Appendix 4-MM

Water Quality Modelling Meeting - June 2020

Crown Mountain

Water Quality Working Group Meeting

June 29, 2020

By Google Meet Videoconference

Outline

Agenda

- Opening Remarks and Introductions
- Presentation
 - Crown Mountain Geochemistry Update
 - Summary of water quality analysis and results for the project: Stephen Day, SRK
 - Spoil Pile Design and Modelling of the Layered Approach
 - Purpose and Goals of the Layered Approach: Mike Allen, NWP
 - Design approach, material properties, and materials balance: Mike Allen, NWP
 - · Conceptual Model: Stephen Day, SRK
 - Hydrology and Hydraulics of the Layered Approach: Brent Thiele, SRK
 - Source Terms, development of P₅₀/P₉₅, Fail/Succeed scenarios: Stephen Day, SRK
 - · Selection of Reporting Nodes and Results: Dave Hoekstra, SRK
 - Water Quality Results: Dave Hoekstra, SRK
- Questions and Group Discussion
- Follow-up Action Items
- Closing

Project Team

SRK

Steve Day – Geochemistry

Dan Mackie – Ground Water

Dave Hoekstra – Surface Water Modelling

Brent Thiele – Water/Load Balance Modelling

Michel Noel - Unsaturated Flow Modelling

Dillon / Nupqu – Baseline Data Collection

Stantec

Sean Ennis - Mine Plan / Geotech / Water Management

Project Description

Key project components include:

- -Surface extraction areas (three pits north pit, east pit, and south pit)
- -Mine rock management areas
- Plant area (includes raw coal stockpile, processing plant, site support facilities)
- Clean coal transportation route (overland conveyor and haul road)
- -Rail load out facility and rail siding
- -Power and natural gas supply
- Explosives and fuel storage
- -Sewage treatment
- Water supply

Project Footprint

Crown Mountain Geochemistry Update

Stephen Day, SRK

Geochemical Characterization - Results

- Mist Mountain Formation is similar to elsewhere in the Elk Valley
 - Dominant formation is bulk of waste rock.
 - Mostly non-PAG except locally very near seams.
 - Selenium concentrations less than 5 mg/kg (one exception).

Geochemical Characterization - Results

- Morrissey Formation
 - Footwall of MMF mined locally at Crown Mountain for pit wall stability
 - Non-PAG to weakly PAG.

Humidity Cells

P:01_SITES;(Crown Mountain)1CN028.003_Geochemistry/300_Laboratory_Kinetic_Testing/Calculations+Charts;(Crown_Mt_HCT_WR_conc.charts_1CN028.003_rtc_rev01.xlsx

Current Observations

- Geochemical characteristics are very similar to elsewhere in the Elk Valley.
- Bulk of waste rock is non-PAG and is expected to show similar leaching to waste rock elsewhere in the Elk Valley.
- Controlled management by blending of Morrissey Formation for localized PAG characteristics.

Spoil Pile Design and Modeling of the Layered Approach

Purpose and Goals of the Layered Approach

Mike Allen, NWP

Purpose and Goals of the Layered Approach

- Sustainable approach to selenium treatment
- In-situ treatment of selenium and nitrate
- Incorporation of the process plant rejects into the waste rock dump design

Design Approach, Material Properties, and Materials Balance

Mike Allen, NWP

Design Approach

- Use the process plant coarse and fine tailings as a carbon source and to reduce oxygen levels waste rock
- Incorporate layers of coarse and fine tailings in the spoil pile design
- Geotechnical considerations included in the design
 - 50m maximum height of waste rock dumps
 - Multiple dump locations with sufficient offset for run-out/roll out protection

Material Properties

- Waste Rock standard blasted rock consistent with other Elk Valley coal mines in size and consistency
- Plant Rejects a combined coarse coal reject and fine coal rejects (tailings) material
- Soil salvaged soil from site

