Appendix 4-II

Wildlife Modelling Meeting -November 2019

TERRESTRIAL WILDLIFE VCUPDATE

8 19 C

Crown Mountain Coking Coal Project

08/15

Wildlife VC Habitat Model Goals

tureCanada.ca

To provide species-specific quantitative measures of

- Occurrence
- Habitat availability (quality and quantity)
- Distribution

Wildlife VC Habitat Model Approach

- Occurrence was estimated using an occupancy modeling statistical sampling design framework (MacKenzie et al., 2002)
- Provide inferences on ecological factors (i.e. habitat quality) influencing species site use (MacKenzie et al., 2018)
- Predictive species distribution maps (MacKenzie et al., 2018)

REVIEW & UPDATE

Badger Baseline Report

Sample Effort

► 250 km transects

▶112 (1 km2) grid cells

Sample Size

►73 American Badger (burrow) detections

NWP Coal Canada Ltd American Badger Prey Detections

Sample Size

► 469 Columbian Ground Squirrel Detections

► 30 Northern Pocket Gopher Detections

Habitat Variable Development: American Badger

HABITATRELATION TO AMERICAN BADGERCOMPONENTFITNESS (+/-)

Parent material	Suitable soil for burrowing (prey capture, security, rest, reproduction and shelter) (+)
Prey	Food resources (+)
Canopy closure	Conditions not suitable for vegetation foraged by prey (-)
Roads	Risk of mortality (-), suitable soils for burrowing (as above) and conditions favouring vegetation foraged by prey (+)
Urban areas	Risk of mortality (-), suitable soils for burrowing (as above) and conditions favouring vegetation foraged by prey (+)
Water	Nutritional requirement (+)

Habitat Variable Development: American Badger Prey

Habitat Component	Relation to Ground Squirrel Fitness (+/-)
Parent material and drainage	Suitable soil for burrowing (security, rest, reproduction and shelter) (+)
Solar radiation	Suitable conditions for vegetation foraged (e.g., grass) (+)
Open Canopy Forest & Grass	Conditions suitable for vegetation foraged (+)
Closed Canopy Forest	Conditions not suitable for vegetation foraged (-)
Cutblock	Conditions suitable for vegetation foraged (+)
Shrubs	Conditions suitable for vegetation foraged (+)
Elevation	Suitable conditions for burrowing and vegetation foraged (+)
Roads	Risk of mortality (-), suitable soils for burrowing (as above) and conditions favouring vegetation foraged (+)
Mines	Disturbance (-), conditions suitable for burrowing and vegetation foraged (+)
Urban Areas	Disturbance (-), conditions suitable for burrowing and vegetation foraged (+)
Water	Nutritional requirement (+)

Habitat Variable Development: Data Sources

Covariate	Original map classes (descriptions)	Unit of Measure	Data Source
Favourable parent material	Glaciolacustrine; Till-Morainal (Stoniness: Not Stony); Eolian; Fluvial (Stoniness: Not Stony, Slightly Stony)	Percent cover of grid cell (%)	Soils Landscape of Canada & BC Ministry of Environment, BC Soil Information Finder Tool
	TEM: SMU3 fine textured soils		Terrestrial Ecosystem Mapping (TEM)
Unfavourable parent material	Colluvial, Fluvial Undifferentiated bedrock, Fen	Percent cover of grid cell (%)	Soils Landscape of Canada & BC Ministry of Environment, BC Soil Information Finder Tool
	Landcover: Rock/Rubble (Bedrock, rubble, talus, blockfield, or rubbley mine spoils)		Canadian Land Cover, Circal 2000
Open canopy forest & grassland	BC & AB: Annual Crop Inventory 2018 Landcovers: Grassland; Annual and Perennial croplands and pasture; Coniferous and Broadleaf open and sparse forests (10-60% crown closure) TEM:	Percent cover of grid cell (%)	Government of Canada, Agriculture & Agri-Food Canada, Annual Crop Inventory 2018; Canadian Land Cover, Circal 2000
Closed canopy	Landcover: Coniferous and Broadleaf dense forests (greater than 60% crown closure)	Percent cover of grid cell (%)	Canadian Land Cover, Circal 2000
Urban areas	Compact settlements, 500m buffer (cities, towns and villages)	Mean distance in grid cell to nearest urban area (meters)	BC Ministry of FLNRORD- Geo BC, Baseline Thematic Mapping Present Land Use Version 1 Spatial Layer; Residential areas from Alberta Biodiversity Monitoring Institute, Human
	Isolated built up units, 500m buffer (manufacturing plants, rail yards, military camps, waste disposal areas, leisure areas, liquid storage areas, building, and ritual cultural areas)	Calculated using ArcGis 10.7 (Euclidean distance)	Footprint Inventory 2016; AB Waste disposal areas, residential areas, leisure areas, liquid storage areas, buildings, ritual cultural areas from Topographic Data of Canada- CanVec Series

