 1		1 4			SAS	8 2	zz	z			4	300	- In	W.	13	-		1 1		
DRINKING WATER	Date Required:	JZ Day	о ъсу		l.		BTEX)	-	0	gc gc	Swog	ZZ	Z	omm.	TDS TDS	age and a second	110.0	ar.	13	8 8			1 1		
pecial Instructions:	Dato Frequied.			-	-				BIE	enois by GCMS	3	× ×	>	a diag	X		4		13	20	4		1		YC
	Sample Bottles (p	alagea eng	city	MTBE	1	Į Į	1-4 Plus	Ŧ	BTEX (Fraction 1 Plus BTEX)	Phen	٦Ľ	4 8	Z Z	3	1 88	V				A CARONE					1
T I. I.)	nease spe	City)	2	10.	ГЕРНИЕРН	4	18 2	1 10		MOG	Illured	diffed	9 9	lids-	4		8		3				ç	
a mot word	times					H	action	actio	Tracti	9	2	Fleid A	Ad Ac	Z Z	og pe	ducth	1	& E.col			+	Sulphate		ľ	386
1001100	1110						- E	E)	ž I	1 4AAP	75	0	* 12	al	Bude	8	IX	Total &		\$	100	-3	1 1		
	Lab	Sample	Date/Time	втехлен	VOC/VPH		CCME-PHC (Fr	CCME-PHC (Fr	E 81	ols by	Telephone (1922)	solved	Met	0 9	Suss	X		ξ	stos	Somit-	1-3	3			1
Sample Identification	Identification	Туре	Sampled	STE.	00	PAH	NO.	8	CCME	Phenois	500	200 ×	rotals	SHITS!	Potal	Ŧ	900	Soffe	Asbe C	3 -	++	N	1.1	100	YES
1 18-WF-10		11,0	19/5/8 100		1	X		1			1	XX		7	X	X	X		1	ZV.	X	X	7		3
10 11 07	+		18/5/90100			1×			-		1		K	*		X	(1	XX	V	C	+	G	3
2 18 WF-OF	4	H2J	101 101 10100	\vdash	-	1	1	+	+	+	1	4^		4	^	-	-	++			1	^	1	Water Source?	Š.
3 1					-	4		-	4			_				-	1		-	4	-			- 8	Š
4 Lall Das																								- 2	9
5 19-WG-07:																	4							1	1
6 But Please cher																								1	7
1	F					+	+	+	+	++	+	1		+											DITIINITE
	-	-	1	-	-	+	1	-	+	+	+	+	-	+	+	-	-	1	-	+	-		+	- 6	9
8 18-csf-07					_				_	1	-			-			-	1	-						
9																									
0																						11			i GI
11																								1	Samples are from a Drinking water Source
			1			+		+	1		+	-		+		\rightarrow		\vdash	-+-						
2					4			_	4		_	4_	\perp	_		- 10	_	Labora	atory Us	e Only	3 _ 7		لبل	- 0	2
<original by="" signed="">te (Y</original>	//MM/DD): Time		Received by			Date /	YY/MI	W/DD\		Time:	I		Time		Ter	nperal	ture on		HILIKE	4	Assess		A PLANT OF		0825
2/0	5/09 180	2 4	Received by:	1	1	7011	100	770		6:41	1	Se	ensitive			_	7	U	F-2 (1 -2)	7 9	Custo	dy Sea	Intact	on Co	olei
2/0	2/01 180	1	CV. 50. V		+	Dolo		10	-		7				1 3	> 1	1	1			Yes			No	T
IS THE RESPONSIBLITY OF THE RELINQUISHER!	O ENSUBE THE ACCURACY	OF THE CHAIN O	F CUSTODY RECORD AN	MODER	LETECS	AW OF C	ustony	MAY REID	DET ON AN	ALVECAL	TAT DE	LAVS			. 8		1	_	_	_	1.05		laxxam YE	How: Client	_
C-1020 (06/10)	- country the mountains	an or or or or			_		ation o/a	_		and another		70.50										-3,540,500	1	/	

Your Project #: 126231 Site#: Crown Mountain Your C.O.C. #: 558117-01-01

Attention: RICHARD POPE
DILLON CONSULTING LTD.
510 - 3820 CESSNA DRIVE
Richmond, BC
CANADA V7B 0A2

Report Date: 2018/07/16 Report #: R2589773

Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B855658 Received: 2018/07/07, 16:23

Sample Matrix: Water # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity - Water	2	N/A	2018/07/11	BBY6SOP-00026	SM 22 2320 B m
Bromide by IC (1)	2	N/A	2018/07/11	AB SOP-00052	SM 22 4110 B m
Chloride by Automated Colourimetry	1	N/A	2018/07/10	BBY6SOP-00011	SM 22 4500-Cl- E m
Chloride by Automated Colourimetry	1	N/A	2018/07/12	BBY6SOP-00011	SM 22 4500-Cl- E m
Carbon (DOC) -Lab Filtered (1, 2)	1	N/A	2018/07/13	CAL SOP-00077	MMCW 119 1996 m
Carbon (DOC) (1, 3)	1	N/A	2018/07/13	CAL SOP-00077	MMCW 119 1996 m
Conductance - water	2	N/A	2018/07/11	BBY6SOP-00026	SM 22 2510 B m
Fluoride	1	N/A	2018/07/11	BBY6SOP-00048	SM 22 4500-F C m
Fluoride	1	N/A	2018/07/12	BBY6SOP-00048	SM 22 4500-F C m
Hardness Total (calculated as CaCO3) (4)	2	N/A	2018/07/12	BBY WI-00033	Auto Calc
Hardness (calculated as CaCO3)	2	N/A	2018/07/12	BBY WI-00033	Auto Calc
Mercury (Dissolved) by CVAF	2	N/A	2018/07/12	BBY7SOP-00015	BCMOE BCLM Oct2013 m
Mercury (Total) by CVAF	2	2018/07/11	2018/07/11	BBY7SOP-00015	BCMOE BCLM Oct2013 m
Na, K, Ca, Mg, S by CRC ICPMS (diss.)	2	N/A	2018/07/12	BBY WI-00033	Auto Calc
Elements by CRC ICPMS (dissolved)	2	N/A	2018/07/11	BBY7SOP-00002	EPA 6020b R2 m
Na, K, Ca, Mg, S by CRC ICPMS (total)	2	2018/07/09	2018/07/12	BBY WI-00033	Auto Calc
Elements by CRC ICPMS (total)	2	2018/07/11	2018/07/12	BBY7SOP-00003,	EPA 6020b R2 m
Ammonia-N (Preserved)	2	N/A	2018/07/13	BBY6SOP-00009	EPA 350.1 m
Nitrate and Nitrite (1)	1	N/A	2018/07/12	AB WI-00065	Auto Calc
Nitrate and Nitrite (1)	1	N/A	2018/07/13	AB WI-00065	Auto Calc
Nitrate + Nitrite-N (calculated) (1)	1	N/A	2018/07/12	AB WI-00065	Auto Calc
Nitrate + Nitrite-N (calculated) (1)	1	N/A	2018/07/13	AB WI-00065	Auto Calc
Nitrogen (Nitrite - Nitrate) by IC (1)	1	N/A	2018/07/10	AB SOP-00023	SM 23 4110 B m
Nitrogen (Nitrite - Nitrate) by IC (1)	1	N/A	2018/07/11	AB SOP-00023	SM 23 4110 B m
PAH in Water by GC/MS (SIM)	2	2018/07/11	2018/07/11	BBY8SOP-00021	BCMOE BCLM Jul2017m
Total LMW, HMW, Total PAH Calc (5)	2	N/A	2018/07/12	BBY WI-00033	Auto Calc
Filter and HNO3 Preserve for Metals	1	N/A	2018/07/09	BBY7 WI-00004	BCMOE Reqs 08/14
Filter and HNO3 Preserve for Metals	1	N/A	2018/07/11	BBY7 WI-00004	BCMOE Reqs 08/14
pH Water (6)	2	N/A	2018/07/11	BBY6SOP-00026	SM 22 4500-H+ B m
Orthophosphate by Konelab (1)	2	N/A	2018/07/09	AB SOP-00025	SM 23 4500-P A,F m

Your Project #: 126231 Site#: Crown Mountain Your C.O.C. #: 558117-01-01

Attention: RICHARD POPE
DILLON CONSULTING LTD.
510 - 3820 CESSNA DRIVE
Richmond, BC
CANADA V7B 0A2

Report Date: 2018/07/16

Report #: R2589773 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B855658 Received: 2018/07/07, 16:23

Sample Matrix: Water # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Sulphate by Automated Colourimetry	1	N/A	2018/07/10	BBY6SOP-00017	SM 22 4500-SO42- E m
Sulphate by Automated Colourimetry	1	N/A	2018/07/12	BBY6SOP-00017	SM 22 4500-SO42- E m
Carbon (Total Organic) (1, 7)	2	N/A	2018/07/13	CAL SOP-00077	MMCW 119 1996 m
Total Phosphorus	2	2018/07/14	2018/07/14	BBY6SOP-00013	SM 22 4500-P E m
Total Suspended Solids	1	2018/07/11	2018/07/11	BBY6SOP-00034	SM 22 2540 D
Total Suspended Solids	1	2018/07/12	2018/07/16	BBY6SOP-00034	SM 22 2540 D
Turbidity (1)	2	N/A	2018/07/09	CAL SOP-00081	SM 22 2130 B m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your Project #: 126231 Site#: Crown Mountain Your C.O.C. #: 558117-01-01

Attention: RICHARD POPE
DILLON CONSULTING LTD.
510 - 3820 CESSNA DRIVE
Richmond, BC
CANADA V7B 0A2

Report Date: 2018/07/16

Report #: R2589773 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B855658 Received: 2018/07/07, 16:23

- (1) This test was performed by Maxxam Calgary Environmental
- (2) DOC present in the sample should be considered as non-purgeable DOC.
- (3) DOC present in the sample should be considered as non-purgeable DOC. Dissolved > Total Imbalance: Whenever applicable, Dissolved > Total for any parameter that falls within method uncertainty for duplicates is likely equivalent. If RPD is > 20% samples were reanalyzed and confirmed.
- (4) "Total Hardness" was calculated from Total Ca and Mg concentrations and may be biased high (Hardness, or Dissolved Hardness, calculated from Dissolved Ca and Mg, should be used for compliance if available).
- (5) Total PAHs in Water include: Quinoline, Naphthalene, 1-Methylnaphthalene, 2-Methylnaphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Acridine, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(b&j)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenz(a,h)anthracene, and Benzo(g,h,i)perylene.
- (6) The BC-MOE and APHA Standard Method require pH to be analysed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the BC-MOE/APHA Standard Method holding time.
- (7) TOC present in the sample should be considered as non-purgeable TOC.

Encryption Key

Maxxam

16 Jul 2018 15:38:58

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Nahed Amer, Project Manager Email: NAmer@maxxam.ca Phone# (604) 734 7276

This report has been generated and distributed using a secure automated process.

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

DILLON CONSULTING LTD. Client Project #: 126231

RESULTS OF CHEMICAL ANALYSES OF WATER

Maxxam ID		TU9434			TU9435		
Sampling Date		2018/07/05 17:25			2018/07/04 18:30		
COC Number		558117-01-01			558117-01-01		
	UNITS	WL 1	RDL	QC Batch	WET 21	RDL	QC Batch
Calculated Parameters			III				
Filter and HNO3 Preservation	N/A	FIELD		ONSITE	LAB		9058362
Dissolved Nitrate (NO3)	mg/L	0.092	0.044	9055459	<0.044	0.044	9055459
Nitrate plus Nitrite (N)	mg/L	0.021	0.014	9055124	<0.014	0.014	9055124
Dissolved Nitrite (NO2)	mg/L	<0.033	0.033	9055459	<0.033	0.033	9055459
Misc. Inorganics		I	J.		I	l .	
Fluoride (F)	mg/L	0.210	0.020	9059257	0.260	0.020	9060762
Dissolved Organic Carbon (C)	mg/L	<1.0 (1)	1.0	9060291			
Alkalinity (Total as CaCO3)	mg/L	201	1.0	9058202	331	1.0	9059754
Total Organic Carbon (C)	mg/L	29 (1)	1.0	9061652	24 (2)	1.0	9061652
Alkalinity (PP as CaCO3)	mg/L	6.2	1.0	9058202	<1.0	1.0	9059754
Bicarbonate (HCO3)	mg/L	230	1.0	9058202	404	1.0	9059754
Carbonate (CO3)	mg/L	7.4	1.0	9058202	<1.0	1.0	9059754
Hydroxide (OH)	mg/L	<1.0	1.0	9058202	<1.0	1.0	9059754
Lab Filtered Inorganics				•		•	
Dissolved Organic Carbon (C)	mg/L				24 (1)	1.0	9061653
Anions							
Dissolved Bromide (Br)	mg/L	<0.010	0.010	9057697	<0.010	0.010	9057697
Dissolved Sulphate (SO4)	mg/L	44.5	1.0	9059166	103	1.0	9062451
Dissolved Chloride (CI)	mg/L	<1.0	1.0	9059161	5.6	1.0	9062449
Nutrients							
Orthophosphate (P)	mg/L	0.0073	0.0030	9056259	0.0069	0.0030	9056259
Total Ammonia (N)	mg/L	<0.020	0.020	9062843	0.042	0.020	9062843
Total Phosphorus (P)	mg/L	0.0466	0.0050	9063822	0.0107	0.0050	9063822
Dissolved Nitrite (N)	mg/L	<0.010	0.010	9056006	<0.010	0.010	9055643
Dissolved Nitrate (N)	mg/L	0.021	0.010	9056006	<0.010	0.010	9055643
Physical Properties							
Conductivity	uS/cm	446	2.0	9058199	750	2.0	9059756
рН	рН	8.46		9058197	8.06		9059755
Physical Properties		Ī	•		T		
Total Suspended Solids	mg/L	13.8	4.0	9060293	<4.0	4.0	9058818
RDL = Reportable Detection Lir	nit						

⁽¹⁾ Detection limits raised due to sample matrix.

⁽²⁾ Detection limits raised due to dilution to bring analyte within the calibrated range.

DILLON CONSULTING LTD. Client Project #: 126231

RESULTS OF CHEMICAL ANALYSES OF WATER

Maxxam ID		TU9434			TU9435		
Sampling Date		2018/07/05 17:25			2018/07/04 18:30		
COC Number		558117-01-01			558117-01-01		
	UNITS	WL 1	RDL	QC Batch	WET 21	RDL	QC Batch
Turbidity	NTU	0.48 (1)	0.10	9056447	0.82 (1)	0.10	9056447

RDL = Reportable Detection Limit

⁽¹⁾ Sample was analyzed after holding time expired.