Material Quantities Release Schedule

	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
ROMt Coal	0.5	3.5	3.8	3.7	3.8	3.7	3.7	3.9
Waste Rock (Placed Mm3*)	2.7	15.5	21.2	19	22.8	23.4	23.5	23.1
Rejects (Placed Mm ^{3**})	0.15	0.97	1.20	1.24	1.3	1.09	1.03	1.14
Ratio WR:Rejects	18.3	16.0	17.6	15.3	17.6	21.5	22.8	20.3
	Y8	Y9	Y10	Y11	Y12	Y13	Y14	Y15
ROMt Coal	2.0	0.0						
	3.8	3.8	3.8	3.8	3.7	3.7	3.8	2.2
Waste Rock (Placed Mm ^{3*})	23.3	23.1	3.8	3.8 31.3	3.7	3.7 23.8	3.8 23.8	2.2 12.8
Waste Rock (Placed Mm³*) Rejects (Placed Mm³**)								

^{*} estimated 30% swell factor

^{**} estimated placed density of 1.4t/m3

Conceptual Model

Stephen Day, SRK

Waste Rock Management: Layered Approach

Conceptual Model For Se and NO₃ Attenuation in the Layered Spoil

Expected role of plant refuse layers:

- Retain moisture retarding oxygen transport.
- Generate dissolved organic carbon.
- Provide sub-oxic zones where reductive processes could occur.

Oxygen movement internally by diffusion not advection.

Convection in exposed faces.

Reductive Processes

O₂ decreasing

When DO<0.5 mg/L:

 $NO_3^- \rightarrow N_2$ $SeO_4^{2-} \rightarrow Se^0$

Conceptual Model For Se and NO3 Attenuation in the Layered Spoil

- The layers are conceptualized to force O₂ to move slowly by diffusion with convection limited to side slopes.
- Native organic carbon and sulphide in the plant reject and waste rock consumes O₂ by oxidation
- When sufficient O₂ is consumed, Se and NO₃ can be converted to less mobile selenite and elemental selenium, and nitrogen gas by oxidation of organic carbon.
- All processes are microbially-mediated.

Numerical Implementation of the Conceptual Model

- Layering of compacted refuse with waste rock is expected to create sub-oxic conditions in the spoil under unsaturated conditions.
- Sub-oxic conditions provide an environment under which selenium and nitrate can be removed from existing and arriving pore water.
- Removal of oxygen also decreases the volume of spoil contributing to loadings of other parameters leached from waste rock (e.g. SO₄, Cd, Co, Zn).
- The effects of sub-oxic conditions are expected to be observed internally a year after waste rock is placed.

Hydrology and Hydraulics of the Modeled Approach

Brent Thiele, SRK

GoldSim WRD Water Balance Calculations

- Differentiate between hydrologic performance of different surfaces
 - Exposed Waste Rock: Low Runoff, High Infiltration
 - Covered Waste Rock: Moderate Runoff, Moderate Infiltration
 - Reclaimed Waste Rock: High Runoff, Low Infiltration
- Some infiltration into the waste rock assumed to short circuit majority of waste rock and will report to toe essentially immediately
- Remainder of Infiltration into the waste rock will be lagged and attenuated before it reports to the toe as seepage
 - Velocity based on unsaturated flow equations, using calculated average moisture content in waste rock profile
 - Travel time based on average velocity and waste rock thickness
- Calibrated to Hydrus 1D unsaturated flow modeling

GoldSim WRD Water Balance Calculations

GoldSim Model WRD Inputs Container

Model Calculations take advantage of Vector and Matrix structure.

Calculations for all 47 depth profiles and all 15 sections performed with one GoldSim Element formula

Representing the WRD Geometry (Thickness and Area)

- WRD split into three Surfaces:
 - Exposed Waste Rock
 - Covered Waste Rock
 - Covered with Process Rejects
 - Reclaimed Waste Rock
 - Resloped and vegetated cover

Parameter	Exposed Waste Rock	Covered Waste Rock	Reclaimed Waste Rock
Runoff Curve Number	77	86	91
Infiltration (% of precipitation)	50	15	5
Edge Seepage (% of Infiltration)	5	3	1

Edge Seepage

- Seepage through the exposed edges of the WRD
 - Produces worse WQ due to unlimited O₂ availability
- Travel time nearly instantaneous vs. percolation through WRD

Dynamic WRD Geometry along Stations

- Magenta lines identifies stations
- Red line follows valley centerline
- Each station line represents a location where a cross section was created for each Mine Year
- Each cross section was then tabulated in Excel