Habitat Variable Development: Data Sources

Covariate	Original map classes (descriptions)	Unit of Measure	Data Source
Cutblock	Consolidated cutblocks (2010-2018)	Percent cover of grid cell (%)	Harvested Areas of BC (Consolidated Cutblocks), 2019
Mines	Mine spoils, tailings, open pit mines, reclaimed	open pit mines, Mean distance in grid cell (metres) ed VRI-Forest Vegetation Composite Polygons and Ra Alberta Biodiversity Monitoring Institute, Human Footpri	
Elevation	British Columbia	Metres	BC Ministry FLNRORD- GeoBC
	Alberta		Altalis
Solar radiation	Maximum daily solar radiation from May to August, 2019	Watt hours/metres ²	Calculated from Elevation covariate using ArcGis 10.7, Spatial Analyst toolbox; Area Solar Radiation
Water	BC: Lakes and streams AB: Hydrography	Mean distance in grid cell to nearest water source (meters)	BC Ministry of FLNRORD- GeoBC, Freshwater Atlas Lakes & Freshwater Atlas Stream; AB Altalis Base Features Hydrography
	Landcover: Wetland (land with water table near/at/above soil surface)		
Roads & Highways	Secondary roads (paved roads, 10m buffer); Tertiary roads (gravel roads and trails, 8.5m buffer); Highways (paved & unpaved, 15m buffer)	Mean distance in grid cell to nearest road (meters)	GeoBC Atlas, Integrated Transportation Network; BC Ministry of FLNRORD, EV CEMF, Shapefile [Merged_Roads_2017_CE]; Alberta Biodiversity Monitoring Institute, Human Footprint Inventory 2016

Methods: Matrix Development

SITE ID	#Samples	# Badger Detections	Sample 1	Sample 2	2 Sample 3	Sample 4	Sample 5	Sample 6	Sample 7	Sample 8	Sample 9	Sample 1	lOSample 11Sa	ample 1	2Sample 1	3Sample 14	Sample 1	5Sample 16
33066	3	1	1	0	0													
33495	1		0													-	-	
33496	12		0	0	0	0	0	0	0	0	0	0	0	0	1141	1.1		-
33497	12		0	0	0	0	0	0	0	0	0	0	0	0			1.00	-
33926	8		0	0	0	0	0	0	0	0								-
33927	16	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
33928	5		0	0	0	0	0	4	4					-2		1.141	a dece	-
34357	2		0	0			Total Inc.	- C.	Cite .								- All	
34358	3		0	0	0	-		4		-				- 23				-
34359	2		0	0	1.1.1	100	- Oko		1.0									-
34789	7	1	0	0	1	0	0	0	0	-				- 2				
34790	1		0															
35220	4		0	0	0	0	1.487	date		1	1	1	- 1-	- 25	140	1.0	140	
35221	8		0	0	0	0	0	0	0	0			40				1.040	
35652	2		0	0		-		4	4	1.2				- 2-			1	
36083	6		0	0	0	0	0	0							1.0		1.1	
36085	6		0	0	0	0	0	0	1.0			100		-		1.0	100	-
36086	6		0	0	0	0	0	0	1.4		1040	0.20	CAC .	-	1.4		40	
36514	13		0	0	0	0	0	0	0	0	0	0	0	0	0		in the second	
36515	1		0	1.00	1													
36516	1		0							- 2				- 20		100	-	
36944	7	1	0	0	0	0	0	1	0	-	1	- 20	1.4			- BO	4	
36945	12		0	0	0	0	0	0	0	0	0	0	0	0			and an	
37375	14		0	0	0	0	0	0	0	0	0	0	0	0	0	0	Cal.	
37376	9		0	0	0	0	0	0	0	0	0			- ¥		4		
37806	6		0	0	0	0	0	0	-	-			4				4	-
37807	3		0	0	0		-			- 20				- 2			net.	
37808	3		0	0	0	1							104				1.04	
37809	1		0							-			100					
38237	7		0	0	0	0	0	0	0	-							4	
38668	5		0	0	0	0	0	4	-	2				- 2			1.16	
39099	11		0	0	0	0	0	0	0	0	0	0	0				100	
39100	7		0	0	0	0	0	0	0					- 20				-
39103	3		0	0	0	- 41-	- 3			-							4	
39529	3	3	1	0	1									- 2	the starts		la riera	
39530	5		0	0	0	0	0											
4	Badger De	etection Matrix LSA	Detection	Covariate	Vehicle	Detection	CovariateAT	V De	tectionCova	ariateWalkin	a De	etectionCov	variateObserve	r1 [DE (+)	- 4		