DILLON CONSULTING LTD. Client Project #: 126231

CSR/CCME DISS. METALS IN WATER W/ CV HG (WATER)

Maxxam ID		TU9434		TU9435		
Sampling Date		2018/07/05		2018/07/04		
Sampling Date		17:25		18:30		
COC Number		558117-01-01		558117-01-01		
	UNITS	WL 1	QC Batch	WET 21	RDL	QC Batch
Calculated Parameters						
Dissolved Hardness (CaCO3)	mg/L	231	9056053	411	0.50	9057087
Elements			-			
Dissolved Mercury (Hg)	ug/L	<0.0020	9059730	<0.0020	0.0020	9059730
Dissolved Metals by ICPMS						
Dissolved Aluminum (AI)	ug/L	21.7 (1)	9058834	4.4	3.0	9058834
Dissolved Antimony (Sb)	ug/L	<0.50	9058834	<0.50	0.50	9058834
Dissolved Arsenic (As)	ug/L	0.11	9058834	0.45	0.10	9058834
Dissolved Barium (Ba)	ug/L	56.2	9058834	64.3	1.0	9058834
Dissolved Beryllium (Be)	ug/L	<0.10	9058834	<0.10	0.10	9058834
Dissolved Bismuth (Bi)	ug/L	<1.0	9058834	<1.0	1.0	9058834
Dissolved Boron (B)	ug/L	<50	9058834	127	50	9058834
Dissolved Cadmium (Cd)	ug/L	<0.010	9058834	<0.010	0.010	9058834
Dissolved Chromium (Cr)	ug/L	<1.0	9058834	<1.0	1.0	9058834
Dissolved Cobalt (Co)	ug/L	<0.20	9058834	<0.20	0.20	9058834
Dissolved Copper (Cu)	ug/L	0.39	9058834	0.31	0.20	9058834
Dissolved Iron (Fe)	ug/L	6.3	9058834	57.5	5.0	9058834
Dissolved Lead (Pb)	ug/L	<0.20	9058834	<0.20	0.20	9058834
Dissolved Lithium (Li)	ug/L	16.1	9058834	65.0	2.0	9058834
Dissolved Manganese (Mn)	ug/L	<1.0	9058834	1.6	1.0	9058834
Dissolved Molybdenum (Mo)	ug/L	<1.0	9058834	<1.0	1.0	9058834
Dissolved Nickel (Ni)	ug/L	<1.0	9058834	<1.0	1.0	9058834
Dissolved Selenium (Se)	ug/L	1.27	9058834	0.53	0.10	9058834
Dissolved Silicon (Si)	ug/L	2290	9058834	7930	100	9058834
Dissolved Silver (Ag)	ug/L	<0.020	9058834	<0.020	0.020	9058834
Dissolved Strontium (Sr)	ug/L	263	9058834	1110	1.0	9058834
Dissolved Thallium (TI)	ug/L	<0.010	9058834	<0.010	0.010	9058834
Dissolved Tin (Sn)	ug/L	<5.0	9058834	<5.0	5.0	9058834
Dissolved Titanium (Ti)	ug/L	<5.0	9058834	<5.0	5.0	9058834
Dissolved Uranium (U)	ug/L	0.41	9058834	0.27	0.10	9058834
Dissolved Vanadium (V)	ug/L	<5.0	9058834	<5.0	5.0	9058834
Dissolved Zinc (Zn)	ug/L	10.8	9058834	<5.0	5.0	9058834
Dissolved Zirconium (Zr)	ug/L	<0.10	9058834	<0.10	0.10	9058834
RDL = Reportable Detection Li	mit					

RDL = Reportable Detection Limit

⁽¹⁾ Dissolved greater than total. Reanalysis yields similar results.

DILLON CONSULTING LTD. Client Project #: 126231

CSR/CCME DISS. METALS IN WATER W/ CV HG (WATER)

		l	ı			ı			
Maxxam ID		TU9434		TU9435					
Sampling Date		2018/07/05		2018/07/04					
Sampling Bute		17:25		18:30					
COC Number		558117-01-01		558117-01-01					
	UNITS	WL1	QC Batch	WET 21	RDL	QC Batch			
Dissolved Calcium (Ca)	mg/L	58.5	9055700	114	0.050	9057119			
Dissolved Magnesium (Mg)	mg/L	20.7	9055700	30.6	0.050	9057119			
Dissolved Potassium (K)	mg/L	0.959	9055700	2.37	0.050	9057119			
Dissolved Sodium (Na)	mg/L	5.00	9055700	17.4	0.050	9057119			
Dissolved Sulphur (S)	mg/L	16.8	9055700	31.1	3.0	9057119			
RDL = Reportable Detection Li	RDL = Reportable Detection Limit								

DILLON CONSULTING LTD. Client Project #: 126231

CSR/CCME TOT. METALS IN WATER W/ CV HG (WATER)

COC Number Calculated Parameters Total Hardness (CaCO3) Elements	UNITS mg/L	2018/07/05 17:25 558117-01-01 WL 1	2018/07/04 18:30 558117-01-01 WET 21	RDL	
COC Number Calculated Parameters Total Hardness (CaCO3) Elements		558117-01-01	558117-01-01	RDI	
Calculated Parameters Total Hardness (CaCO3) Elements				RDI	
Total Hardness (CaCO3) Elements		WL 1	WET 21	BDI	
Total Hardness (CaCO3) Elements	mg/L			NDL	QC Batch
Elements	mg/L				
	LI CONTRACTOR OF THE PROPERTY	214	402	0.50	9056047
F . I . A					
Total Mercury (Hg)	ug/L	<0.0020	<0.0020	0.0020	9059441
Total Metals by ICPMS	LI Company				
Total Aluminum (Al)	ug/L	5.4	6.5	3.0	9058972
Total Antimony (Sb)	ug/L	<0.50	<0.50	0.50	9058972
Total Arsenic (As)	ug/L	<0.10	0.47	0.10	9058972
Total Barium (Ba)	ug/L	57.8	64.2	1.0	9058972
Total Beryllium (Be)	ug/L	<0.10	<0.10	0.10	9058972
Total Bismuth (Bi)	ug/L	<1.0	<1.0	1.0	9058972
Total Boron (B)	ug/L	<50	133	50	9058972
Total Cadmium (Cd)	ug/L	<0.010	<0.010	0.010	9058972
Total Chromium (Cr)	ug/L	<1.0	<1.0	1.0	9058972
Total Cobalt (Co)	ug/L	<0.20	<0.20	0.20	9058972
Total Copper (Cu)	ug/L	<0.50	<0.50	0.50	9058972
Total Iron (Fe)	ug/L	<10	61	10	9058972
Total Lead (Pb)	ug/L	<0.20	<0.20	0.20	9058972
Total Lithium (Li)	ug/L	17.3	68.7	2.0	9058972
Total Manganese (Mn)	ug/L	<1.0	3.6	1.0	9058972
Total Molybdenum (Mo)	ug/L	<1.0	<1.0	1.0	9058972
Total Nickel (Ni)	ug/L	<1.0	<1.0	1.0	9058972
Total Selenium (Se)	ug/L	1.28	0.55	0.10	9058972
Total Silicon (Si)	ug/L	2270	7530	100	9058972
Total Silver (Ag)	ug/L	<0.020	<0.020	0.020	9058972
Total Strontium (Sr)	ug/L	265	1130	1.0	9058972
Total Thallium (Tl)	ug/L	<0.010	<0.010	0.010	9058972
Total Tin (Sn)	ug/L	<5.0	<5.0	5.0	9058972
Total Titanium (Ti)	ug/L	<5.0	<5.0	5.0	9058972
Total Uranium (U)	ug/L	0.44	0.30	0.10	9058972
Total Vanadium (V)	ug/L	<5.0	<5.0	5.0	9058972
Total Zinc (Zn)	ug/L	<5.0	<5.0	5.0	9058972
Total Zirconium (Zr)	ug/L	<0.10	<0.10	0.10	9058972
Total Calcium (Ca)	mg/L	54.1	112	0.050	9056055
RDL = Reportable Detection Li	mit				

DILLON CONSULTING LTD. Client Project #: 126231

CSR/CCME TOT. METALS IN WATER W/ CV HG (WATER)

Maxxam ID		TU9434	TU9435				
Sampling Date		2018/07/05 17:25	2018/07/04 18:30				
COC Number		558117-01-01	558117-01-01				
	UNITS	WL 1	WET 21	RDL	QC Batch		
Total Magnesium (Mg)	mg/L	19.2	29.9	0.050	9056055		
Total Potassium (K)	mg/L	0.826	2.20	0.050	9056055		
Total Sodium (Na)	mg/L	4.44	16.4	0.050	9056055		
Total Sulphur (S)	mg/L	12.4	28.8	3.0	9056055		
RDL = Reportable Detection Limit							

DILLON CONSULTING LTD. Client Project #: 126231

CSR PAH IN WATER BY GC-MS (WATER)

Maxxam ID		TU9434	TU9435		
Sampling Date		2018/07/05 17:25	2018/07/04 18:30		
COC Number		558117-01-01	558117-01-01		
	UNITS	WL1	WET 21	RDL	QC Batch
Calculated Parameters			•		
Low Molecular Weight PAH`s	ug/L	<0.10	<0.10	0.10	9055539
High Molecular Weight PAH`s	ug/L	<0.050	<0.050	0.050	9055539
Total PAH	ug/L	<0.10	<0.10	0.10	9055539
Polycyclic Aromatics			I		
Quinoline	ug/L	<0.020	<0.020	0.020	9058592
Naphthalene	ug/L	<0.10	<0.10	0.10	9058592
1-Methylnaphthalene	ug/L	<0.050	<0.050	0.050	9058592
2-Methylnaphthalene	ug/L	<0.10	<0.10	0.10	9058592
Acenaphthylene	ug/L	<0.050	<0.050	0.050	9058592
Acenaphthene	ug/L	<0.050	<0.050	0.050	9058592
Fluorene	ug/L	<0.050	<0.050	0.050	9058592
Phenanthrene	ug/L	<0.050	<0.050	0.050	9058592
Anthracene	ug/L	<0.010	<0.010	0.010	9058592
Acridine	ug/L	<0.050	<0.050	0.050	9058592
Fluoranthene	ug/L	<0.020	<0.020	0.020	9058592
Pyrene	ug/L	<0.020	<0.020	0.020	9058592
Benzo(a)anthracene	ug/L	<0.010	<0.010	0.010	9058592
Chrysene	ug/L	<0.020	<0.020	0.020	9058592
Benzo(b&j)fluoranthene	ug/L	<0.030	<0.030	0.030	9058592
Benzo(k)fluoranthene	ug/L	<0.050	<0.050	0.050	9058592
Benzo(a)pyrene	ug/L	<0.0050	<0.0050	0.0050	9058592
Indeno(1,2,3-cd)pyrene	ug/L	<0.050	<0.050	0.050	9058592
Dibenz(a,h)anthracene	ug/L	< 0.0030	<0.0030	0.0030	9058592
Benzo(g,h,i)perylene	ug/L	<0.050	<0.050	0.050	9058592
Surrogate Recovery (%)			•		
D10-ANTHRACENE (sur.)	%	79	88		9058592
D8-ACENAPHTHYLENE (sur.)	%	85	87		9058592
D8-NAPHTHALENE (sur.)	%	76	83		9058592
TERPHENYL-D14 (sur.)	%	86	96		9058592
RDL = Reportable Detection Lin	nit				

DILLON CONSULTING LTD. Client Project #: 126231

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	4.3°C
-----------	-------

Sample TU9435 [WET 21]: Sample was analyzed past method specified hold time for Nitrogen (Nitrite - Nitrate) by IC. Exceedance of hold time increases the uncertainty of test results but does not necessarily imply that results are compromised. {Exceedance of hold time increases the uncertainty of test results but does not necessarily imply that results are compromised.}

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

DILLON CONSULTING LTD. Client Project #: 126231

			Matrix	Matrix Spike Spiked Blank		Method I	Blank	RPI	D	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9058592	D10-ANTHRACENE (sur.)	2018/07/11	83	50 - 140	89	50 - 140	90	%		
9058592	D8-ACENAPHTHYLENE (sur.)	2018/07/11	86	50 - 140	93	50 - 140	87	%		
9058592	D8-NAPHTHALENE (sur.)	2018/07/11	77	50 - 140	80	50 - 140	73	%		
9058592	TERPHENYL-D14 (sur.)	2018/07/11	90	50 - 140	101	50 - 140	98	%		
9055643	Dissolved Nitrate (N)	2018/07/10	109	80 - 120	103	80 - 120	<0.010	mg/L	1.4	20
9055643	Dissolved Nitrite (N)	2018/07/10	107	80 - 120	102	80 - 120	<0.010	mg/L	3.1	20
9056006	Dissolved Nitrate (N)	2018/07/10	NC	80 - 120	101	80 - 120	<0.010	mg/L	0.35	20
9056006	Dissolved Nitrite (N)	2018/07/10	103	80 - 120	100	80 - 120	<0.010	mg/L		
9056259	Orthophosphate (P)	2018/07/09	99	80 - 120	100	80 - 120	<0.0030	mg/L	3.8	20
9056447	Turbidity	2018/07/09			99	80 - 120	<0.10	NTU	0.90	20
9057697	Dissolved Bromide (Br)	2018/07/11	98	80 - 120	98	80 - 120	<0.010	mg/L	0.51	20
9058197	рН	2018/07/11			101	97 - 103				
9058199	Conductivity	2018/07/11			100	80 - 120	<2.0	uS/cm		
9058202	Alkalinity (PP as CaCO3)	2018/07/11					<1.0	mg/L	NC	20
9058202	Alkalinity (Total as CaCO3)	2018/07/11	NC	80 - 120	99	80 - 120	<1.0	mg/L	1.8	20
9058202	Bicarbonate (HCO3)	2018/07/11					<1.0	mg/L	1.8	20
9058202	Carbonate (CO3)	2018/07/11					<1.0	mg/L	NC	20
9058202	Hydroxide (OH)	2018/07/11					<1.0	mg/L	NC	20
9058592	1-Methylnaphthalene	2018/07/11	NC	50 - 140	83	50 - 140	<0.050	ug/L	NC	40
9058592	2-Methylnaphthalene	2018/07/11	NC	50 - 140	81	50 - 140	<0.10	ug/L	NC	40
9058592	Acenaphthene	2018/07/11	NC	50 - 140	86	50 - 140	<0.050	ug/L	NC	40
9058592	Acenaphthylene	2018/07/11	89	50 - 140	84	50 - 140	<0.050	ug/L	NC	40
9058592	Acridine	2018/07/11	101	50 - 140	92	50 - 140	<0.050	ug/L	NC	40
9058592	Anthracene	2018/07/11	107	50 - 140	86	50 - 140	<0.010	ug/L	NC	40
9058592	Benzo(a)anthracene	2018/07/11	92	50 - 140	87	50 - 140	<0.010	ug/L	NC	40
9058592	Benzo(a)pyrene	2018/07/11	90	50 - 140	86	50 - 140	<0.0050	ug/L	NC	40
9058592	Benzo(b&j)fluoranthene	2018/07/11	95	50 - 140	91	50 - 140	<0.030	ug/L	NC	40
9058592	Benzo(g,h,i)perylene	2018/07/11	77	50 - 140	77	50 - 140	<0.050	ug/L	NC	40
9058592	Benzo(k)fluoranthene	2018/07/11	91	50 - 140	91	50 - 140	<0.050	ug/L	NC	40
9058592	Chrysene	2018/07/11	89	50 - 140	85	50 - 140	<0.020	ug/L	NC	40
9058592	Dibenz(a,h)anthracene	2018/07/11	81	50 - 140	81	50 - 140	<0.0030	ug/L	NC	40
9058592	Fluoranthene	2018/07/11	NC	50 - 140	89	50 - 140	<0.020	ug/L	NC	40