Dynamic WRD Geometry Annual Layering Progression

Station	U	100	200	300	400	300	600	700	800	500	1000	1100	1200	1300	1400	1300	1000	1700	1000	1500	2000	2100	2200	2300	2400	2500	2000	2/00	2000	2500	3000	2100	3200	3300	3400	3300	3000	3/00	3000	, 3500	4000	4100	4200	4300	4400	4300	4000
Year																							Lay	er Thick	ness																						
0	18.5	10.0	7.2	16.1	17.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	3.1	45.5	45.3	19.1	0.0	5.1	27.7	45.1	60.2	69.8	77.3	73.8	63.1	56.1	60.6	67.2	68.0	39.2	25.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	0.0	0.0	1.7	27.7	54.5	75.6	58.8	55.4	38.2	38.0	36.3	25.1	41.0	50.3	39.7	19.4	2.7	17.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	0.0	0.0	0.0	0.0	0.0	1.4	0.0	0.0	2.0	4.5	6.3	20.9	23.3	29.1	39.3	40.3	19.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4	0.0	7.3	13.1	13.3	14.5	23.0	41.1	44.6	60.0	60.0	60.1	60.1	60.4	50.2	18.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5	0.0	2.1	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.0	10.0	5.2	13.1	20.0	28.6	35.0	40.4	48.2	0.0
6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	20.0	52.0	58.3	60.0	64.1	68.6	69.9	76.8	80.0	82.7	88.3	52.6	57.0	60.0	63.1	65.1	70.1	70.9	38.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	22.6	40.0	40.0	40.0	40.0	40.0	40.0	40.0	2.0	0.0	0.0	1.6	40.0	39.9	39.9	39.9	40.0	6.5	2.8	41.6	80.0	80.0	35.1	37.0	40.0	40.0	28.2	0.0	0.0	0.0
9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	38.0	40.0	40.0	40.0	40.0	8.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	22.6	39.9	39.9	39.9	39.9	39.9	39.9	39.9	39.9	40.0	40.0	34.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
11	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	22.3	38.9	39.1	39.1	39.4	39.6	39.8	39.9	40.1	13.9	0.0	0.0	5.7	40.0	5.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	20.9	30.9	0.0	0.0	0.0	0.0	0.0
12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	25.3	40.7	41.1	41.0	41.0	40.7	18.6	0.0	0.0	0.0	26.3	40.0	0.0	0.0	0.0	0.0	32.0	40.0	40.0	40.0	73.5	80.0	80.0	80.0	47.2	72.4	14.1	0.0	0.0	11.8	40.0	0.0	0.0
13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	21.9	40.0	20.6	13.4	0.0	0.0	40.0	40.0	40.0	61.4	40.0	40.0	40.0	40.0	0.0	0.0	0.0	0.0	0.0	0.0	4.9	40.0	40.0	8.9	0.0	0.0	0.0
14	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	31.7	40.0	40.0	40.0	27.8	19.9	16.5	0.0	0.0	0.0	3.0	26.2	37.9	33.5	1.0	0.0	13.2	11.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	7.6	40.0	23.1	0.0	0.0	0.0	0.0	0.0
15	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	•																																														