Model selection procedure for factors influencing Columbian Ground Squirrel detectability (p) obtained from 959 (250 m) surveys of 102 (1 km2) grid cells in the Crown Mountain LSA. Factors considered are: survey observers (O), whether the survey was conducted using a vehicle or on foot (M), open canopy forest and grasslands (OCG) and proximity to roads (RD). The model $\Psi(.)$ assumes that occurrence is constant.

Model	AICc	∆AICc	w	k	-2LL
p(O)	1022.33	0.00	1.00	4	1013.92
P(OCG)	1066.89	44.56	0.00	3	1060.65
p(M)	1104.75	82.42	0.00	4	1096.34
P(RD)	1127.14	104.81	0.00	3	1120.90
p(.)	1146.54	124.21	0.00	2	1142.42

AICc values; the relative difference in AICc values between each model and the model with the lowest AICc (Δ AICc); AICc model weights (w); the number of parameters in the model (k); twice the negative log-likelihood(-2LL).

Results

 Species detectability varied with survey observers Univariate model selection procedure for factors influencing Columbian Ground Squirrel site occupancy (Ψ) obtained from 959 (250 m) surveys of 102 (1 km2) grid cells in the Crown Mountain LSA. Habitat components considered are unfavourable parent material (UF), favourable parent material (FM), open canopy forest and grasslands, (OCG), closed canopy forest (CC), cut blocks (CB), elevation (E), solar radiation (SR), distance to water(W), distance to urban areas (UR) and distance to mines (MN). Columbian Ground Squirrel detectability varies with survey observers. The model Ψ(.) assumes that occurrence is constant.

Model	AICc	∆AICc	w	k	-2LL
Ψ (OCG)	1018.75	0.00	0.2966	5	1008.12
Ψ (UF)	1020.12	1.38	0.1495	5	1009.49
Ψ (FM)	1020.33	1.59	0.1346	5	1009.70
Ψ (RD)	1021.73	2.99	0.0669	5	1011.10
Ψ (SR)	102186	3.12	0.0626	5	1011.23
Ψ (UR)	1022.15	3.40	0.0542	5	1011.53
Ψ (MN)	1022.21	3.47	0.0526	5	1011.58
Ψ (.)	1022.33	3.59	0.0495	4	1013.92
Ψ (CC)	1022.52	3.77	0.0450	5	1011.90
Ψ (Ε)	1022.82	4.08	0.0388	5	1012.19
Ψ (W)	1023.63	4.88	0.0259	5	1013.00
Ψ (СВ)	1023.80	5.05	0.0237	5	1013.18

AICc values; the relative difference in AICc values between each model and the model with the lowest AICc (Δ AICc); AICc model weights (w); the number of parameters in the model (k); twice the negative log-likelihood(-2LL).

Results

Global model included:

- Open canopy forests
 & grasslands
- Unfavourable & favourable material
- Distance to roads
- Solar radiation
- Distance to urbans areas and mines
- Pearson Correlation test

Table 1. Model selection procedure for factors influencing Columbian Ground Squirrel site occupancy (Ψ) obtained from 959 (250 m) surveys of 102 (1 km²) grid cells in the Crown Mountain Coking Coal Project Local Study Area, BC. Hypotheses considered are the influence of unfavourable (burrowing) parent material (UF) and favourable parent material (FM), open canopy forest, grasslands (OCG), maximum (May-Aug) solar radiation (SR), and proximity to roads (RD), urban areas (UR) and mines (MN). Columbian Ground Squirrel detectability varies with survey observers. The model Ψ (.) assumes that occurrence is constant.