QUALITY ASSURANCE REPORT(CONT'D)

DILLON CONSULTING LTD. Client Project #: 126231

			Matrix	Spike	Spiked	Blank	Method I	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9058592	Fluorene	2018/07/11	NC	50 - 140	83	50 - 140	<0.050	ug/L	NC	40
9058592	Indeno(1,2,3-cd)pyrene	2018/07/11	78	50 - 140	79	50 - 140	<0.050	ug/L	NC	40
9058592	Naphthalene	2018/07/11	NC	50 - 140	87	50 - 140	<0.10	ug/L	NC	40
9058592	Phenanthrene	2018/07/11	NC	50 - 140	80	50 - 140	<0.050	ug/L	NC	40
9058592	Pyrene	2018/07/11	NC	50 - 140	93	50 - 140	<0.020	ug/L	NC	40
9058592	Quinoline	2018/07/11	109	50 - 140	103	50 - 140	<0.020	ug/L	NC	40
9058818	Total Suspended Solids	2018/07/11	102	80 - 120	100	80 - 120	<4.0	mg/L	NC	20
9058834	Dissolved Aluminum (AI)	2018/07/11	97	80 - 120	101	80 - 120	<3.0	ug/L		
9058834	Dissolved Antimony (Sb)	2018/07/11	101	80 - 120	101	80 - 120	<0.50	ug/L		
9058834	Dissolved Arsenic (As)	2018/07/11	101	80 - 120	97	80 - 120	<0.10	ug/L		
9058834	Dissolved Barium (Ba)	2018/07/11	100	80 - 120	101	80 - 120	<1.0	ug/L		
9058834	Dissolved Beryllium (Be)	2018/07/11	98	80 - 120	100	80 - 120	<0.10	ug/L		
9058834	Dissolved Bismuth (Bi)	2018/07/11	100	80 - 120	104	80 - 120	<1.0	ug/L		
9058834	Dissolved Boron (B)	2018/07/11	105	80 - 120	106	80 - 120	<50	ug/L		
9058834	Dissolved Cadmium (Cd)	2018/07/11	99	80 - 120	100	80 - 120	<0.010	ug/L	1.1	20
9058834	Dissolved Chromium (Cr)	2018/07/11	93	80 - 120	96	80 - 120	<1.0	ug/L		
9058834	Dissolved Cobalt (Co)	2018/07/11	92	80 - 120	95	80 - 120	<0.20	ug/L		
9058834	Dissolved Copper (Cu)	2018/07/11	89	80 - 120	93	80 - 120	<0.20	ug/L		
9058834	Dissolved Iron (Fe)	2018/07/11	98	80 - 120	100	80 - 120	<5.0	ug/L		
9058834	Dissolved Lead (Pb)	2018/07/11	99	80 - 120	103	80 - 120	<0.20	ug/L		
9058834	Dissolved Lithium (Li)	2018/07/11	101	80 - 120	102	80 - 120	<2.0	ug/L		
9058834	Dissolved Manganese (Mn)	2018/07/11	94	80 - 120	98	80 - 120	<1.0	ug/L		
9058834	Dissolved Molybdenum (Mo)	2018/07/11	102	80 - 120	104	80 - 120	<1.0	ug/L		
9058834	Dissolved Nickel (Ni)	2018/07/11	91	80 - 120	94	80 - 120	<1.0	ug/L		
9058834	Dissolved Selenium (Se)	2018/07/11	98	80 - 120	94	80 - 120	<0.10	ug/L		
9058834	Dissolved Silicon (Si)	2018/07/11	106	80 - 120	109	80 - 120	<100	ug/L		
9058834	Dissolved Silver (Ag)	2018/07/11	100	80 - 120	101	80 - 120	<0.020	ug/L		
9058834	Dissolved Strontium (Sr)	2018/07/11	NC	80 - 120	99	80 - 120	<1.0	ug/L		
9058834	Dissolved Thallium (TI)	2018/07/11	100	80 - 120	103	80 - 120	<0.010	ug/L		
9058834	Dissolved Tin (Sn)	2018/07/11	100	80 - 120	102	80 - 120	<5.0	ug/L		
9058834	Dissolved Titanium (Ti)	2018/07/11	98	80 - 120	99	80 - 120	<5.0	ug/L		
9058834	Dissolved Uranium (U)	2018/07/11	101	80 - 120	102	80 - 120	<0.10	ug/L		

QUALITY ASSURANCE REPORT(CONT'D)

DILLON CONSULTING LTD. Client Project #: 126231

			Matrix Spike		Spiked	Blank	Method E	RPD		
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9058834	Dissolved Vanadium (V)	2018/07/11	96	80 - 120	95	80 - 120	<5.0	ug/L		
9058834	Dissolved Zinc (Zn)	2018/07/11	90	80 - 120	97	80 - 120	<5.0	ug/L		
9058834	Dissolved Zirconium (Zr)	2018/07/11	95	80 - 120	95	80 - 120	<0.10	ug/L		
9058972	Total Aluminum (AI)	2018/07/12	105	80 - 120	106	80 - 120	<3.0	ug/L	NC	20
9058972	Total Antimony (Sb)	2018/07/12	106	80 - 120	106	80 - 120	<0.50	ug/L	NC	20
9058972	Total Arsenic (As)	2018/07/12	108	80 - 120	106	80 - 120	<0.10	ug/L	NC	20
9058972	Total Barium (Ba)	2018/07/12	107	80 - 120	108	80 - 120	<1.0	ug/L	NC	20
9058972	Total Beryllium (Be)	2018/07/12	107	80 - 120	106	80 - 120	<0.10	ug/L	NC	20
9058972	Total Bismuth (Bi)	2018/07/12	100	80 - 120	99	80 - 120	<1.0	ug/L	NC	20
9058972	Total Boron (B)	2018/07/12	103	80 - 120	99	80 - 120	<50	ug/L	NC	20
9058972	Total Cadmium (Cd)	2018/07/12	105	80 - 120	105	80 - 120	<0.010	ug/L	NC	20
9058972	Total Chromium (Cr)	2018/07/12	104	80 - 120	108	80 - 120	<1.0	ug/L	NC	20
9058972	Total Cobalt (Co)	2018/07/12	105	80 - 120	107	80 - 120	<0.20	ug/L	NC	20
9058972	Total Copper (Cu)	2018/07/12	103	80 - 120	105	80 - 120	<0.50	ug/L	NC	20
9058972	Total Iron (Fe)	2018/07/12	104	80 - 120	106	80 - 120	<10	ug/L	NC	20
9058972	Total Lead (Pb)	2018/07/12	108	80 - 120	107	80 - 120	<0.20	ug/L	NC	20
9058972	Total Lithium (Li)	2018/07/12	106	80 - 120	110	80 - 120	<2.0	ug/L	NC	20
9058972	Total Manganese (Mn)	2018/07/12	104	80 - 120	108	80 - 120	<1.0	ug/L	NC	20
9058972	Total Molybdenum (Mo)	2018/07/12	110	80 - 120	106	80 - 120	<1.0	ug/L	NC	20
9058972	Total Nickel (Ni)	2018/07/12	103	80 - 120	108	80 - 120	<1.0	ug/L	NC	20
9058972	Total Selenium (Se)	2018/07/12	105	80 - 120	106	80 - 120	<0.10	ug/L	NC	20
9058972	Total Silicon (Si)	2018/07/12	NC	80 - 120	104	80 - 120	<100	ug/L	NC	20
9058972	Total Silver (Ag)	2018/07/12	105	80 - 120	103	80 - 120	<0.020	ug/L	NC	20
9058972	Total Strontium (Sr)	2018/07/12	NC	80 - 120	100	80 - 120	<1.0	ug/L	NC	20
9058972	Total Thallium (TI)	2018/07/12	110	80 - 120	107	80 - 120	<0.010	ug/L	NC	20
9058972	Total Tin (Sn)	2018/07/12	105	80 - 120	102	80 - 120	<5.0	ug/L	NC	20
9058972	Total Titanium (Ti)	2018/07/12	107	80 - 120	108	80 - 120	<5.0	ug/L	NC	20
9058972	Total Uranium (U)	2018/07/12	107	80 - 120	105	80 - 120	<0.10	ug/L	NC	20
9058972	Total Vanadium (V)	2018/07/12	104	80 - 120	104	80 - 120	<5.0	ug/L	NC	20
9058972	Total Zinc (Zn)	2018/07/12	105	80 - 120	109	80 - 120	<5.0	ug/L	NC	20
9058972	Total Zirconium (Zr)	2018/07/12	105	80 - 120	100	80 - 120	<0.10	ug/L	NC	20
9059161	Dissolved Chloride (CI)	2018/07/10	105	80 - 120	100	80 - 120	<1.0	mg/L	0.77	20

QUALITY ASSURANCE REPORT(CONT'D)

DILLON CONSULTING LTD. Client Project #: 126231

			Matrix Spike		Spiked Blank		Method Blank		RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9059166	Dissolved Sulphate (SO4)	2018/07/10			96	80 - 120	<1.0	mg/L		
9059257	Fluoride (F)	2018/07/11	NC	80 - 120	100	80 - 120	<0.020	mg/L	0	20
9059441	Total Mercury (Hg)	2018/07/11	96	80 - 120	105	80 - 120	<0.0020	ug/L	NC	20
9059730	Dissolved Mercury (Hg)	2018/07/12	89	80 - 120	109	80 - 120	<0.0020	ug/L	NC	20
9059754	Alkalinity (PP as CaCO3)	2018/07/11					<1.0	mg/L		
9059754	Alkalinity (Total as CaCO3)	2018/07/11	NC	80 - 120	95	80 - 120	<1.0	mg/L		
9059754	Bicarbonate (HCO3)	2018/07/11					<1.0	mg/L		
9059754	Carbonate (CO3)	2018/07/11					<1.0	mg/L		
9059754	Hydroxide (OH)	2018/07/11					<1.0	mg/L		
9059755	рН	2018/07/11			101	97 - 103			0.38	20
9059756	Conductivity	2018/07/11			98	80 - 120	<2.0	uS/cm		
9060291	Dissolved Organic Carbon (C)	2018/07/13	110	80 - 120	105	80 - 120	<0.50	mg/L	0.60	20
9060293	Total Suspended Solids	2018/07/16	105	80 - 120	102	80 - 120	<4.0	mg/L	NC	20
9060762	Fluoride (F)	2018/07/12	94	80 - 120	102	80 - 120	<0.020	mg/L	0	20
9061652	Total Organic Carbon (C)	2018/07/13	99	80 - 120	97	80 - 120	<0.50	mg/L	NC	20
9061653	Dissolved Organic Carbon (C)	2018/07/13	NC	80 - 120	97	80 - 120	<0.50	mg/L	0.37	20
9062449	Dissolved Chloride (CI)	2018/07/12	109	80 - 120	101	80 - 120	<1.0	mg/L	4.9	20
9062451	Dissolved Sulphate (SO4)	2018/07/12	118	80 - 120	105	80 - 120	<1.0	mg/L	9.3	20
9062843	Total Ammonia (N)	2018/07/13	106	80 - 120	100	80 - 120	<0.020	mg/L	16	20
9063822	Total Phosphorus (P)	2018/07/14			99	80 - 120	<0.0050	mg/L		

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

DILLON CONSULTING LTD. Client Project #: 126231

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

<original by="" signed=""></original>
V
hayasuddin Khan, M.Sc., P.Chem., QP, Scientific Specialist, Inorganics
<original by="" signed=""></original>
· • • • • • • • • • • • • • • • • • • •
larry (Peng) Liang, Senior Analyst
Original signed by>
ob Reinert, B.Sc., Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

ON CONSULTING LTD. able ISSNA DRIVE V7B 0A2 7 Fex (604) 278-7 on.ca	Email	Jacqueline jhuard@dill						Р	ootation#		B70427			A 2	Maxx	Laboratory Us	Bottle Order #:
V7B 0A2 7 Fax (604) 278-7	Contact N Address 7894 Phone Email	Jacqueline jhuard@dill						Р	0.#		126231			A 2 3		100	
V7B 0A2 7 Fax (604) 278-7	7894 Phone Email	THE RESERVE OF THE PARTY OF THE	lan an la la					P	royect #		126231			20000000			
7 Fax (604) 278-7	Email	THE RESERVE OF THE PARTY OF THE	lon on lette	100					100 CO.		Property of the last	6231			160000000000000000000000000000000000000		558117
	Email	THE RESERVE OF THE PARTY OF THE	lon on lattle			Land	Project				Crown Mountain					ustody Record	Project Manager
		THE RESERVE OF THE PARTY OF THE	ion.ca. idilif	ey@d	illon.ca;	rpope@	dillon.c	a s	ite# ample& By		CIOWITIVI	Juntain				117-01-01	Nahed Amer
	100 P	icial Instructions								LEASE B	E SPECIFIC)	ĭ.				around Time (TAT) I	Required:
COOL 1 4 MIC VERON TIME OF SA	MDI NAC UNIXI DEL MERO	Y TA MAYYAM		Field Filtered ? (Y/N)	by GC-MS	Level Dissolved Metals with CV	svel Total Metals with CV Hg	ity, Bromide, Chloride, ctivity, Fluoride	nia, TOC, DOC, Total horus	+ Nitrite (N), Nitrate, Nitrite	shosphate, pH, Sulphate,	enspended Solids-Low Level		(will be ap Standard Please ric days - co. Job Spe 1 DAY	Standard) TAT: opplied if Rush TAT i TAT = 5-7 Working tle: Standard TAT in ntact your Project is ciffic Rush TAT (if	days for most tests. or certain tests such as fanager for defails. applies to entire subm	BOD and Dioxins/Furans at nission)
Sample (Location) Identification	Date Sampled	Time Sampled	Matrix	Metals		Low L	Low La	Alkalin Condu	Ammo	Nitrate	Orthop	Total S		# of Bottle	S	Comme	(call lab for #) nts
WLI	2019-07-09	5 17:25		4	1	/	/	-		~				14		187	
WET 21	2018-07-0	18:30		7	1	/	1	~			V	-		9			
						70		8 -									
												120					
					9 00					3.1							
															3.8		
																- Carrier (76)	Jul-18 16:23
						100									1		
												**				IL4 IN	S-0001
	ite: (YY/MM/DD) Ti	TNO .	RECEIV	VED BY:	(Signature	e/Print)			Date: (YY/MI	M/00)	Time		C2000000000000000000000000000000000000			Lab Use Only	
	\$ /01/07 V	20 1	LAD	200	1		CVI	-	CIM	69	10.00	5	Tir	se Sensitive To	mperature (°C) on	receipt	ody Seal Intact on Cooler? Yes No
	Sample (Location) Identification WL \ WET 21	Sample (Location) Identification Date Sampled	WET 21 2019-07-05 17:25 WET 21 2018-07-04 18:30 16:30 16:01/07 16:20	Sample (Location) Identification Date Sampled Time Sampled Matrix	Sample (Location) Identification Date Sampled Time Sampled Matrix WET 21 ZO19 - 07-04 18:30 Y Date: (YYMMMDD) Time RECEIVED BY Time Time Sampled Matrix Pi Matrix Received BY	PT COOL (<10°C) FROM TIME OF SAMPLING UNTIL DELIVERY TO MAXXAM Sample (Location) Identification Date Sampled Time Sampled Matrix WET 21 ZO19 -07-04 18:30 Y WET 21 Date: (YYMMM/DD) Time RECEIVED BY: (Signature)	Sample (Location) Identification Date Sampled Time Sampled Matrix S S S S S S S S S S S S S S S S S S	Sample (Location) Identification Date Sampled Time Sampled Matrix S S S S S S S S S S S S S S S S S S	PT COOL (< 10°C) FROM TIME OF SAMPLING UNTIL DELIVERY TO MAXXAM Sample (Location) Identification Date Sampled Time Sampled WET 21 ZO19 - 07-09 18:30 WET 21 Date: (YYMM/DD) Time RECEIVED BY: (Signature/Print)	PT COOL (< 10°C) FROM TIME OF SAMPLING UNTIL DELIVERY TO MAXXAM Sample (Location) Identification Date Sampled Time Sampled Natrix WET 21 Zo18 - 07-04 18: 30 WET 21 Zo18 - 07-04 18: 30 Date: (YYMM/DD) Time RECEIVED BY: (Signature/Print) Date: (YYMM/DD)	Sample (Location) Identification Date Sampled Time Sampl	PT COOL (< 10°C) FROM TIME OF SAMPLING UNTIL DELIVERY TO MAXXAM Sample (Location) Identification Date Sampled Time Sampled T	Sample (Location) Identification Date: (YYMM/DD) Date: (YYMM/DD) Date: (YYMM/DD) Time RECEIVED BY: (Signature/Print) Date: (YYMM/DD) Time Date: (YYMM/DD)	PT COOL (< 10°C) FROM TIME OF SAMPLING UNTIL DELIVERY TO NAXXAM Sample (Location) Identification Date Sampled Time Sampled	Job Septical Control of Bottle (YYMMOD) Time Received BY: (SignaturePrint) Date: (YYMMOD) Time Greenble BY: (SignaturePrint) Date: (YYMMOD) Time Greenble BY: (SignaturePrint) Date: (YYMMOD) Time Greenble BY: (SignaturePrint) Date: (YYMMOD) Time Received BY: (SignaturePrint) Date: (YYMMOD) Time Greenble BY: (SignaturePrint) Date: (YYMMOD) Time BY: (SignaturePrint) Date: (YYMMOD) Time BY: (SignaturePrint) Time Greenble BY: (Signatur	Job Specific Rush TAT (# 1 DAY 2 Despirition Date Sampled Time Sampled Time Sampled Date; (YYMMDD) Time RECEIVED BY; (Signature/Print) Time	Sample (Location) Identification Date Sampled Time Sampl