Dynamic WRD Geometry Total Layer Thickness

Station	U	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1/00	1800	1900	2000	2100	2200	2300	2400	2500	2600	2/00	2800	2900	3000	3100	3200	3300	3400	3500	3600	3/00	3800	3900	4000	4100	4200	4300	4400	4500	4600
Year																							W	/RD Dep	th																						
0	18.5	10.0	7.2	16.1	17.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	21.6	55.5	52.5	35.2	17.9	0.0	20.5	43.6	60.0	67.5	74.4	71.1	55.6	49.0	57.9	60.0	65.0	30.9	21.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	21.6	56.4	54.2	63.0	72.4	76.0	79.2	99.0	98.2	105.5	110.7	96.2	96.6	99.3	97.6	79.4	67.8	47.9	21.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	21.6	56.4	54.2	63.0	72.4	77.4	79.4	99.0	100.2	110.0	117.0	117.1	119.9	128.5	136.9	119.7	87.4	47.9	21.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4	21.6	63.7	67.3	76.3	87.0	100.4	120.5	143.7	160.3	170.1	177.1	177.3	180.2	178.7	155.1	119.7	87.4	47.9	21.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5	21.6	65.8	87.3	96.3	107.0	120.4	140.5	163.7	180.3	190.1	197.1	197.3	200.2	178.7	155.1	119.7	87.4	47.9	21.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.9	6.4	13.1	20.2	24.6	30.4	39.8	41.5	0.0
6	21.6	65.8	87.3	96.3	107.0	120.4	140.5	163.7	180.3	190.1	197.1	197.3	200.2	178.7	155.1	119.7	87.4	47.9	41.0	50.1	57.1	60.1	60.4	65.2	70.0	71.0	80.1	79.9	79.8	50.2	50.6	60.0	60.1	60.3	61.1	67.2	38.0	0.0	10.0	6.4	13.1	20.3	24.7	30.5	40.0	41.5	0.0
7	21.6	65.8	87.3	96.3	107.0	120.4	140.5	163.7	180.3	190.1	197.1	197.3	200.2	178.7	155.1	119.7	87.4	47.9	41.0	50.1	57.1	60.1	60.4	65.2	70.0	71.0	80.1	79.9	79.8	50.2	50.6	60.0	60.1	60.3	61.1	67.2	38.0	0.0	10.0	6.4	13.1	20.3	24.7	30.5	40.0	41.5	0.0
8	21.6	65.8	87.3	96.3	107.0	120.4	140.5	163.7	180.3	190.1	197.1	197.3	200.2	178.7	155.1	119.7	87.4	70.5	81.0	90.1	97.1	100.1	100.4	105.2	110.0	72.9	80.1	79.9	81.4	90.1	90.5	100.0	100.0	100.2	67.6	70.0	79.6	80.1	90.0	41.6	50.1	60.3	64.7	58.6	40.0	41.5	0.0
9	21.6	65.8	87.3	96.3	107.0	120.4	140.5	163.7	180.3	190.1	197.1	197.3	200.2	178.7	155.1	119.7	87.4	70.5	81.0	90.1	97.1	100.0	100.3	105.1	109.9	110.9	120.1	119.9	121.4	130.2	98.5	100.0	100.1	100.3	67.6	70.0	79.6	80.1	90.0	41.6	50.1	60.3	64.7	58.6	40.0	41.5	0.0
10	21.6	65.8	87.3	96.3	107.0	120.4	140.5	163.7	180.3	190.1	197.1	197.3	200.2	178.7	155.1	119.7	110.0	110.4	120.9	130.0	137.0	139.9	140.2	145.0	149.8	150.9	160.0	154.2	121.4	130.2	98.5	100.0	100.1	100.3	67.6	70.0	79.6	80.1	90.0	41.6	50.1	60.3	64.7	58.6	40.0	41.5	0.0
11	21.6	65.8	87.3	96.3	107.0	120.4	140.5	163.7	180.3	190.1	197.1	197.3	200.2	178.7	155.1	142.0	148.9	149.5	160.0	169.4	176.6	179.7	180.2	185.1	163.7	151.0	160.1	159.9	161.4	135.5	98.5	100.0	100.1	100.3	67.6	70.0	79.6	80.1	90.0	41.6	71.1	91.1	64.7	58.6	40.0	41.5	0.0
12	21.6	65.8	87.3	96.3	107.0	120.4	140.5	163.7	180.3	190.1	197.1	197.3	200.2	178.7	180.3	182.8	190.0	190.5	201.0	210.1	195.2	180.1	180.4	185.2	190.0	191.0	160.1	159.9	161.4	135.5	130.6	140.0	140.1	140.3	141.1	150.0	159.6	160.1	137.1	114.0	85.2	60.3	64.7	70.5	80.0	41.5	0.0
13	21.6	65.8	87.3	96.3	107.0	120.4	140.5	163.7	180.3	190.1	197.1	197.3	200.2	178.7	180.3	182.8	190.0	190.5	201.0	210.1	217.1	220.1	200.9	198.6	190.0	191.0	200.1	199.9	201.4	197.0	170.6	180.0	180.1	180.3	141.1	150.0	159.6	160.1	137.1	114.0	90.1	100.3	104.7	79.4	80.0	41.5	0.0
14	21.6	65.8	87.3	96.3	107.0	120.4	140.5	163.7	180.3	190.1	197.1	197.3	200.2	210.4	220.3	222.8	230.0	218.3	220.9	226.6	217.1	220.1	200.9	201.6	216.2	228.9	233.6	200.9	201.4	210.2	181.8	180.8	180.1	180.3	141.1	150.0	159.6	160.1	137.1	121.6	130.1	123.4	104.7	79.4	80.0	41.5	0.0
15	21.6	65.8	87.3	96.3	107.0	120.4	140.5	163.7	180.3	190.1	197.1	197.3	200.2	210.4	220.3	222.8	230.0	218.3	220.9	226.6	217.1	220.1	200.9	201.6	216.2	228.9	233.6	200.9	201.4	210.2	181.8	180.8	180.1	180.3	141.1	150.0	159.6	160.1	137.1	121.5	130.1	123.4	104.7	79.4	80.0	41.5	0.0
																																										•					