Model	AICc	∆AICc	w	k	-2LL	Ψ (SE)
Ψ (UF,OCG)	1017.67	0.00	0.1173	6	1004.79	0.78(0.09)
Ψ (OCG,FM)	1017.84	0.17	0.1078	6	1004.96	0.78(0.09)
Ψ (OCG,UF,RD)	1017.86	0.19	0.1067	7	1002.67	0.72(0.10)
Ψ (OCG,FM,RD)	1017.99	0.32	0.1000	7	1002.80	0.72(0.10)
Ψ (OCG,RD)	1018.67	1.00	0.0712	6	1005.79	0.73(0.09)
Ψ (OCG)	1018.75	1.08	0.0684	5	1008.12	0.78(0.07)
Ψ (OCG,UF,MN)	1019.87	2.20	O.0391	7	1004.68	0.79(0.12)
Ψ (OCG,FM,MN)	1020.05	2.38	0.0357	7	1004.86	0.79(0.12)
Ψ (UF)	1020.12	2.45	0.0345	5	1009.49	0.81(0.07)
Ψ (OCG <i>,</i> UR)	1020.16	2.49	0.0338	6	1007.28	0.77(0.09)
Ψ (UF,RD)	1020.16	2.49	0.0388	6	1007.28	0.74(0.09)
Ψ (FM)	1020.33	2.66	0.0310	5	1009.70	0.81(0.07)
Ψ (OCG,MN)	1020.97	3.30	0.0195	6	1008.09	0.81(0.07)
Ψ (UF <i>,</i> UR)	1021.26	3.59	0.0186	6	1008.38	0.79(0.09)
Ψ (F,UR)	1021.35	3.68	0.0154	6	1008.47	0.79(0.09)
Ψ (RD)	1021.73	4.06	0.0146	5	1011.10	0.79(0.09)
Ψ (UR,MN)	1021.84	4.17	0.0144	6	1008.96	0.75(0.08)
Ψ (SR)	1021.86	4.19	0.0141	5	1011.23	0.78(0.12)
Ψ (RD,SR)	1021.91	4.24	0.0138	6	1009.03	0.80(0.08)
Ψ (UF <i>,</i> SR)	1021.95	4.28	0.0135	6	1009.07	0.75(0.09)
Ψ (FM,MN)	1022.00	4.33	0.0132	6	1009.12	0.81(0.10)
Ψ (UF,RD,SR)	1022.04	4.37	0.0127	7	1006.85	0.78(0.09)
Ψ (FM,SR)	1022.11	4.44	0.0125	6	1009.23	0.74(0.11)
Ψ (.)	1022.33	4.66	0.0114	4	1013.92	0.82(0.06)
Model Average						0.77(0.09)

Results

- Columbian Ground
 Squirrel used
 approximately 77%
 of the sites surveyed
- 22% higher than the Naïve estimate 0.598

Table 2. Habitat variables influencing Columbian Ground Squirrel occurrence in the Crown Mountain, British Columbia (2014-2019), ranked according to their relative contribution (Σw)/, β co-efficients and associated standard errors (SE). Σw is the weight of evidence or relative amount that a variable contributes to Columbian ground squirrel occurrence at a (1 km²) site (n = 102). The β -coefficient is the strength and direction (\pm) of influence.

Variable	Σw	β	SE
Open Canopy Forest, Grasslands	0.71	1.056	0.500
Unfavourable Parent Material	0.39	-1.661	0.448
Roads	0.35	0.842	0.426
Favourable Parent Material	0.32	1.630	0.452
Mines	0.14	0.812	0.576
Urban Areas	0.07	0.560	0.371
Solar Radiation	0.07	-0.636	0.401

Results

Most important predictors of Columbian Ground Squirrels:

- Unfavourable parent material
- Favourable parent material
- Open Canopy Forest and Grasslands
- Proximity to roads

Site-specific Estimates

- Columbian Ground Squirrel used approximately 77% of the sites surveyed
- 22% higher than the Naïve estimate 0.598
 - Baseline occurrence estimates that future change can be measured against.

Table 4. Model selection procedure for factors influencing American Badger site occupancy (Ψ) obtained from 582 (500 m) surveys of 97 (1 km²) grid cells in the Crown Mountain Coking Coal Project Local Study Area, British Columbia. Hypotheses considered are the influence of unfavourable parent material (UM) and favourable parent material (FM), primary prey (PP), open canopy forest, grasslands and crops (OCG) and distance to mines (MN). American Badger detectability varies with survey observer. Ψ (.) assumes that occurrence is constant.