DILLON CONSULTING LIMITED

ATTN: Jacqueline Huard 510 - 3820 Cessna Drive Richmond BC V7B 0A2 Date Received: 13-MAY-19

Report Date: 23-MAY-19 15:44 (MT)

Version: FINAL

Client Phone: 604-278-7847

Certificate of Analysis

Lab Work Order #: L2271768
Project P.O. #: NOT SUBMITTED

Job Reference: 126231 C of C Numbers: 17-701629

Legal Site Desc:

<Original signed by>

Ryan Smyth, B.A.Sc. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 2559 29 Street NE, Calgary, AB T1Y 7B5 Canada | Phone: +1 403 291 9897 | Fax: +1 403 291 0298 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

L2271768 CONTD.... PAGE 2 of 7

23-MAY-19 15:44 (MT) Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L2271768-1 Water 09-MAY-19 14:30 WF-WL15-19	L2271768-2 Water 09-MAY-19 16:15 CSF-WL117-19		
Grouping	Analyte				
WATER					
Physical Tests	Conductivity (@ 25C) (uS/cm)	1010	660		
	Hardness (as CaCO3) (mg/L)	529	424		
	pH (pH)	8.35	8.37		
	Total Suspended Solids (mg/L)	<1.0	5.7		
	Turbidity (NTU)	0.54	3.26		
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	244	327		
	Alkalinity, Carbonate (as CaCO3) (mg/L)	4.8	8.0		
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<1.0	<1.0		
	Alkalinity, Phenolphthalein (mg/L)	2.4	4.0		
	Alkalinity, Total (as CaCO3) (mg/L)	249	335		
	Ammonia as N (mg/L)	0.0673	0.262		
	Bromide (Br) (mg/L)	DLHC <0.25	DLHC <0.25		
	Chloride (CI) (mg/L)	DLHC 11.7	DLHC <2.5		
	Fluoride (F) (mg/L)	0.21	0.23		
	Nitrate and Nitrite (as N) (mg/L)	0.081	<0.025		
	Nitrate (as N) (mg/L)	0.081	OLHC <0.025		
	Nitrite (as N) (mg/L)	OLHC <0.0050	<0.0050		
	Orthophosphate-Dissolved (as P) (mg/L)	<0.0010	0.0137		
	Phosphorus (P)-Total (mg/L)	0.0127	0.0483		
	Sulfate (SO4) (mg/L)	332	128		
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	25.0	21.2		
	Total Organic Carbon (mg/L)	25.2	21.7		
Total Metals	Aluminum (Al)-Total (mg/L)	<0.015	<0.015		
	Antimony (Sb)-Total (mg/L)	<0.00050	<0.00050		
	Arsenic (As)-Total (mg/L)	0.00050	0.00084		
	Barium (Ba)-Total (mg/L)	0.0854	0.0704		
	Beryllium (Be)-Total (mg/L)	<0.00050	<0.00050		
	Boron (B)-Total (mg/L)	0.120 DLM	0.074		
	Cadmium (Cd)-Total (mg/L)	<0.000025	<0.000025		
	Calcium (Ca)-Total (mg/L)	141	116		
	Chromium (Cr)-Total (mg/L)	<0.00050	<0.00050		
	Cobalt (Co)-Total (mg/L)	<0.00050	0.00054		
	Copper (Cu)-Total (mg/L)	<0.0025	<0.0025		
	Iron (Fe)-Total (mg/L)	<0.050	0.908		
	Lead (Pb)-Total (mg/L)	0.00035	<0.00025		
	Lithium (Li)-Total (mg/L)	0.0640	0.0349		

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2271768 CONTD.... PAGE 3 of 7

23-MAY-19 15:44 (MT) Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L2271768-1 Water 09-MAY-19 14:30 WF-WL15-19	L2271768-2 Water 09-MAY-19 16:15 CSF-WL117-19		
Grouping	Analyte				
WATER					
Total Metals	Magnesium (Mg)-Total (mg/L)	38.3	32.0		
	Manganese (Mn)-Total (mg/L)	0.00209	0.124		
	Mercury (Hg)-Total (mg/L)	<0.000025	<0.000025		
	Molybdenum (Mo)-Total (mg/L)	0.00375	0.00568		
	Nickel (Ni)-Total (mg/L)	<0.0025	<0.0025		
	Potassium (K)-Total (mg/L)	2.75	2.15		
	Selenium (Se)-Total (mg/L)	0.00031	<0.00025		
	Silver (Ag)-Total (mg/L)	<0.000050	<0.000050		
	Sodium (Na)-Total (mg/L)	19.0 DLM	13.4		
	Thallium (TI)-Total (mg/L)	<0.000050	<0.000050		
	Tin (Sn)-Total (mg/L)	<0.00050	<0.00050		
	Titanium (Ti)-Total (mg/L)	<0.0015	<0.0015		
	Uranium (U)-Total (mg/L)	0.00197	0.000662		
	Vanadium (V)-Total (mg/L)	<0.0025	<0.0025		
	Zinc (Zn)-Total (mg/L)	<0.015	<0.015		
Dissolved Metals	Dissolved Mercury Filtration Location	FIELD	FIELD		
	Dissolved Metals Filtration Location	LAB	LAB		
	Aluminum (Al)-Dissolved (mg/L)	0.0073	<0.0050		
	Antimony (Sb)-Dissolved (mg/L)	<0.00050	<0.00050		
	Arsenic (As)-Dissolved (mg/L)	0.00052	0.00089		
	Barium (Ba)-Dissolved (mg/L)	0.0894	0.0742		
	Beryllium (Be)-Dissolved (mg/L)	<0.00050	<0.00050		
	Boron (B)-Dissolved (mg/L)	0.124	0.073		
	Cadmium (Cd)-Dissolved (mg/L)	<0.000025	<0.000025		
	Calcium (Ca)-Dissolved (mg/L)	148	118 DLM		
	Chromium (Cr)-Dissolved (mg/L)	<0.00050 DLM	<0.00050 DLM		
	Cobalt (Co)-Dissolved (mg/L)	<0.00050 DLM	0.00056 DLM		
	Copper (Cu)-Dissolved (mg/L)	<0.0010 DLM	<0.0010 DLM		
	Iron (Fe)-Dissolved (mg/L)	<0.050 DLM	0.413 DLM		
	Lead (Pb)-Dissolved (mg/L)	<0.00025	<0.00025 DLM		
	Lithium (Li)-Dissolved (mg/L)	0.0659 DLM	0.0357 DLM		
	Magnesium (Mg)-Dissolved (mg/L)	38.4 DLM	31.5 DLM		
	Manganese (Mn)-Dissolved (mg/L)	0.00203 DLM	0.122 DLM		
	Mercury (Hg)-Dissolved (mg/L)	<0.000025	<0.000025		
	Molybdenum (Mo)-Dissolved (mg/L)	0.00394 DLM	0.00590 DLM		
	Nickel (Ni)-Dissolved (mg/L)	<0.0025 DLM	<0.0025 DLM		
	Potassium (K)-Dissolved (mg/L)	2.83	2.19		

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2271768 CONTD.... PAGE 4 of 7

ALS ENVIRONMENTAL ANALYTICAL REPORT

23-MAY-19 15:44 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2271768-1 Water 09-MAY-19 14:30 WF-WL15-19	L2271768-2 Water 09-MAY-19 16:15 CSF-WL117-19		
Grouping	Analyte				
WATER					
Dissolved Metals	Selenium (Se)-Dissolved (mg/L)	OLM <0.00025	<0.00025		
	Silver (Ag)-Dissolved (mg/L)	OLM <0.000050	<0.000050		
	Sodium (Na)-Dissolved (mg/L)	DLM 19.3	DLM 12.7		
	Thallium (TI)-Dissolved (mg/L)	<0.000050	<0.000050		
	Tin (Sn)-Dissolved (mg/L)	<0.00050	<0.00050		
	Titanium (Ti)-Dissolved (mg/L)	<0.0015	<0.0015		
	Uranium (U)-Dissolved (mg/L)	0.00198	0.000647		
	Vanadium (V)-Dissolved (mg/L)	<0.0025	<0.0025		
	Zinc (Zn)-Dissolved (mg/L)	<0.0050	<0.0050		
Polycyclic Aromatic Hydrocarbons	Acenaphthene (ug/L)	<0.010	<0.010		
	Acenaphthylene (ug/L)	<0.010	<0.010		
	Acridine (ug/L)	<0.010	<0.010		
	Anthracene (ug/L)	<0.010	<0.010		
	Benz(a)anthracene (ug/L)	<0.010	<0.010		
	Benzo(a)pyrene (ug/L)	<0.0050	<0.0050		
	Benzo(b&j)fluoranthene (ug/L)	<0.010	<0.010		
	Benzo(g,h,i)perylene (ug/L)	<0.010	<0.010		
	Benzo(k)fluoranthene (ug/L)	<0.010	<0.010		
	Chrysene (ug/L)	<0.010	<0.010		
	Dibenz(a,h)anthracene (ug/L)	<0.0050	<0.0050		
	Fluoranthene (ug/L)	<0.010	<0.010		
	Fluorene (ug/L)	<0.010	<0.010		
	Indeno(1,2,3-c,d)pyrene (ug/L)	<0.010	<0.010		
	1-Methylnaphthalene (ug/L)	<0.050	<0.050		
	2-Methylnaphthalene (ug/L)	<0.020	<0.020		
	Naphthalene (ug/L)	<0.020	<0.020		
	Phenanthrene (ug/L)	<0.020	<0.020		
	Pyrene (ug/L)	<0.010	<0.010		
	Quinoline (ug/L)	<0.050	<0.050		
	Surrogate: Acenaphthene d10 (%)	108.2	121.8		
	Surrogate: Chrysene d12 (%)	90.2	112.9		
	Surrogate: Phenanthrene d10 (%)	107.8	124.9		

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2271768 CONTD....

PAGE 5 of 7

23-MAY-19 15:44 (MT)

Version: FINAL

Qualifiers for Sample Submission Listed:

Qualifiers to	or Sample Submissio	n Listed:		
Qualifier	Description	1		
EHR	Exceeded I UPON ARF		eceipt at the lab H	HOLD TIME FOR NO2/NO3/PO4/TURBIDITY EXCEEDED
QC Samples	with Qualifiers & Com	ments:		
QC Type Des	scription	Parameter	Qualifier	Applies to Sample Number(s)
Matrix Spike		Calcium (Ca)-Total	MS-B	L2271768-1, -2
Matrix Spike		Magnesium (Mg)-Total	MS-B	L2271768-1, -2
Matrix Spike		Manganese (Mn)-Total	MS-B	L2271768-1, -2
Qualifiers fo	r Individual Paramete	rs Listed:		
Qualifier	Description			
DLHC	Detection Limit Rai	sed: Dilution required due to high conc	entration of test an	alyte(s).
DLM	Detection Limit Adj	usted due to sample matrix effects (e.g	g. chemical interfere	ence, colour, turbidity).
MS-B	Matrix Spike recove	ery could not be accurately calculated of	due to high analyte	background in sample.

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**	
ALK-MAN-CL	Water	Alkalinity (Species) by Manual Titration	APHA 2320 ALKALINITY	

This analysis is carried out using procedures adapted from APHA Method 2320 "Alkalinity". Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.

ALK-PP-CL Water Alkalinity, Phenolphthalein Endpoint APHA 2320 B-Auto-Pot. Titration

This analysis is carried out using procedures adapted from APHA Method 2320 "Alkalinity". Phenolphthalein alkalinity is determined by potentiometric titration to a pH 8.3 endpoint.

BR-L-IC-N-CL Water Bromide in Water by IC (Low Level) EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

C-DIS-ORG-LOW-CL Water Dissolved Organic Carbon APHA 5310 B-Instrumental

This method is applicable to the analysis of ground water, wastewater, and surface water samples. The form detected depends upon sample pretreatment: Unfiltered sample = TC, 0.45um filtered = TDC. Samples are injected into a combustion tube containing an oxidation catalyst. The carrier gas containing the combustion product from the combustion tube flows through an inorganic carbon reactor vessel and is then sent through a halogen scrubber into a sample cell set in a non-dispersive infrared gas analyzer (NDIR) where carbon dioxide is detected. For total inorganic carbon and dissolved inorganic carbon, the sample is injected into an IC reactor vessel where only the IC component is decomposed to become carbon dioxide.

The peak area generated by the NDIR indicates the TC/TDC or TIC/DIC as applicable. The total organic carbon content of the sample is calculated by subtracting the TIC from the TC.