Validation of Goldsim Model

- Simulated Travel times for percolation of water through the WRD falls in line with HYDRUS 1D modeling results
 - Dashed line shows
 Waste at 5%
 moisture content
 - Solid Line shows Waste at 7.5% moisture content

Unsaturated Hydraulic Conductivity

- Spike in Unsaturated Conductivity early in LOM
 - Linked to the average moisture content of the waste rock
 - Highest ratio of surface area to depth/volume
 - Mostly exposed waste rock

Calculated Travel Time through WRD

Seepage Reporting to Toe of WRD

Infiltration Delay[10]

Infiltration_Delay[17] Infiltration_Delay[24]

Infiltration Delay[15]

Source Terms

Stephen Day, SRK

Source Terms

- Prediction of contact water chemistry.
- Delivered as an input to water and load balance which is used to predict downstream water quality.

Source Terms

- Waste Rock
- Pit walls
- Overburden stockpiles

Source Term Cases - Waste Rock

 $\frac{Successful\ Development\ of\ Low\ O_2}{Conditions.}$ O_2 is unlimited oxidant on the exposed slopes and top lift

Layering System Fails to Develop Low O_2 Conditions. O_2 is unlimited oxidant in the entire spoil

Numerical Implementation

 2-dimensional model which is used to predict performance in 3dimensions

Section 1 Year to 15 Year

Numerical Implementation

- Case: <u>Successful Development of Low O₂ Conditions</u>
- Waste rock interior
 - No oxidation.
 - Nitrate is denitrified to nitrogen gas.
- Top layer and slopes are fully oxygenated due to diffusion of O₂ and convection, respectively.
 - Rates of weathering are based on the humidity cells scaled to site conditions using Elk Valley experience.
 - Leached selenium and nitrate from top layer are attenuated.
 - Other parameters are not affected by the low O₂ conditions.

Numerical Implementation

- Case: <u>Layering System Fails to Develop Low O₂ Conditions.</u>
- Entire spoil is fully oxygenated.
- Rates of weathering are based on the humidity cells scaled to site conditions using Elk Valley experience.

Representation of Variability

- Central case: P₅₀ of humidity cell rates.
- Upper case: P₉₅ of humidity cell rates.

Selected Average Source Terms - Spoils

Parameter	Succeeds		Fails	
	P ₅₀	P_{95}	P ₅₀	P_{95}
SO ₄ (mg/L)	530	640	1200	1800
Cd (mg/L)	0.0019	0.0027	0.0027	0.0027
Se (mg/L)	0.045	0.093	0.28	0.58
NO_3 (mg-N/L)	0.5	0.5	22	22

Selection of Reporting Nodes

Dave Hoekstra, SRK

Selection of WQ Results

- The GoldSim model calculates water quality projections at 17 locations within the model, including Pits, WRD, ponds, and confluences
- Chemistry for all 43 chemical constituents ("species" in GoldSim) tracked by the model at each node is available
- Model was run for 4 Scenarios
 - Average (P₅₀) and Upper case (P₉₅) Source Terms
 - Successful and Failed WRD layered system

Selection of WQ Reporting Nodes

- 3 key nodes were selected to represent the performance of the system:
 - WRD Pond Discharge
 - Alexander Creek Below Confluence with West Alexander Creek
 - Alexander Creek above
 Confluence with Michel Creek

Regional Reporting Stations

- Regional nodes downstream
 - Elk River at Sparwood
 - EV_ER1 Station
 - Elko reservoir
 - RG_ELKORES Station
 - Lake Koocanusa
 - RG_DSELK Station

Selection of WQ Performance Standards

- 3 key species were selected to indicate performance against standards:
 - Selenium
 - Nitrate
 - Sulphate