Model	AICc	∆AICc	w	k	-2LL	Ψ (SE)
Ψ (OCG)	320.60	0.00	0.3085	5	309.94	0.38 (0.09)
Ψ (OCG,UF)	320.62	0.02	0.3054	5	307.69	0.41 (0.11)
Ψ (PP)	321.27	0.67	0.2207	5	310.61	0.40 (0.11)
Ψ (MN)	323.05	2.45	0.0906	5	312.39	0.39 (0.10)
Ψ (UF,MN)	324.45	3.85	0.0450	6	311.52	0.39 (0.12)
Ψ (UF)	326.62	6.02	0.0152	5	315.96	0.41 (0.10)
Ψ(.)	326.70	6.10	0.0146	4	318.27	0.40 (0.11)
Model Average						0.40 (0.12)

Results

- American Badgers used approximately 40% of the 97km2 sample of potential habitat
- 45% higher than the Naïve estimate 0.22

Table 2. Habitat variables influencing American Badger occurrence in the Crown Mountain, British Columbia (2014-2019), ranked according to their relative contribution (Σw), β co-efficients and associated standard errors (SE). Σw is the weight of evidence or relative amount that a variable contributes to American Badger occurrence at a (1 km²) site (n = 97). The β -coefficient is the strength and direction (±) of influence.

Results

Variable	Σw	β	SE
Open Canopy Grass	0.61	0.865	0.322
Unfavourable Material	0.37	-0.514	0.254
Primary Prey	0.22	8.270	3.091
Mines	0.14	0.959	0.434

Bold entries indicates robust impact (\pm 1.96 × SE not overlapping zero).

Mean site occupancy was $\Psi =$ 0.501 (SE = 0.102) at sites with >80% primary prey occurrence (n = 44) compared to $\Psi =$ 0.248 (SE = 0.087) at sites with <70% primary prey occurrence (n = 53)

Site-specific Estimates

- American Badgers used approximately 40% of the 97km2 sample of potential habitat
- 45% higher than the Naïve estimate 0.22

American Badger Habitat Suitability

Habitat suitability model based on resulting regression equation from weighted model averaged estimates considering:

- Favourable and Unfavourable parent material
- Open Canopy forests and grasslands
- Distance to mines
- Prey (Columbian Ground Squirrel)

American Badger Habitat Suitability

 Habitat suitability model based on resulting regression equation from weighted model averaged estimates considering:

- Favourable and Unfavourable parent material
- Open Canopy forests and grasslands
- Distance to mines
- Urban and developed areas
- Solar radiation

American Badger Habitat Suitability

Predicted probability of habitat use, overlaid with 649 American Badger collar detections (1996-2002).

The mean predicted probability of habitat use for all GPS collar locations was 0.79

Connectivity

Least Cost Path Analyses (circuit theory)

- Resistance surfaces
 based on habitat
 modeling
- Core habitats based on predictive model and CDC imap species known locations

MOOSE MODEL DEVELOPMENT

Sample Effort

▶41 remote camera stations

Sample Size

 177 Moose detections in Local Study Area

Sample Size

 132 Wolf detections in Local Study Area

Habitat Variable Development: Moose

Habitat Variable Develop	ment: Moose	Adjusted for
Habitat Component	Relation to Moose (+/-)	►Winter/Fall
Wolf	Predationrisk	Summer/Spring
Elevation	Proxy for snow depth	• Summer, opinig
Shrubs	Nutritious forage	
Riparian	Forage with high nutritional content	
Conifer & Broadleaf	Cover from predators, thermoregulation	
Wetlands	Forage with high nutritional content	
Burns	Forage with high nutritional content (regenerating)	
Cutblocks	Forage with high nutritional content (regenerating)	Manual OR AND
Seepage points	Influence energetic condition by providing essential minerals	
Roads	Predation risk, risk of mortality (humans)	

Habitat Variable Development: Wolf

Habitat Component	Relation to Wolf Fitness (+/-)
Rivers and streams	Facilitation of movement (+) and conditions suitable for prey (+)
Roads	Facilitation of movement (+), disturbance/ persecution (-)
Elevation	Conditions suitable for dens and movement (snow cover) (+)
Terrain ruggedness	Conditions not suitable for prey capture (-)
Rock/Rubble	Conditions not suitable for prey capture (-)
Canopy Closure	Cover for insulation, shade, protection of young (+)
Urban areas	Disturbance (-)