TOC = TC-TIC, DOC = TDC-DIC, Particulate = Total - Dissolved.

C-TOT-ORG-LOW-CL Water Total Organic Carbon APHA 5310 TOTAL ORGANIC CARBON (TOC)

This method is applicable to the analysis of ground water, wastewater, and surface water samples. The form detected depends upon sample pretreatment: Unfiltered sample = TC, 0.45um filtered = TDC. Samples are injected into a combustion tube containing an oxidation catalyst. The carrier gas containing the combustion product from the combustion tube flows through an inorganic carbon reactor vessel and is then sent through a halogen scrubber into a sample cell set in a non-dispersive infrared gas analyzer (NDIR) where carbon dioxide is detected. For total inorganic carbon and dissolved inorganic carbon, the sample is injected into an IC reactor vessel where only the IC component is decomposed to become carbon dioxide.

The peak area generated by the NDIR indicates the TC/TDC or TIC/DIC as applicable. The total organic carbon content of the sample is calculated by subtracting the TIC from the TC.

TOC = TC-TIC, DOC = TDC-DIC, Particulate = Total - Dissolved.

CL-IC-N-CL Water Chloride in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

EC-PCT-CL Water Electrical Conductivity (EC) APHA 2510 B

Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water sample. Conductivity measurements are temperature-compensated to 25C.

F-IC-N-CL Water Fluoride in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

HARDNESS-CALC-CL Water Hardness APHA 2340 B

Hardness (also known as Total Hardness) is calculated from the sum of Calcium and Magnesium concentrations, expressed in CaCO3 equivalents.

PAGE 6 of 7 23-MAY-19 15:44 (MT)

L2271768 CONTD....

Version: FINΔI

Dissolved Calcium and Magnesium concentrations are preferentially used for the hardness calculation.

HG-D-CVAA-CL Water Dissolved Mercury in Water by CVAAS APHA 3030B/EPA 1631E (mod)

Water samples are filtered (0.45 um), preserved with hydrochloric acid, then undergo a cold-oxidation using bromine monochloride prior to reduction

with stannous chloride, and analyzed by CVAAS.

HG-T-CVAA-CL Water Total Mercury in Water by CVAAS EPA 1631E (mod)

Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.

MET-D-CCMS-CL Water Dissolved Metals in Water by CRC ICPMS APHA 3030B/6020A (mod)

Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by CRC ICPMS.

Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

MET-T-CCMS-CL Water Total Metals in Water by CRC ICPMS EPA 200.2/6020A (mod)

Water samples are digested with nitric and hydrochloric acids, and analyzed by CRC ICPMS.

Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

N2N3-CALC-CL Water Nitrate+Nitrite CALCULATION

NH3-L-F-CL Water Ammonia, Total (as N) J. ENVIRON. MONIT., 2005, 7, 37-42, RSC

This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et

NO2-L-IC-N-CL Water Nitrite in Water by IC (Low Level) EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

NO3-L-IC-N-CL Water Nitrate in Water by IC (Low Level) EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

P-T-L-COL-CL Water Phosphorus (P)-Total APHA 4500-P PHOSPHORUS

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Total Phosphorus is determined colourimetrically

after persulphate digestion of the sample.

PAH-BCCSR-CL PAHs - BC CSR Regs EPA 3511/8270D

PAHs are extracted from water using a hexane micro-extraction technique, with analysis by GC/MS.

Container: 250 ML AMBER-EPH/PAH

PH-CL Water APHA 4500 H-Electrode

pH is determined in the laboratory using a pH electrode. All samples analyzed by this method for pH will have exceeded the 15 minute recommended

hold time from time of sampling (field analysis is recommended for pH where highly accurate results are needed)

Orthophosphate-Dissolved (as P) APHA 4500-P PHOSPHORUS

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Dissolved Orthophosphate is determined

colourimetrically on a sample that has been lab or field filtered through a 0.45 micron membrane filter. Sulfate in Water by IC

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

Total Suspended Solids APHA 2540 D-Gravimetric TSS-L-CL Water

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total suspended solids (TSS) are determined by filtering a sample through a glass fibre filter, and by drying the filter at 104 deg. C.

EPA 300.1 (mod)

TURBIDITY-CL APHA 2130 B-Nephelometer Water **Turbidity**

This analysis is carried out using procedures adapted from APHA Method 2130 "Turbidity". Turbidity is determined by the nephelometric method.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analysis for that test. Refer to the list below:

Laboratory Definition Code Laboratory Location

Water

CL ALS ENVIRONMENTAL - CALGARY, ALBERTA, CANADA

Chain of Custody Numbers:

SO4-IC-N-CL

L2271768 CONTD....

PAGE 7 of 7

23-MAY-19 15:44 (MT)

Version: FINAL

17-701629

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Environmental

Chain of Custody (COC) / Analytical **Request Form**

L2271768-COFC Page of

(ALS) Environmen	ntal Canada	Toll Free: 1 800 66	88 9878																
www,alsglobal,com						т.													
	y name below will appear on the final report		Report Format			↓		_				t your Al						ipply)	
	MY LYMITED	Select Report Fo	<i>y</i> \		DD (DIGITAL)	<u> </u>		gular (Standar	d TAT If n	eceived by :				ges apply			_
	iang U	_	QC) Report with Rep		мо	Ĕ		[P4-2		_ _	J. Car	l Busine	ss day	(E-100%	1 .				
Phone: 778 678	0657		ults to Criteria on Report -			a a	I -	[P3-2	· ·			Same Da					[E2-200	1%	Г
Company address below wi		Select Distribution		<u> </u>	FAX	ė		P2-5			\perp	Laborate	ory oper	ing tee	s may ap	ila) l			
Street: Street: 510,	2 3820 Cess Ma V		7.102017	<u>& Ailloc</u>					Required		===				d d- mmm-		ım		
City/Province: Kch/n/0	DC	Email 2		@ D. Nov	·ca_	For test	is that ca	n not be ;	erformed a	cording to	the servi	e lovel sele			ted.	· · · · ·			
Postal Code:		Email 3	OREGIN			-							is Requ		· .			1 (6	
Invoice To Same as Report To	YES NO	1	Invoice Di	stribution		_		_	_) or Filtered	and Prese	rved (F/P)	below		_	provide further details	
Copy of Invoice with Repor	t [] YES NO	Select Invoice Di	istribution: 💢 E	MATL MAJL	FAX	/	€ / P	(۲۷)	P	+1								¥	
Company:		Email 1 or Fax					الما	[,	ŧ,	یار								ĮĚ	
Contact:		Email 2					neters		手言	ا کا	1			j				유	
Project In			oil and Gas Require		se)	Ц	1	#1	₹ ₹ (51 🚈	1		•					Ž	
	173225	AFE/Cost Center:		PO#			\ \	: سلم	話	- -	ſl		•					- E	
Job# 12623		Major/Minor Code: Routing Code:							口。	۸. لم								i ii	l SS
PO/AFE:		Requisitioner:				2 2 2 2 2 2 2 2 2 2	1	ا ر	1,1	_ <u>Y</u>	1						ہ ا	S	Į ž
LSD:		Location:				ځ.[total		품 :	\$ ₹							1 P	윤	8
ALS Lab Work Order # (lab use only):		ALS Contact	asmoen	Sampler:	\mathcal{L}		1 24	,	<u> </u>	تح الإ	.						7	Sample is hazardous (please	NUMBER OF CONTAINERS
7120 200 VIOLE OLDO III (120 000 0117).				76	<u> </u>] <	3		$\exists 4$	1-		1						<u></u>	١×
	ple Identification and/or Coordinates		Date	Time	Sample Type	1,8	X	=		뭐 그							SAMPLES	ğ	W W
(lab use only) (Th	is description will appear on the report)		(dd-mmm-yy)	(hh:mm)	ļ	$\overline{\mathcal{D}}$		١		12							- M	S.	<u>2</u>
1 W4-WL	15-19		104-05-18	1430	<u> Wuter</u>		\times	\times	$X \mid X$	X	ll								1
by CSP-	WL117-19		09-05-15	1615	tt		X	\times)	$\times \times$.[] <u>〉</u>									
					· · · · · · · · · · · · · · · · · · ·			一						\neg			1		†
	····		<u> </u>	-		+				+	 					\vdash	+		
<u> </u>			-	 		-	\vdash							-	-	$\vdash \rightarrow$	\dashv	+	₩
	·-	_		<u> </u>		-			_	+	 -		_		_	\vdash	—		-
															_	\sqcup			—
																	丄		
										-									
																\Box			
				1		1				+	1		1		1		1	-	1
			 			\vdash			-	+	++				+	\vdash	\dashv	+	┼-
	B	- 1016-02		bina an dina dan d	Trom Net 1	┼─	L	l		SAMPI	E CON	DITION A	SPECE	IVED (I	h uso s				<u> </u>
Drinking Water (DW) Samples¹ (cl	lient use}		add on report by clic ctronic COC only)	King on the grop-o	own list below	Froze	en .			OAIII L		servation		Yes	io use or		No		1
Are samples taken from a Regulated DW Syste	em?	1713	11000	C 041	Mac	Ice Pi		П	_	sП		ly seal in		Yes	ä		No	ì	<u> </u>
☐ YES X NO	125 Char	t	time		pes		ng Initi				; ;	-y cou		100	ш			•	_
Are samples for human consumption/ use?		, , ,	1. 1.	\	ſ	\vdash			COOLER T	MPERAT	TURES °C			FII	NAL COOLE	R TEMPE	RATURES	°C .	
YES NO	+7(190,1	1) [XX)	JN lis	Τ			3.00	A. ST	y , 3	,				6		9.1.	A		
SHIPMENT RELE	ASE (client use)		INITIAL SHIPMEN	T RECEPTION (1)	ab use only)	ـــنــــــــــــــــــــــــــــــــــ			 		FINAL	SHIPME	NT REC	ļ	(lab use	only)			
Released McOriginal signed by		Received by:		Date:		Time	:		ved by:	7	•	Da		~	1,23,000		Ting	Q.	//
1 //	- MUSY 4019 11.70	<u> </u>											5	<u>//5</u>			<u> </u>	77	15
REFER TO BASE POR ALS LOCATIONS	AND SAMPLING INFORMATION	this form the user acknow		ITE - LABORATORY					COPY							_		Ж	2017 FRONT
If any water samples are laken from a Regulated Drin				una consecuto	an operation on the Da	~ hage		~ >											

DILLON CONSULTING LIMITED

ATTN: Jacqueline Huard 510 - 3820 Cessna Drive Richmond BC V7B 0A2 Date Received: 24-MAY-19

Report Date: 03-JUN-19 16:21 (MT)

Version: FINAL

Client Phone: 604-278-7847

Certificate of Analysis

Lab Work Order #: L2278661
Project P.O. #: NOT SUBMITTED

Job Reference: 126231 - CROWN MOUNTAIN

C of C Numbers: 17-701630

Legal Site Desc:

<Original signed by>

Ryan Smyth, B.A.Sc. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 2559 29 Street NE, Calgary, AB T1Y 7B5 Canada | Phone: +1 403 291 9897 | Fax: +1 403 291 0298

ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🤙

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L2278661 CONTD.... PAGE 2 of 6

03-JUN-19 16:21 (MT) Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L2278661-1 WATER 21-MAY-19 14:30 CSF - 4.1-19		
Grouping	Analyte			
WATER				
Physical Tests	Conductivity (@ 25C) (uS/cm)	399		
	Hardness (as CaCO3) (mg/L)	204		
	pH (pH)	8.16		
	Total Suspended Solids (mg/L)	1.6		
	Turbidity (NTU)	1.16		
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	211		
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<1.0		
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<1.0		
	Alkalinity, Phenolphthalein (mg/L)	<2.0		
	Alkalinity, Total (as CaCO3) (mg/L)	211		
	Ammonia as N (mg/L)	0.0984		
	Bromide (Br) (mg/L)	<0.050		
	Chloride (CI) (mg/L)	<0.50		
	Fluoride (F) (mg/L)	0.110		
	Nitrate and Nitrite (as N) (mg/L)	<0.0051		
	Nitrate (as N) (mg/L)	<0.0050		
	Nitrite (as N) (mg/L)	<0.0010		
	Orthophosphate-Dissolved (as P) (mg/L)	0.0019		
	Phosphorus (P)-Total (mg/L)	0.0155		
	Sulfate (SO4) (mg/L)	9.43		
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	10.1		
	Total Organic Carbon (mg/L)	10.5		
Total Metals	Aluminum (Al)-Total (mg/L)	0.0032		
	Antimony (Sb)-Total (mg/L)	<0.00010		
	Arsenic (As)-Total (mg/L)	0.00032		
	Barium (Ba)-Total (mg/L)	0.0848		
	Beryllium (Be)-Total (mg/L)	<0.00010		
	Boron (B)-Total (mg/L)	0.013		
	Cadmium (Cd)-Total (mg/L)	<0.000050		
	Calcium (Ca)-Total (mg/L)	71.5		
	Chromium (Cr)-Total (mg/L)	0.00013		
	Cobalt (Co)-Total (mg/L)	0.00015		
	Copper (Cu)-Total (mg/L)	<0.00050		
	Iron (Fe)-Total (mg/L)	0.669		
	Lead (Pb)-Total (mg/L)	<0.000050		
	Lithium (Li)-Total (mg/L)	0.0057		

L2278661 CONTD.... PAGE 3 of 6 03-JUN-19 16:21 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2278661-1 WATER 21-MAY-19 14:30 CSF - 4.1-19		
Grouping	Analyte			
WATER				
Total Metals	Magnesium (Mg)-Total (mg/L)	16.4		
	Manganese (Mn)-Total (mg/L)	0.227		
	Mercury (Hg)-Total (mg/L)	<0.000050		
	Molybdenum (Mo)-Total (mg/L)	0.000892		
	Nickel (Ni)-Total (mg/L)	<0.00050		
	Potassium (K)-Total (mg/L)	0.814		
	Selenium (Se)-Total (mg/L)	0.000081		
	Silver (Ag)-Total (mg/L)	<0.000010		
	Sodium (Na)-Total (mg/L)	2.68		
	Thallium (TI)-Total (mg/L)	<0.000010		
	Tin (Sn)-Total (mg/L)	<0.00010		
	Titanium (Ti)-Total (mg/L)	<0.00030		
	Uranium (U)-Total (mg/L)	0.000299		
	Vanadium (V)-Total (mg/L)	<0.00050		
	Zinc (Zn)-Total (mg/L)	<0.0030		
Dissolved Metals	Dissolved Mercury Filtration Location	FIELD		
	Dissolved Metals Filtration Location	FIELD		
	Aluminum (Al)-Dissolved (mg/L)	0.0012		
	Antimony (Sb)-Dissolved (mg/L)	<0.00010		
	Arsenic (As)-Dissolved (mg/L)	0.00029		
	Barium (Ba)-Dissolved (mg/L)	0.0774		
	Beryllium (Be)-Dissolved (mg/L)	<0.00010		
	Boron (B)-Dissolved (mg/L)	0.015		
	Cadmium (Cd)-Dissolved (mg/L)	<0.0000050		
	Calcium (Ca)-Dissolved (mg/L)	59.0		
	Chromium (Cr)-Dissolved (mg/L)	0.00017		
	Cobalt (Co)-Dissolved (mg/L)	0.00013		
	Copper (Cu)-Dissolved (mg/L)	<0.00020		
	Iron (Fe)-Dissolved (mg/L)	0.348		
	Lead (Pb)-Dissolved (mg/L)	<0.000050		
	Lithium (Li)-Dissolved (mg/L)	0.0069		
	Magnesium (Mg)-Dissolved (mg/L)	13.8		
	Manganese (Mn)-Dissolved (mg/L)	0.213		
	Mercury (Hg)-Dissolved (mg/L)	<0.0000050		
	Molybdenum (Mo)-Dissolved (mg/L)	0.000835		
	Nickel (Ni)-Dissolved (mg/L)	<0.00050		
	Potassium (K)-Dissolved (mg/L)	0.744		