Species / Deleterious	Proposed Coal Mining Effluent	Proposed Coal Mining Effluent	
Substance	Regulations (CMER)	Regulations (CMER)	British Columbia Water Quality Guidelines
			For Aquatic Life (BCWQG FAL)
(Chronic Standard)	New Mines	Existing Mines	

Selenium (Se) .005 mg/L .01 mg/L 0.002 mg/L

Selection of Simulation Scenarios

- All four scenario combinations are believed relevant and results are presented for discussion
 - Upper Case Source Terms (P₉₅) and Failed WRD Layer System
 - Upper Case Source Terms (P₉₅) and Successful WRD Layer System
 - Average Source Terms (P₅₀) and Failed WRD Layer System
 - Average Source Terms (P₅₀) and Successful WRD Layer System

Water Quality Results

Dave Hoekstra, SRK

Summary of Results

- Under successful layer cake concept as modelled achieves better water quality than operational water treatment plant design.
 - Water quality guidelines met prior to Michel Creek
- If layer cake method failures, chronic water quality guidelines are not met.
 - Consumptive losses from the Interim Pond delay downstream exceedances for Five Years

WQ Results - Selenium

WRD Sedimentation Pond (Interim and Ultimate)

Upper Case (P₉₅) and Layer Approach Fails Selenium

- --- CMER Acute (0.01 mg/L)
- CMER Chronic (0.005 mg/L)
- --- BCWQGL Chronic (0.002 mg/L)

Upper Case (P_{95}) and Layer Approach Succeeds Selenium

- --- CMER Acute (0.01 mg/L)
 - CMER Chronic (0.005 mg/L)
- --- BCWQGL Chronic (0.002 mg/L)

Average Case (P_{50}) and Layer Approach Fails Selenium

- --- CMER Acute (0.01 mg/L)
 - CMER Chronic (0.005 mg/L)
- --- BCWQGL Chronic (0.002 mg/L)

Average Case (P₅₀) and Layer Approach Succeeds Selenium

WQ Criteria Legend

- --- CMER Acute (0.01 mg/L)
 - CMER Chronic (0.005 mg/L)
- --- BCWQGL Chronic (0.002 mg/L)

Location: WRD Sedimentation Pond

WQ Results - Selenium

Confluence of West Alexander Creek and Upper Alexander Creek

Upper Case (P₉₅) and Layer Approach Fails Selenium

- --- CMER Acute (0.01 mg/L)
- CMER Chronic (0.005 mg/L)
- --- BCWQGL Chronic (0.002 mg/L)

Upper Case (P₉₅) and Layer Approach Succeeds Selenium

- --- CMER Acute (0.01 mg/L)
 - CMER Chronic (0.005 mg/L)
- --- BCWQGL Chronic (0.002 mg/L)

Average Case (P_{50}) and Layer Approach Fails Selenium

- --- CMER Acute (0.01 mg/L)
- CMER Chronic (0.005 mg/L)
- --- BCWQGL Chronic (0.002 mg/L)

Average Case (P₅₀) and Layer Approach Succeeds Selenium

- --- CMER Acute (0.01 mg/L)
 - CMER Chronic (0.005 mg/L)
- --- BCWQGL Chronic (0.002 mg/L)

WQ Results - Selenium

Upstream of Alexander Creek and Michel Creek Confluence

Upper Case (P_{95}) and Layer Approach Fails Selenium

WQ Criteria Legend

--- BCWQGL Chronic (0.002 mg/L)

Upper Case (P₉₅) and Layer Approach Succeeds Selenium

Average Case (P_{50}) and Layer Approach Fails Selenium

WQ Criteria Legend

--- BCWQGL Chronic (0.002 mg/L)

Average Case (P₅₀) and Layer Approach Succeeds Selenium

WQ Criteria Legend

--- BCWQGL Chronic (0.002 mg/L)

WQ Results - Selenium

EV_ER1 Station at Sparwood

Upper Case (P_{95}) and Layer Approach Fails Selenium

WQ Criteria Legend
--- BCWQGL Chronic (0.002 mg/L)

Average Case (P₅₀) and Layer Approach Succeeds Selenium

WQ Criteria Legend
--- BCWQGL Chronic (0.002 mg/L)