Covariates: Data Sources

Covariate	Original map classes (descriptions)	Unit of Measure	Data Source
Shrub containing habitat		Percent cover of grid cell (%)	Terrestrial Ecosystem Mapping (TEM),
	Landcover: (Shrub tall)		Canadian Land Cover, Circal 2000 (Vector GeoBase Series,
			1996-2005)
Early seral stage forests	10-25 years old	Percent cover of grid cell (%)	Vegetation Resources Inventory (VRI),
	TEM structural stages 1 to 3		Alberta Vegetation Inventory (AVI),
			Terrestrial Ecosystem Mapping (TEM)
Mid seral stage forests	40-80 years old	Percent cover of grid cell (%)	Vegetation Resources Inventory (VRI),
	TEM structural stages 4 to 5		Alberta Vegetation Inventory (AVI),
	80 >140 years old	Democrat service of article cell (0/)	Versetation Descurres Inventory (VPI)
forests		Percent cover of grid cell (%)	Alberta Vogetation Inventory (AVI)
TOTESIS	TEM structural stage 6		Terrestrial Ecosystem Manning (TEM)
Urban areas	Compact settlements 500m huffer	Mean distance in grid cell to	BC Ministry of FLNRORD- Geo BC, Baseline Thematic
orban areas	(cities towns and villages)	nearest urban area (meters)	Mapping Present Land Use Version 1 Spatial Layer;
			Residential areas from Alberta Biodiversity Monitoring
	Isolated built up units, 500m buffer	Calculated using ArcGis 10.7	Institute, Human Footprint Inventory 2016;
	(manufacturing plants, rail yards,	(Euclidean distance)	AB Waste disposal areas, residential areas, leisure areas,
	military camps, waste disposal areas,		Topographic Data of Canada- CanVec Series
	leisure areas, liquid storage areas,		
	building, and ritual cultural areas)		

Covariates: Data Sources Cont'd

Covariate	Original map classes (descriptions)	Unit of Measure	Data Source
Elevation	British Columbia	Metres	BC Ministry FLNRORD- GeoBC
	Alberta		Altalis
Terrain Ruggedness	British Columbia		
	Alberta		
Rivers	Primary rivers (); Secondary rivers (); Tertiary rivers ()	Mean distance in grid cell to nearest water source (meters)	BC Ministry of FLNRORD- GeoBC, Freshwater Atlas Lakes & Freshwater Atlas Stream; AB Altalis Base Features Hydrography
Roads	Primary roads (paved & unpaved, 15m buffer); Secondary roads (paved roads, 10m buffer); Tertiary roads (gravel roads and trails, 8.5m buffer)	Mean distance in grid cell to nearest road (meters)	GeoBC Atlas, Integrated Transportation Network; BC Ministry of FLNRORD, EV CEMF, Shapefile [Merged_Roads_2017_CE]; Alberta Biodiversity Monitoring Institute, Human Footprint Inventory 2016
Wetlands	Landcover: Wetland (land with water table near/at/above soil surface)	Percent cover of grid cell (%)	Canadian Land Cover, Circal 2000 (Vector GeoBase Series, 1996-2005)

Predator Model: Wolf

Table #. Model selection procedure for factors influencing Wolf site occupancy (Ψ) in the Crown Mountain, BC. Habitat components considered are elevation (EV), terrain ruggedness (RU), proximity to roads (RD), proximity to rivers (RV), early seral forests (ESF), mid seral forests (MSF), old and mature forest (OMF) and proximity to urban and developed areas (UR). Wolf detectability varies with proximity to roads and seasons. The model that assumes that occurrence is constant Ψ (.) is shown for comparison.

Model	AICc	∆AICc	w	k	-2LL	Ψ (SE)
Ψ (EV,MSF)	538.42	0.00	0.6858	6	525.50	0.62(0.09)
Ψ (RD,MSF)	540.49	2.07	0.2436	6	527.57	0.66(0.10)
Ψ (EV)	544.57	6.15	0.0317	5	533.92	0.66(0.08)
Ψ (RD)	544.80	6.38	0.0282	5	534.15	0.71(0.08)
Ψ(.)	555.89	17.47	0.0001	4	547.46	0.63(0.07)
Model Average						0.64 (0.09)

Results

Wolves used approximately 64% of the sites surveyed

Table#. Habitat variables influencing Wolf occurrence in the Crown Mountain Coking Coal Project Local Study Area (2014-2019) ranked according to their relative contribution (Σw), β co-efficient and associated standard error (SE). Σw is the weight of evidence or relative amount that a variable contributes to Wolf occurrence at a (1 km²) site (n = 98). The β -coefficient is the strength and direction (\pm) of influence.