L2278661 CONTD.... PAGE 4 of 6 03-JUN-19 16:21 (MT)

FINAL

Version:

ALS ENVIRONMENTAL ANALYTICAL REPORT

L2278661-1 Sample ID Description WATER 21-MAY-19 Sampled Date 14:30 Sampled Time CSF - 4.1-19 Client ID Grouping Analyte **WATER Dissolved Metals** Selenium (Se)-Dissolved (mg/L) 0.000115 Silver (Ag)-Dissolved (mg/L) < 0.000010 Sodium (Na)-Dissolved (mg/L) 2.49 Thallium (TI)-Dissolved (mg/L) < 0.000010 Tin (Sn)-Dissolved (mg/L) < 0.00010 Titanium (Ti)-Dissolved (mg/L) < 0.00030 Uranium (U)-Dissolved (mg/L) 0.000229 Vanadium (V)-Dissolved (mg/L) < 0.00050 Zinc (Zn)-Dissolved (mg/L) < 0.0010 Acenaphthene (ug/L) **Polycyclic** < 0.010 **Aromatic Hydrocarbons** Acenaphthylene (ug/L) < 0.010 Acridine (ug/L) < 0.010 Anthracene (ug/L) <0.010 Benz(a)anthracene (ug/L) <0.010 Benzo(a)pyrene (ug/L) <0.0050 Benzo(b&j)fluoranthene (ug/L) <0.010 Benzo(g,h,i)perylene (ug/L) < 0.010 Benzo(k)fluoranthene (ug/L) < 0.010 Chrysene (ug/L) < 0.010 Dibenz(a,h)anthracene (ug/L) < 0.0050 Fluoranthene (ug/L) < 0.010 Fluorene (ug/L) < 0.010 Indeno(1,2,3-c,d)pyrene (ug/L) < 0.010 1-Methylnaphthalene (ug/L) < 0.050 2-Methylnaphthalene (ug/L) < 0.020 Naphthalene (ug/L) < 0.020 Phenanthrene (ug/L) < 0.020 Pyrene (ug/L) < 0.010 Quinoline (ug/L) < 0.050 Surrogate: Acenaphthene d10 (%) 121.4 Surrogate: Chrysene d12 (%) 114.3 Surrogate: Phenanthrene d10 (%) 118.0

L2278661 CONTD.... PAGE 5 of 6 03-JUN-19 16:21 (MT) Version: FINΔI

Test Method References:

ALS Test Code Matrix Method Reference** **Test Description ALK-MAN-CL** Water Alkalinity (Species) by Manual Titration APHA 2320 ALKALINITY This analysis is carried out using procedures adapted from APHA Method 2320 "Alkalinity". Total alkalinity is determined by potentiometric titration to a

pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.

ALK-PP-CL Water Alkalinity, Phenolphthalein Endpoint APHA 2320 B-Auto-Pot. Titration

This analysis is carried out using procedures adapted from APHA Method 2320 "Alkalinity". Phenolphthalein alkalinity is determined by potentiometric titration to a pH 8.3 endpoint.

BR-L-IC-N-CL Water Bromide in Water by IC (Low Level) EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

APHA 5310 B-Instrumental C-DIS-ORG-LOW-CL Water Dissolved Organic Carbon

This method is applicable to the analysis of ground water, wastewater, and surface water samples. The form detected depends upon sample pretreatment: Unfiltered sample = TC, 0.45um filtered = TDC. Samples are injected into a combustion tube containing an oxidation catalyst. The carrier gas containing the combustion product from the combustion tube flows through an inorganic carbon reactor vessel and is then sent through a halogen scrubber into a sample cell set in a non-dispersive infrared gas analyzer (NDIR) where carbon dioxide is detected. For total inorganic carbon and dissolved inorganic carbon, the sample is injected into an IC reactor vessel where only the IC component is decomposed to become carbon

The peak area generated by the NDIR indicates the TC/TDC or TIC/DIC as applicable. The total organic carbon content of the sample is calculated by subtracting the TIC from the TC.

TOC = TC-TIC, DOC = TDC-DIC, Particulate = Total - Dissolved.

Water C-TOT-ORG-LOW-CL **Total Organic Carbon** APHA 5310 TOTAL ORGANIC CARBON (TOC)

This method is applicable to the analysis of ground water, wastewater, and surface water samples. The form detected depends upon sample pretreatment: Unfiltered sample = TC, 0.45um filtered = TDC. Samples are injected into a combustion tube containing an oxidation catalyst. The carrier gas containing the combustion product from the combustion tube flows through an inorganic carbon reactor vessel and is then sent through a halogen scrubber into a sample cell set in a non-dispersive infrared gas analyzer (NDIR) where carbon dioxide is detected. For total inorganic carbon and dissolved inorganic carbon, the sample is injected into an IC reactor vessel where only the IC component is decomposed to become carbon dioxide.

The peak area generated by the NDIR indicates the TC/TDC or TIC/DIC as applicable. The total organic carbon content of the sample is calculated by subtracting the TIC from the TC.

TOC = TC-TIC, DOC = TDC-DIC, Particulate = Total - Dissolved.

Chloride in Water by IC CL-IC-N-CL Water EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

EC-PCT-CL Water Electrical Conductivity (EC) APHA 2510 B

Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water sample. Conductivity measurements are temperature-compensated to 25C.

F-IC-N-CL Water Fluoride in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

HARDNESS-CALC-CL Water Hardness **APHA 2340 B**

Hardness (also known as Total Hardness) is calculated from the sum of Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. Dissolved Calcium and Magnesium concentrations are preferentially used for the hardness calculation.

HG-D-CVAA-CL Dissolved Mercury in Water by CVAAS APHA 3030B/EPA 1631E (mod)

Water samples are filtered (0.45 um), preserved with hydrochloric acid, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.

Water **HG-T-CVAA-CL** Total Mercury in Water by CVAAS

EPA 1631E (mod) Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.

MET-D-CCMS-CL Dissolved Metals in Water by CRC ICPMS APHA 3030B/6020A (mod)

Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by CRC ICPMS.

Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

MET-T-CCMS-CL Water Total Metals in Water by CRC ICPMS EPA 200.2/6020A (mod)

Water samples are digested with nitric and hydrochloric acids, and analyzed by CRC ICPMS.

Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

CALCULATION N2N3-CALC-CL Water Nitrate+Nitrite

NH3-L-F-CL Water Ammonia, Total (as N) J. ENVIRON. MONIT., 2005, 7, 37-42, RSC

This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ, Monit., 2005, 7, 37 - 42. The Royal Society

L2278661 CONTD....

PAGE 6 of 6

03-JUN-19 16:21 (MT)

Version: FINAL

of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et

NO2-L-IC-N-CL Water Nitrite in Water by IC (Low Level) EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

NO3-L-IC-N-CL Water Nitrate in Water by IC (Low Level) EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

P-T-L-COL-CL Water Phosphorus (P)-Total APHA 4500-P PHOSPHORUS

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Total Phosphorus is determined colourimetrically

after persulphate digestion of the sample.

PAH-BCCSR-CL Water PAHs - BC CSR Regs EPA 3511/8270D

PAHs are extracted from water using a hexane micro-extraction technique, with analysis by GC/MS.

Container: 250 ML AMBER-EPH/PAH

PH-CL Water pH APHA 4500 H-Electrode

pH is determined in the laboratory using a pH electrode. All samples analyzed by this method for pH will have exceeded the 15 minute recommended hold time from time of sampling (field analysis is recommended for pH where highly accurate results are needed)

PO4-DO-L-COL-CL Water Orthophosphate-Dissolved (as P) APHA 4500-P PHOSPHORUS

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Dissolved Orthophosphate is determined

colourimetrically on a sample that has been lab or field filtered through a 0.45 micron membrane filter.

SO4-IC-N-CL Water Sulfate in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

TSS-L-CL Water Total Suspended Solids APHA 2540 D-Gravimetric

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total suspended solids (TSS) are determined by filtering a sample through a glass fibre filter, and by drying the filter at 104 deg. C.

TURBIDITY-CL Water Turbidity APHA 2130 B-Nephelometer

This analysis is carried out using procedures adapted from APHA Method 2130 "Turbidity". Turbidity is determined by the nephelometric method.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code Laboratory Location

CL ALS ENVIRONMENTAL - CALGARY, ALBERTA, CANADA

Chain of Custody Numbers:

17-701630

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Environmental www.alsolobal.com

Chain of Custody (COC) / Analytical Request Form

Canada Toll Free: 1 800 668 9878

L2278661-COFC COC Number: 17 - 701630

Report To	Contact and company name below will appear on the final report	Report Format / Distribution					Select Service Level-Below - Contact your AM to confirm all E&P TATs (surcharges may apply)													
Company:	Dillon consithe imited	Select Report Fo	rmat: POF		XD (DIG!TAL)		Regu	ılar (R	1 1	Standar	d TAT If	received b	y 3 pm - b	usiness d	lays - no	surcharg	es apply			
Contact:	Sacqueline Hward ()_	Quality Control (0	QC) Report with Repo	ort 🔼 YES	NO	7. (ays)	4 day [P4-20	%] [ENCY	1 Busi	iess da	y (E-10	0%]					
Phone:	778 678 063T	Compare Resu	ults to Criteria on Report - p	provide details below if	box checked	Ness	3 day [P3-25	%] [_		MERG	Same C	ay, Wee	kend o	or Stati	itory h	oliday (i	E 2-200 %	6	r
•	Company address below will appear on the final report	Select Distributio	on: Kemail	MAIL	FAX	P P	2 day [P2-50	%]]		(Labora	тогу ор	ening 1	fees m	ay app	ly)]			
Street:	3820 Cessna Drive, Site SIO						Date and	Time R	equired f	or all E&	P TATs:				2d∗r	Yan by	y ishimn			
City/Province:	Richmond, 3C	Email 2	I Lo. ley 6	2 d.110n.0	<u> </u>	For test	s that can r	ot be pe	riormed ac	cording t	o the serv	ice level se	lected, you	will be c	ontacted.					
Postal Code:	V713 0/2	Email 3					<u> </u>					Anal	sis Rec	uest						
Invoice To	Same as Report To X YES NO		Invoice Dis			Indicate Filtered (F). Preserved (P) or Filtered and Preserved (F/P) below									_	details				
	Copy of Invoice with Report YES NO	Select Invoice Di	Select Invoice Distribution: X EMAIL MAIL FAX					P	6 6	IP	PF			<u> </u>				╛	۳ اة	
Company:		Email 1 or Fax	mail 1 or Fax					خل	₹ <u>_</u>		١.								further	l
Contact:		Email 2				¥	P.	\mathbb{Z}		.	3								ep de	
	Project Information	C	Oil and Gas Required Fields (client use)							_Y	\ <u>\</u>		İ		1				provide	1
ALS Account # /		AFE/Cost Center:	FE/Cost Center: PO#				7	+ 12	<u>7</u>	2.	ح. ا								8	
Job#:	126231 - Crown Mourtain	Major/Minor Code:		Routing Code:		Chemista	3/2)[美	<u>-</u>	A. A. With	Local.								geai	ERS
PO / AFE:		Requisitioner:		·	· ·	0		14:	7	->	7							۾ ا	Sn	N N
LSD:		Location:	· ·	•-		ہے		3/2	<u> </u>		-							호	Į ģ	8
ALS Lab Wor	k Order # (lab use only):	ALS Contact:		Sampler:		Schera	Mctalls	회:	<i>≻</i>	oter	1			1				SAMPLES ON HOLD	s haza	NUMBER OF CONTAINERS
ALS Sample #	Sample Identification and/or Coordinates	1	Date	Time		15	٦,	اره	£ =	17) N							1 2	9	
(lab use only)	(This description will appear on the report)		(dd-mmm-yy)	(hh:mm)	Sample Type	<u>ل</u>	Z *	~ ر	~	15	$ \mathcal{Q} $							₹	Sample	§
	CSF - 4.1-19		821- May 19	1430	water	$\overline{\mathbf{x}}$	X	र्राः	$\forall \lambda$. 🔽	X									9
	10-2-1	<u>-</u>	()	11.00	300161	<u> </u>	-	+	+	+~	1		\top		 -			+	1	Н
		• • •	ļ							+	 		-+				+	+	 	Н
				<u>. </u>	ļ					-	1						+	$+\!-$	┼	Н
			ļ	ļ		ļ					ļ			 -	+			ֈ_	ļ	$\vdash \vdash$
										_					<u> </u>		\bot		<u> </u>	Ш
								1												
														1						
	· · · · · · · · · · · · · · · · · · ·	 ,				-		-		1					1					
-		· -				 	-	-		+	1	 		+	+	\vdash		+	+-	
					· -				+	_	1			+-	+-	├	\dashv	+ -	-	\vdash
				-	ļ	ļ	-	-	_	-	₩				┿-			—	 	\vdash \vdash
						ļ					 								!	Ш
						<u> </u>]	_L		<u> </u>				
D-1-1slm	Special Instructions /	Specify Criteria to	add on report by click	king on the drop-de	own list below					SAMPL			AS RE) (lab ı	ise on				
_	g Water (DW) Samples¹ (client use)		ctronic COC only)			Froze		_ !		_)bservat		Yes	Ļ	_		lo		╛╽
	n from a Regulated DW System?	hola t	- 4				acks		ce Cube	s 📙	Custo	ody seal	intact	Yes	L]	N	lo	L	_
	ES NO	-0.00	11 Acordine	- CON NO	<i>~</i> }	Coolii	ng Initiat		<u> </u>								<u> </u>			
1 '	In from a Regulated DW System? ES IX NO Numan consumption/ use? TO IX NO	etal ti	તા વાઘણ	s regions	TU		JO["	ITIAL CO	DOLER TI	MPERA	IUNES	U .			FINAL	COOLER	R TEMPER	ATURES *	<u> </u>	
	D M NO	·					14				<u> </u>		1505-5	-0-0-	101 "	<u> </u>				
Bolgano Origin	SHIPMENT RELEASE (client use) nal signed by> Date: A	Received by:	INITIAL SHIPMEN		use only)	Time	بلزخ	(écelv	ad hy		FINA		MENT RI Date:	ECEPT	ION (la	D USB	only)	Time) :	
Release <original by="" signed=""> Date: Maa 21, 19 Time:</original>			Pate: 5/24			1	7 A'	77	ya by.				, a							
/						"—														

Appendix G

Parameter-Dependent Water Quality Guidelines

ALUMINUM (DISSOLVED) - BC WQG AND CCME CWQG

BC WQG Guideline applies to dissolved aluminum concentrations.