Variable	∑w	β	SE
Mid Seral Forest	0.929	0.950	0.382
Elevation	0.718	-1.390	0.501
Roads	0.272	-1.671	0.822

Bold entries indicates robust impact (\pm 1.96 × SE not overlapping zero).

Results

- Most important predictors of Wolf occurrence
 - Strong negativeassociation withElevation
 - Positive association with Roads

Site-specific Estimates

Habitat suitability model based on resulting regression equation from weighted model averaged estimates considering:

- Elevation
- Mid-seral stage forests
- Distance to roads
- Wolves used approximately 64% of the sites surveyed

Wolf Habitat Suitability

Habitat suitability model based on resulting regression equation from weighted model averaged estimates considering:

- Elevation
- Mid-seral stage forests
- Distance to roads

MOOSE

Fall/Winter Model & Spring/Summer Model

Winter: Survey Covariates

Table #. Model selection procedure showing factors influencing Moose detectability (p) during fall-winter in the Crown Mountain Coking Coal Project Local Study Area, BC (2014-2019). Factors considered are: (8 day) camera-trap, (1 km) transect (CT) and 1.5 km aerial (A) surveys. Models with 557.2 (1 km) transect surveys, 41 (8 day) camera surveys, 874.1 (1.5 km) aerial surveys of 194 (1 km²) grid

Model	AICc	∆AICc	w	k	-2LL
p (.)	243.38	0.00	0.4191	2	239.30
p (A)	243.62	0.24	0.3717	3	237.46
p (CT)	244.77	1.39	0.2092	3	238.61

AICc values; the relative difference in AICc values between each model and the model with the lowest AICc (Δ AICc); AICc model weights (w); the number of parameters in the model (k); twice the negative log-liklihood(-2LL). (.) assumes the parameter is constant.

Table#. Habitat variables influencing Moose occurrence during fall/winter (Sept 22-March 22) in the Crown Mountain Coking Coal Project Local Study Area (2014-2019) ranked according to their relative contribution (Σ w), β co-efficient and associated standard error (SE). Σ w is the weight of evidence or relative amount that a variable contributes to Moose occurrence at a (1 km²) site (n = 156). The β -coefficient is the strength and direction (\pm) of influence.

Variable	Σw	β	SE
Shrub Containing Habitats	0.97	1.076	0.406
Primary and Secondary Rivers	0.38	-0.858	0.501
Primary Roads	0.14	0.214	0.129
Old and Mature Forests	0.13	0.674	0.465
Wetlands	0.10	-0.440	0.384
Mid Seral Forest	0.08	-0.314	0.306
Predator Occurrence	0.06	-0.939	0.059
Secondary Roads	0.05	-0.179	0.078

Results

- Strong positive association with Shrub containing habitats &
- Positive association with primary and secondary rivers

Bold entries indicates robust impact (\pm 1.96 × SE not overlapping zero).

Site-specific Estimates

- Moose used approximately 30% of the sites surveyed during fall-winter
- ► 57% higher than naïve estimate (0.128)

Moose Habitat Suitability (fall-winter)

Habitat suitability model based on resulting regression equation from weighted model averaged estimates considering:

- Shrub Containing Habitats
- Primary and Secondary Rivers
- Primary Roads
- Old and Mature Forests
- Wetlands
- Mid Seral Forest
- Predator Occurrence
- Secondary Roads

Summer: Survey Covariates

Table #. Summary of model selection procedure for factors influencing Moose detectability (p) at a 1 km site (n = 134) in the Crown Mountain Coking Coal Project Local Study Area, BC. Factors considered are: survey method (camera-trap, transect or aerial survey; M), season (S), proximity to rivers (RV), primary roads (RD), secondary roads (SRD) and tertiary roads (TRD).

Model	AICc	∆AICc	w	k	-2LL
p (M)	297.70	0.00	1.00	4	289.39
p (TRD)	353.12	55.42	0.00	3	346.94
р(.)	353.26	55.56	0.00	2	349.17
p (RV)	355.30	57.60	0.00	3	349.12
p (SRD)	355.34	57.64	0.00	3	349.16
p (PRD)	355.35	57.65	0.00	3	349.17

AICc values; the relative difference in AICc values between each model and the model with the lowest AICc (Δ AICc); AICc model weights (w); the number of parameters in the model (k); twice the negative log-liklihood(-2LL). (.) assumes the parameter is constant.