Long- and short-term average WQGs and CWQGs for aluminum (dissolved) are pH dependent.

Notes: pH >= 6.5; therefore long-term average BC WQG is 0.05 mg/L

Notes: pH >= 6.5; therefore short-term average BC WQG and CCME CWQG is 0.1 mg/L

SW checked for accuracy of the WQGs corresponding to the sample

Appendix G-1: Aluminum Guideline Calculations

					BC WQG		CWQG	
Sample ID	Date Sampled	Field pH	Long-Term BC WQG (ug/L)	Aluminum (Dissolved) (mg/L)	Short-Term BC WQG (ug/L)	Aluminum (Dissolved) (mg/L)	Long-Term CWQG (ug/L)	Aluminum (Total) (mg/L)
18-WF-WL9B	2018-05-05	7.54	0.05	0.00436	0.1	0.00436	0.1	0.0187
18-WL9	2018-05-05	7.62	0.05	0.00331	0.1	0.00331	0.1	0.01
18-WF-10	2018-05-08	7.68	0.05	0.0048	0.1	0.0048	0.1	0.0108
18-CSF-07	2018-05-09	7.83	0.05	0.0048	0.1	0.0048	0.1	0.0127
WET21	2018-07-04	8.06*	0.05	0.0044	0.1	0.0044	0.1	0.0065
WL1	2018-07-05	8.46*	0.05	0.0217	0.1	0.0217	0.1	0.0054
WF-WL15-19	2019-05-09	7.50	0.05	0.0073	0.1	0.0073	0.1	<0.015
CSF-WL117-19	2019-05-09	7.54	0.05	<0.005	0.1	<0.005	0.1	<0.015
CSF - 4.1-19	2019-05-21	6.87	0.05	0.0012	0.1	0.0012	0.1	0.0032
*Field pH unavai	ilable; lab pH pro	vided						

AMMONIA (NH3) - BC WQG and CCME CWQG

Long- and short-term average WQGs for ammonia nitrogen (NH3 as ug/L) are pH and temperature dependent.

*Note: "Ammonia" used in place of "Ammonia (as N)" when latter not provided.

SW checked for accuracy of the WQGs corresponding to the sample, determined unable to average for long term, answered above questions - needs further work if we are addressing these questions, Applied 2 approaches (scroll below for Approach 2).

If temp data was missing, temp was averaged between the sample before and after the missing one (highlighted in yellow), if temp was <0, rounded to 0, pH and Temp was always rounded up (more conservative) except some exceedances in CCME so those were rounded to the nearest half number so they didn't exceed.

Appendix G-2: Ammonia Guideline Calculations

										cwqg			
Sample ID	Date Sampled	Field pH	pH - Rounded	Temperature (°C)	Temperature Rounded‡ (°C)	Long-Term BC WQG (mg/L)	Ammonia (as N) (mg/L)	Short-Term BC WQG (mg/L)	Ammonia (as N) (mg/L)	pH - Rounded	Temperature rounded (°C)‡	Long-Term CWQG (mg/L)	Ammonia (as N) (mg/L)
18-WF-WL9B [◊]	2018-05-05	7.54	7.60	18.25	19.00	1.33	0.11	10.6	0.11	8	20	0.499	0.11
18-WL9 [◊]	2018-05-05	7.62	7.70	19.38	20.00	1.24	0.074	9.12	0.074	8	20	0.499	0.074
18-WF-10 [◊]	2018-05-08	7.68	7.70	15.47	16.00	1.66	0.048	9.26	0.048	8	20	0.499	0.048
18-CSF-07 [◊]	2018-05-09	7.83	7.90	4.88	5.00	1.41	<0.02	7.33	<0.02	8	5	1.54	<0.02
WET21 [♦] ,*	2018-07-04	8.18	8.20	20.00	20.00	0.49	0.042	3.61	0.042	8.5	20	0.171	0.042
WL1 ^o ,*	2018-07-05	8.27	8.30	20.00	20.00	0.40	<0.02	2.91	<0.02	8.5	20	0.171	<0.02
WF-WL15-19	2019-05-09	8.35	8.40	10.40	11.00	0.46	0.0673	2.38	0.0673	8.5	15	0.239	0.0673
CSF-WL117-19	2019-05-09	8.32	8.40	15.80	16.00	0.42	0.262	2.35	0.262	8.5	20	0.171	0.262
CSF - 4.1-19	2019-05-21	8.21	8.30	10.40	11.00	0.57	0.0984	2.97	0.0984	8.5	15	0.239	0.0984

^{*}Temperature data not available; used most conservative estimate

Red shading indicates guideline exceedance

[♦]Ammonia (as N) not available; used results for Ammonia

[‡]pH and temperature were rounded up to maintain conservative approach

CADMIUM (DISSOLVED) - BC WQG and CCME CWQG

BC WQG Guideline applies to dissolved cadmium concentrations.

Long- and short-term average WQGs for cadmium (dissolved) are hardness dependent.

SW checked for accuracy of the WQGs corresponding to the sample, equations entered correctly, and hardness bounds

Appendix G-3: Cadmium Guideline Calculations

				ВС	WQG		CWQG				
Sample ID	Sample Date	Hardness as CaCO3 (Filtered) (mg/L)	Long-Term Aquatic WQG (mg/L)	Cadmium (Dissolved) (mg/L)	Short-Term Aquatic WQG (mg/L)	Cadmium (Dissolved) (mg/L)	CCME Long-Term Aquatic WQG (mg/L)	Cadmium (Dissolved) (mg/L)	CCME Short-Term Aquatic WQG (mg/L)	Cadmium (Total) (mg/L)	
18-WF-WL9B	2018-05-05	429	Site-Specific	<0.00005	0.002636	<0.000005	n/a	<0.00005	n/a	<0.000005	
18-WL9	2018-05-05	393	<u>Site-Specific</u>	<0.00005	0.002409	<0.000005	n/a	<0.00005	n/a	<0.00005	
18-WF-10	2018-05-08	183	0.000296	0.0000281	0.001096	0.0000281	0.000559	0.0000281	0.001802	0.0000281	
18-CSF-07	2018-05-09	151	0.000267	0.000174	0.000899	0.000174	0.000521	0.000174	0.001655	0.000174	
WET21	2018-07-04	411	<u>Site-Specific</u>	<0.00001	0.002522	<0.00001	n/a	<0.0001	n/a	<0.00001	
WL1	2018-07-05	231	0.000392	<0.00001	0.001393	<0.00001	0.000608	<0.00001	0.001997	<0.00001	
WF-WL15-19*	2019-05-09	529	Site-Specific	<0.000025	<u>Site-Specific</u>	<0.000025	n/a	<0.000025	n/a	<0.000025	
CSF-WL117-19*	2019-05-09	424	Site-Specific	<0.000025	0.002604	<0.000025	n/a	<0.000025	n/a	<0.000025	
CSF - 4.1-19*	2019-05-21	204	0.000357	<0.00005	0.001226	<0.00005	0.000581	<0.00005	0.001890	<0.00005	

^{*}Hardness as CaCO3 (filtered) not available, used non-filtered Hardness as CaCO3

Indicates water hardness is outside hardness range tested (i.e. lower or upper bound), and a site-specific assessment may be required

"n/a" indicates that a guideline is not specified for water hardness outside valid range

Appendix G-4: Copper Guideline Calculations

							BC V	CWQG			
Sample ID	Date	Temperature (°C)	Field pH	DOC (mg/L)	Hardness as CaCO3 (Filtered) (mg/L)	Short-Term (Acute) Copper Guideline (mg/L)	Copper Dissolved (mg/L)	Long-Term (Chronic) Copper Guideline (mg/L)	Copper Dissolved (mg/L)	Long-Term CWQG (mg/L)	Copper Total (mg/L)
18-WF-WL9B	2018-05-05	18.25	7.54	17.2	429	NA	0.00038	0.0084	0.00038	0.004	0.00038
18-WL9	2018-05-05	19.38	7.62	13.7	393	NA	0.00024	0.0075	0.00024	0.004	0.00024
18-WF-10	2018-05-08	15.47	7.68	13.4	183	NA	0.00102	0.0069	0.00102	0.004	0.00102
18-CSF-07	2018-05-09	4.88	7.83	2.86	151	NA	0.0003	0.0015	0.0003	0.003	0.0003
WET21	2018-07-04	-	8.06**	24	411	NA	<0.0005	0.0219	<0.0005	0.004	<0.0005
WL1	2018-07-05	-	8.46**	<1	231	NA	<0.0005	0.0018	<0.0005	0.004	<0.0005
WF-WL15-19*	2019-05-09	10.4	7.50	25	529	NA	<0.0025	0.0089	<0.0025	0.004	<0.0025
CSF-WL117-19*	2019-05-09	15.8	7.54	21.2	424	NA	<0.0025	0.0096	<0.0025	0.004	<0.0025
CSF - 4.1-19*	2019-05-21	10.4	6.87	10.1	204	NA	<0.0005	0.0018	<0.0005	0.004	<0.0005

*Calculated using the Biotic Ligand Model (BLM): https://www2.gov.bc.ca > approved-wqgs > copper > bc_blm_users_manual - BLM output provided below

If water quality input values were greater or lower than these bounds set for the model, the BC BLM software automatically applied the upper or lower bounds while calculating BC WQGs

^{*}Hardness as CaCO3 (filtered) not available, used unfiltered Hardness as CaCO3

^{**}Field pH unavailable; lab pH provided

Acute Copper Biotic Ligand Model (BLM) for Aquatic Life

British Columbia Copper BLM Software Version 1.11 (Based on Windward BLM Version 3.40.2.45)

For the following calculation, the BLM is used in conjunction with acceptable acute toxicity data for copper.

Site Characteristics:

Ion Ratios: (British Columbia median values (default))

Ca:Mg = 3.33 Ca:Na = 3.30 Ca:K = 23.51 SO4:Cl = 3.86

pCO2 = 10^-3.2

Site Name	Sample Name	Temp. C	рН	DOC mg C/L	Hardness mg/L CaCO₃
Crown	18-WF-WL9B	18.3	7.54	17.2	236
Crown	18-WL9	19.4	7.62	13.7	236
Crown	18-WF-10	15.5	7.68	13.4	183
Crown	18-CSF-07	4.88	7.83	2.86	151
Crown	WET21	27	8.06	20	236
Crown	WL1	27	8.46	1	231
Crown	WF-WL15-19	10.4	7.5	20	236
Crown	CSF-WL17-19	15.8	7.54	20	236
Crown	CSF-4.1-19	10.4	6.87	10.1	204

Estimated Complete Site Chemistry:

Site Name	Sample Name	Temp C	o. pH	DOC mg C	HA ′L %	Alk. mg/L (CaCO ₃
Crown	18-WF-WL9B	18.3	7.54	17.2	10	20.03	
Crown	18-WL9	19.4	7.62	13.7	10	23.58	
Crown	18-WF-10	15.5	7.68	13.4	10	29.07	
Crown	18-CSF-07	4.88	7.83	2.8	10	51.99	
Crown	WET21	27	8.06	20	10	56.8	
Crown	WL1	27	8.46	1	10	149.6	
Crown	WF-WL15-19	10.4	7.5	20	10	21.76	
Crown	CSF-WL17-19	15.8	7.54	20	10	21.14	
Crown	CSF-4.1-19	10.4	6.87	10.1	10	5.12	

Site Name	Sample Name	Ca mg/L	Mg mg/L	Na mg/L	K mg/L	SO4 mg/L	CI mg/L
Crown	18-WF-WL9B	72.7	13.2	12.6	3.02	214	20.5
Crown	18-WL9	72.7	13.2	12.6	3.02	211	20.2
Crown	18-WF-10	56.4	10.3	9.8	2.34	158	15.1
Crown	18-CSF-07	46.5	8.47	8.08	1.93	120	11.4
Crown	WET21	72.7	13.2	12.6	3.02	183	17.5
Crown	WL1	71.1	13	12.4	2.95	111	10.6
Crown	WF-WL15-19	72.7	13.2	12.6	3.02	215	20.6
Crown	CSF-WL17-19	72.7	13.2	12.6	3.02	214	20.5
Crown	CSF-4.1-19	62.8	11.4	10.9	2.61	194	18.5

Aquatic Life Guideline:

#	Site Name	Sample Name	Copper Concentration (ug/L)	Acute Guideline (ug/L)
1	Crown	18-WF-WL9B	0.38	49.5
2	Crown	18-WL9	0.24	43.6
3	Crown	18-WF-10	1.02	40.6
4	Crown	18-CSF-07	0.3	8.7
5	Crown	WET21	0.5	117
6	Crown	WL1	0.5	9.1
7	Crown	WF-WL15-19	0.25	52.5
8	Crown	CSF-WL17-19	0.25	56.5
9	Crown	CSF-4.1-19	0.5	11.4

Parameter Limits:

Parameter	Units	Lower Limit	Upper Limit
Temp. pH DOC HA Ca Mg Na K SO4	mg C/L % mg/L mg/L mg/L mg/L mg/L mg/L mg/L	4.4 5 0.05 0.01 2.2 0.58 0.86 0.59 0.5	27 9 20 99 72.94 18.4 70.97 156 1320 119.8
.	9/ =	•· =	

^{*}The lower limit of this parameter was used in the model because input value was too low.

**The upper limit of this parameter was used in the model because input value was too high.

Chronic Copper Biotic Ligand Model (BLM) for Aquatic Life

British Columbia Copper BLM Software Version 1.11 (Based on Windward BLM Version 3.40.2.45)

For the following calculation, the BLM is used in conjunction with acceptable chronic toxicity data for copper.

Site Characteristics:

Ion Ratios: (British Columbia median values (default))

Ca:Mg = 3.33

Ca:Na = 3.30

Ca:K = 23.51

SO4:CI = 3.86

pCO₂ = 10^-3.0 (plants/algae) or 10^-3.2 (fish/inverts/amphibians)

Site Name	Sample Name	Temp. C	. pH	DOC mg C/L	Hardness mg/L CaCO₃
Crown	18-WF-WL9B	18.3	7.54	17.2	236
Crown	18-WL9	19.4	7.62	13.7	236
Crown	18-WF-10	15.5	7.68	13.4	183
Crown	18-CSF-07	4.88	7.83	2.86	151
Crown	WET21	27	8.06	20	236
Crown	WL1	27	8.46	1	231
Crown	WF-WL15-19	10.4	7.5	20	236
Crown	CSF-WL17-19	15.8	7.54	20	236
Crown	CSF-4.1-19	10.4	6.87	10.1	204

Esimated Complete Site Chemistry:

Site Name	Sample Name	Temp C	. рН	DOC mg C/L	HA . %	Fish Alk. mg/L CaCO₃	Plant Alk. mg/L CaCO ₃
Crown	18-WF-WL9B	18.3	7.54	17.2	10	19.94	31.62
Crown	18-WL9	19.4	7.62	13.7	10	23.46	37.21
Crown	18-WF-10	15.5	7.68	13.4	10	28.94	45.91
Crown	18-CSF-07	4.88	7.83	2.86	10	51.8	82.21
Crown	WET21	27	8.06	20	10	56.11	89.08
Crown	WL1	27	8.46	1	10	146.3	232.4
Crown	WF-WL15-19	10.4	7.5	20	10	21.68	34.38
Crown	CSF-WL17-19	15.8	7.54	20	10	21.04	33.37 Crown
CSF-4.1-19	10.4 6.87	10.1	10	5.116		8.109	

CI 'L mg/L
20.5
20.2
15.1
11.4
17.5
10.6
20.6
20.5
18.5
,

Aquatic Life Guideline:

#	Site Name	Sample Name	Copper Concentration (ug/L)	Chronic Guideline (ug/L)
1	Crown	18-WF-WL9B	0.38	8.4
2	Crown	18-WL9	0.24	7.5
3	Crown	18-WF-10	1.02	6.9
4	Crown	18-CSF-07	0.3	1.5
5	Crown	WET21	0.5	21.9
6	Crown	WL1	0.5	1.8
7	Crown	WF-WL15-19	0.25	8.9
8	Crown	CSF-WL17-19	0.25	9.6
9	Crown	CSF-4.1-19	0.5	1.8

Parameter Limits:

Parameter	Units	Lower Limit	Upper Limit
Temp.	С	4.4	27
рН		5	9
DOC	mg C/L	0.05	20
HA	%	0.01	99
Ca	mg/L	2.2	72.94
Mg	mg/L	0.58	18.4
Na	mg/L	0.86	70.97
K	mg/L	0.59	156
SO ₄	mg/L	0.5	1320
CI	mg/L	0.2	119.8

^{*}The lower limit of this parameter was used in the model because input value was too low.

**The upper limit of this parameter was used in the model because input value was too high.

FLUORIDE - BC WQG

Short-term average WQGs for fluoride are hardness dependent. Long-term WQGs do not exist.

SW checked for accuracy of equation, accuracy of the WQGs corresponding to the sample, hardness is within bounds, CCME CWQG exist - already in esdat

Appendix G-5: Fluoride Guideline Calculations

			BC WQG		
Sample ID	Sample Date	Hardness as CaCO3 (Filtered) (mg/L)	Short-Term BC WQG (mg/L)	Fluoride (Total) (mg/L)	
18-WF-WL9B	2018-05-05	429	Site-Specific	0.23	
18-WL9	2018-05-05	393	Site-Specific	0.19	
18-WF-10	2018-05-08	183	1.5771	0.27	
18-CSF-07	2018-05-09	151	1.4998	0.13	
WET21	2018-07-04	411	Site-Specific	0.26	
WL1	2018-07-05	231	1.6707	0.21	
WF-WL15-19*	2019-05-09	529	Site-Specific	0.21	
CSF-WL117-19*	2019-05-09	424	Site-Specific	0.23	
CSF - 4.1-19*	2019-05-21	204	1.6207	0.11	

*Hardness as CaCO3 (filtered) not available, used unfiltered Hardness as CaCO3 Indicates water hardness is outside hardness range tested (i.e. lower or upper bound), and a site-specific assessment may be required

LEAD (TOTAL) - BC WQG AND CCME CWQG

BC WQG Guideline applies to total lead concentrations.

Long- and short-term average WQGs and CWQGs for lead (total) are hardness dependent.

SW checked for accuracy of equations, hardness bounds, accuracy of the WQGs corresponding to the sample

Appendix G-6: Lead Guideline Calculations

				BC \	NQG			CWQG		
Sample ID	Sample Date	Hardness as CaCO3 (Filtered) (mg/L)	Long-Term Aquatic WQG (mg/L)	Lead (Total) (mg/L)	Short-Term Aquatic WQG (mg/L)	Lead (Total) (mg/L)	Long-Term CWQG (mg/L)	Lead (Total) (mg/L)	Lead (Filtered) (mg/L)	
18-WF-WL9B	2018-05-05	429	Site-Specific	0.000031	Site-Specific	0.000031	0.007	0.000031	0.0000194	
18-WL9	2018-05-05	393	Site-Specific	0.000031	Site-Specific	0.000031	0.007	0.000031	0.0000076	
18-WF-10	2018-05-08	183	0.01018	0.000029	0.1762	0.000029	0.007	0.000029	0.0000174	
18-CSF-07	2018-05-09	151	0.00869	<0.00002	0.1380	<0.00002	0.00538	<0.00002	0.0000067	
WET21	2018-07-04	411	Site-Specific	<0.0002	Site-Specific	<0.0002	0.007	<0.0002	<0.0002	
WL1	2018-07-05	231	0.01255	<0.0002	0.2370	<0.0002	0.007	<0.0002	<0.0002	
WF-WL15-19*	2019-05-09	529	Site-Specific	0.00035	Site-Specific	0.00035	0.007	0.00035	<0.00025	
CSF-WL117-19*	2019-05-09	424	Site-Specific	<0.00025	Site-Specific	<0.00025	0.007	<0.00025	<0.00025	
CSF - 4.1-19*	2019-05-21	204	0.01120	<0.00005	0.2023	<0.00005	0.007	<0.00005	<0.00005	

^{*}Hardness as CaCO3 (filtered) not available, used non-filtered Hardness as CaCO3

Indicates water hardness is outside hardness range tested (i.e. lower or upper bound), and a site-specific assessment may be required

MANGANESE (TOTAL) - BC WQG

BC WQG Guideline applies to total manganese concentrations.

Long- and short-term average WQGs for manganese (total) are hardness dependent.

SW checked for accuracy of equations, hardness bounds, accuracy of the WQGs corresponding to the sample, checked - no CCME CWQG

Appendix G-7: Manganese Guideline Calculations

		Hardness as	BC WQG					
Sample ID	Sample Date	CaCO3 (Filtered) (mg/L)	Long-Term BC WQG (mg/L)	Manganese (Total) mg/L	Short-Term BC WQG (mg/L)	Manganese (Total) mg/L		
18-WF-WL9B	2018-05-05	429	2.4926	0.00793	Site-Specific	0.00793		
18-WL9	2018-05-05	393	2.3342	0.0692	Site-Specific	0.0692		
18-WF-10	2018-05-08	183	1.4102	0.00875	2.55666	0.00875		
18-CSF-07	2018-05-09	151	1.2694	0.005	2.20402	0.005		
WET21	2018-07-04	411	2.4134	0.0036	Site-Specific	0.0036		
WL1	2018-07-05	231	1.6214	<0.001	3.08562	<0.001		
WF-WL15-19*	2019-05-09	529	Site-Specific	0.00209	Site-Specific	0.00209		
CSF-WL117-19*	2019-05-09	424	2.4706	0.124	<u>Site-Specific</u>	0.124		
CSF - 4.1-19*	2019-05-21	204	1.5026	0.227	2.78808	0.227		

^{*}Hardness as CaCO3 (filtered) not available, used non-filtered Hardness as CaCO3

Indicates water hardness is outside hardness range tested (i.e. lower or upper bound), and a site-specific assessment may be required

Appendix G-8: Nickel Guideline Calculations

			BC WWQG	CWQG				
Sample ID	Sample Date	Hardness as CaCO3 (Filtered) mg/L	Long-Term CWQG (mg/L)	Nickel (Total) (mg/L)				
18-WF-WL9B	2018-05-05	429	0.15	0.00055				
18-WL9	2018-05-05	393	0.15	0.00071				
18-WF-10	2018-05-08	183	0.15	0.00083				
18-CSF-07	2018-05-09	151	0.13	0.00014				
WET21	2018-07-04	411	0.15	<0.001				
WL1	2018-07-05	231	0.15	<0.001				
WF-WL15-19*	2019-05-09	529	0.15	<0.0025				
CSF-WL117-19*	2019-05-09	424	0.15	<0.0025				
CSF - 4.1-19*	2019-05-21	204	0.15	<0.0005				
*Hardness as CaCO3 (filtered) not available, used unfiltered Hardness as CaCO3								

NITRITE - BC WQG

Long- and short-term average WQGs for nitrite are chloride dependent.

SW checked for accuracy of equations, accuracy of the WQGs corresponding to the sample

Appendix G-9: Nitrite Guideline Calculations

Sample ID			BC WQG						
	Sample Date	Chloride (Filtered) (mg/L)	Short-Term BC WQG (mg/L)	Nitrite (ug/L)	Long-Term BC WQG (mg/L)	Nitrite (ug/L)			
18-WF-WL9B	2018-05-05	4.9	0.6	<0.005	0.2	<0.005			
18-WL9	2018-05-05	2.4	0.6	<0.005	0.2	<0.005			
18-WF-10	2018-05-08	1.6	0.06	<0.02	0.02	<0.02			
18-CSF-07	2018-05-09	<1	0.6	0.241	0.2	0.241			
WET21	2018-07-04	5.6	0.6	<0.01**	0.2	<0.01**			
WL1	2018-07-05	<1	0.6	<0.01**	0.2	<0.01**			
WF-WL15-19*	2019-05-09	11.7	0.06	<0.005	0.02	<0.005			
CSF-WL117-19*	2019-05-09	<2.5	0.6	<0.005	0.2	<0.005			
CSF - 4.1-19*	2019-05-21	<0.5	0.6	<0.001	0.2	<0.001			

^{*}Chloride (filtered) not available; used unfiltered chloride concentration

^{**}Nitrite (mg/L) not available; used Nitrite (as N)

SILVER (TOTAL) - BC WQG

Appendix G-10: Silver Guideline Calculations

Site ID	Sample Date	Hardness as CaCO3 (mg/L)	Long-Term BC WQG (mg/L)	Silver (Total) (mg/L)	Short-Term BC WQG (mg/L)	Silver (Total) (ug/L)
18-WF-WL9B	2018-05-05	429	0.0015	<0.00001	0.003	<0.00001
18-WL9	2018-05-05	393	0.0015	<0.00001	0.003	<0.00001
18-WF-10	2018-05-08	183	0.0015	<0.00001	0.003	<0.00001
18-CSF-07	2018-05-09	151	0.0015	<0.00001	0.003	<0.00001
WET21	2018-07-04	411	0.0015	<0.00002	0.003	<0.00002
WL1	2018-07-05	231	0.0015	<0.00002	0.003	<0.00002
WF-WL15-19*	2019-05-09	529	0.0015	<0.00005	0.003	<0.00005
CSF-WL117-19*	2019-05-09	424	0.0015	<0.00005	0.003	<0.00005
CSF - 4.1-19*	2019-05-21	204	0.0015	<0.00001	0.003	<0.00001
CSF - 4.1-19* *Hardness as CaCO3 (filtered) not available, used non-filt			0.0015	<0.00001	0.003	<0.00001

SULFATE - BC WQG

Long-term average WQGs for sulfate are hardness dependent.

SW checked for accuracy of equations, hardness bounds, accuracy of the WQGs corresponding to the sample, checked - no CCME CWQG

Notes: "Sulphate (SO4)" results used, though only few results were reported under this column. When no results for "Sulphate (SO4)", "Sulphate (SO4) (Filtered)" was used.

Appendix G-11: Sulphate Guideline Calculations

			BC WQG			
Sample ID	Sample Date	Hardness as CaCO3 (Filtered) (mg/L)	Long-Term BC WQG (mg/L)	Sulphate (SO ₄) Filtered (mg/L)		
18-WF-WL9B	2018-05-05	429	Site-Specific	183**		
18-WL9	2018-05-05	393	Site-Specific	157**		
18-WF-10	2018-05-08	183	429	<1**		
18-CSF-07	2018-05-09	151	309	17.1**		
WET21	2018-07-04	411	Site-Specific	103**		
WL1	2018-07-05	231	429	44.5**		
WF-WL15-19*	2019-05-09	529	Site-Specific	332		
CSF-WL117-19*	2019-05-09	424	Site-Specific	128		
CSF - 4.1-19*	2019-05-21	204	429	9.43		

^{*}Hardness as CaCO3 (filtered) not available, used non-filtered Hardness as CaCO3

^{**}Sulphate (total) not available, used dissolved sulphate concentrations

ZINC (TOTAL) - BC WQG and CCME CWQG

BC WQG Guideline applies to TOTAL zinc concentrations. CWQG applies to DISSOLVED zinc concentrations

Long-term average WQGs for zinc (total) are hardness dependent.

CWQG Short-Term guidelines only valid for hardness between 13.8 - 250.5 mg/L and DOC between 0.3 - 17.3 mg/L

CWQG Long-Term guidelines only valid for hardness between 23.4 - 399 mg/L, pH between 6.5-8.13, and DOC between 0.3 - 22.9 mg/L

BC WQG Short-Term guidelines: use equation when hardness > 90 mg/L. Guideline = 33 ug/L when hardness <= 90

BC WQG Long-Term guidelines: use equation when hardness > 90 mg/L. Guideline = 7.5 ug/L when hardness <= 90

SW checked for accuracy of equations, hardness bounds, accuracy of the WQGs corresponding to the sample, averaged longterm standards if discrete samples exceeded or labelled as site specifical Most CCME long term data cannot be used because pH not within the limits, not entered into the All Guidelines doc

Appendix G-12: Zinc Guideline Calculations

		Hardness as CaCO3 (Filtered) pH (mg/L)	Dissolved Organic Carbon - Filtered (mg/L)	BC WQG			CWQG					
Site ID Site Location	CaCO3 (Filtered)			Long-Term BC WQG (mg/L)	Zinc (Total) (mg/L)	Short-Term BC WQG (mg/L)	Zinc (Total) (mg/L)	Long-Term CWQG (mg/L)	Zinc (Dissolved) (mg/L)	Short-Term CWQG (mg/L)	Zinc (Dissolved) (mg/L)	
18-WF-WL9B	2018-05-05	429	7.54	17.2	Site-Specific	0.0041	0.287	0.0041	n/a	0.017	n/a	0.017
18-WL9	2018-05-05	393	7.62	13.7	Site-Specific	0.0025	0.260	0.0025	0.166	0.0015	n/a	0.0015
18-WF-10	2018-05-08	183	7.68	13.4	0.08	0.0019	0.103	0.0019	0.076	0.00159	0.242	0.00159
18-CSF-07	2018-05-09	151	7.83	2.86	0.05	0.00159	0.079	0.00159	0.030	0.00424	0.142	0.00424
WET21	2018-07-04	411	8.06	24	Site-Specific	<0.005	0.274	<0.005	n/a	<0.005	n/a	<0.005
WL1	2018-07-05	231	8.46	1**	0.11	<0.005	0.139	<0.005	0.018	0.0108	0.158	0.0108
WF-WL15-19*	2019-05-09	529	7.50	25	Site-Specific	<0.015	<u>Site-Specific</u>	<0.015	n/a	<0.005	n/a	<0.005
CSF-WL117-19*	2019-05-09	424	7.54	21.2	Site-Specific	<0.015	0.284	<0.015	n/a	<0.005	n/a	<0.005
CSF - 4.1-19*	2019-05-21	204	6.87	10.1	0.09	<0.003	0.119	<0.003	0.146	<0.001	0.247	<0.001

^{*}Hardness as CaCO3 (filtered) not available, used non-filtered Hardness as CaCO3

Indicates water hardness is outside hardness range tested (i.e. lower or upper bound), and a site-specific assessment may be required

"n/a" indicates that a guideline is not specified for water hardness outside valid range

^{**}Filtered DOC value <1, DOC = 1 assumed for calculation of CWQG