Summer: Overall Model Average Estimate

Table #. Model selection procedure for factors influencing Moose site occupancy (Ψ) at a 1 km site (n = 134) during spring-summer (2014-2019) in the Crown Mountain, BC. Habitat components considered are: elevation (EL), slope (SL), terrain curvature (TC), primary roads (PRD), secondary roads (SRD), tertiary roads (TRD), primary and secondary rivers (PRV), tertiary rivers (TRV), early seral forests (ESF), mid seral forests (MSF), old and mature forests (OMF), wetlands, and predator (Wolf) occurrence (PD). Moose detectability varies with survey method (cameratrap, transect or aerial). The model that assumes that occurrence is constant Ψ (.) is shown for comparison.

Model	AICc	ΔΑΙϹϲ	w	k	-2LL	Ψ (SE)
Ψ (OMF,ESF,TRV)	286.38	0.00	0.2607	7	271.49	0.77 (0.08)
Ψ (OMF,ESF,PRD)	286.46	0.08	0.2505	7	271.57	0.77 (0.06)
Ψ (OMF,SRD,WL)	287.36	0.98	0.1597	7	272.47	0.77 (0.06)
Ψ (OMF,ESR,TRV,SRD)	288.11	1.73	0.1098	8	270.96	0.79 (0.11)
Ψ (OMF,ESF,SRD,WL)	288.11	1.87	0.1024	8	271.10	0.78 (0.09)
Ψ (OMF,ESF,WL)	288.25	2.48	0.0754	7	273.97	0.78 (0.09)
Ψ (OMF,WL,TRV)	288.86	3.72	0.0406	7	275.21	0.72 (0.10)
Ψ (.)	290.10	11.32	0.0009	4	289.39	0.70 (0.11)
Model Average						0.77 (0.08)

AICc values; the relative difference in AICc values between each model and the model with the lowest AICc (Δ AICc); AICc model weights (w); the number of parameters in the model (k); twice the negative log-liklihood(-2LL). (.) assumes the parameter is constant.

Moose used approximately 77% of the sites surveyed during summer

68% higher than naïve estimate (0.246)

Summer: Habitat variables

Table#. Habitat variables influencing Moose occurrence during spring-summer (Sept 22-March 22) in the Crown Mountain, BC (2014-2019) ranked according to their relative contribution (Σ w), β co-efficient and associated standard error (SE). Σ w is the weight of evidence or relative amount that a variable contributes to Moose occurrence at a (1 km²) site (n = 134). The β -coefficient is the strength and direction (\pm) of influence.

Variable	∑w	β	SE
Old Mature Forest	0.96	3.483	1.174
Early Seral Forest	0.80	-2.622	1.295
Tertiary Rivers	0.37	-2.742	1.202
Secondary Roads	0.37	2.442	1.503
Wetlands	0.37	1.291	0.724
Primary Roads	0.34	2.539	1.348

 Strong positive association with Old Mature forests & Tertiary rivers

 Negative association with Early Seral forests

Bold entries indicates robust impact ($\pm 1.96 \times SE$ not overlapping zero).

Site-specific Estimates

- Moose used approximately 77% of the sites surveyed during summer
- 68% higher than naïve estimate (0.246)

Moose Habitat Suitability (spring/summer)

Habitat suitability model based on resulting regression equation from weighted model averaged estimates considering:

- Old Mature Forest
- Early Seral Forest
- Tertiary Rivers
- Secondary Roads
- Wetlands
- Primary Roads

NEXT STEPS: Moose RSA Habitat Suitability & Model Validation

To be integrated into data set

1191 Moose detections

NEXT STEPS: Moose RSA Habitat Suitability & Model Validation

 1,043 Government aerial detections in Regional Study Area Elk

NEXT STEPS: Elk RSA Habitat Suitability & Model Validation

To be integrated into data set:

1639 Elk detections

NEXT STEPS: Moose RSA Habitat Suitability & Model Validation

To be integrated into data set

> 1639 Elk detections

Bat Acoustic Devices

Acoustic devices installed to improve understanding of winter habitat use in LSA.

Three devices installed on October 21-22, 2019