WQ Results - Selenium

RG_ELKORES Station at Elko Reservoir

Upper Case (P_{95}) and Layer Approach Fails Selenium

WQ Criteria Legend

--- BCWQGL Chronic (0.002 mg/L)

Average Case (P₅₀) and Layer Approach Succeeds Selenium

WQ Criteria Legend
--- BCWQGL Chronic (0.002 mg/L)

WQ Results - Selenium

RG_DSELK Station at Lake Koocanusa

Upper Case (P_{95}) and Layer Approach Fails Selenium

WQ Criteria Legend

--- BCWQGL Chronic (0.002 mg/L)

Average Case (P_{50}) and Layer Approach Succeeds Selenium

WQ Criteria Legend
--- BCWQGL Chronic (0.002 mg/L)

WQ Results - Nitrate

WRD Sedimentation Pond (Interim and Ultimate)

Upper Case (P₉₅) and Layer Approach Fails Nitrate

- --- CMER Acute (10 mg/L)
- -- CMER Chronic (5 mg/L)
- --- BCWQGL Chronic (3 mg/L)

Upper Case (P₉₅) and Layer Approach Succeeds Nitrate

- --- CMER Acute (10 mg/L)
- CMER Chronic (5 mg/L)
- --- BCWQGL Chronic (3 mg/L)

Average Case (P₅₀) and Layer Approach Fails Nitrate

- --- CMER Acute (10 mg/L)
 - CMER Chronic (5 mg/L)
- --- BCWQGL Chronic (3 mg/L)

Average Case (P₅₀) and Layer Approach Succeeds Nitrate

- --- CMER Acute (10 mg/L)
- CMER Chronic (5 mg/L)
- --- BCWQGL Chronic (3 mg/L)

WQ Results - Nitrate

Confluence of West Alexander Creek and Upper Alexander Creek

Upper Case (P₉₅) and Layer Approach Fails Nitrate

- --- CMER Acute (10 mg/L)
 - CMER Chronic (5 mg/L)
- --- BCWQGL Chronic (3 mg/L)

Upper Case (P₉₅) and Layer Approach Succeeds Nitrate

- --- CMER Acute (10 mg/L)
 - CMER Chronic (5 mg/L)
- --- BCWQGL Chronic (3 mg/L)

Average Case (P₅₀) and Layer Approach Fails Nitrate

- --- CMER Acute (10 mg/L)
 - CMER Chronic (5 mg/L)
- --- BCWQGL Chronic (3 mg/L)

Average Case (P₅₀) and Layer Approach Succeeds Nitrate

- --- CMER Acute (10 mg/L)
 - CMER Chronic (5 mg/L)
- --- BCWQGL Chronic (3 mg/L)

WQ Results - Nitrate

Upstream of Alexander Creek and Michel Creek Confluence

Upper Case (P₉₅) and Layer Approach Fails Nitrate

WQ Criteria Legend

Upper Case (P₉₅) and Layer Approach Succeeds Nitrate

WQ Criteria Legend

Average Case (P₅₀) and Layer Approach Fails Nitrate

WQ Criteria Legend

Average Case (P₅₀) and Layer Approach Succeeds Nitrate

WQ Criteria Legend

WQ Results - Nitrate

EV_ER1 Station at Sparwood

Upper Case (P₉₅) and Layer Approach Fails Nitrate

WQ Criteria Legend

Average Case (P₅₀) and Layer Approach Succeeds Nitrate

WQ Criteria Legend
--- BCWQGL Chronic (3 mg/L)

WQ Results - Nitrate

RG_ELKORES Station at Elko Reservoir

Upper Case (P₉₅) and Layer Approach Fails Nitrate

WQ Criteria Legend

Average Case (P₅₀) and Layer Approach Succeeds Nitrate

WQ Criteria Legend
--- BCWQGL Chronic (3 mg/L)

WQ Results - Nitrate

RG_DSELK Station at Lake Koocanusa

Upper Case (P₉₅) and Layer Approach Fails Nitrate

WQ Criteria Legend

Average Case (P₅₀) and Layer Approach Succeeds Nitrate

WQ Criteria Legend

Water Quality Results - Sulphate

WRD Sedimentation Pond (Interim and Ultimate)

Upper Case (P_{95}) and Layer Approach Fails Sulphate

WQ Criteria Legend

BCWQGL Chronic (309 mg/L)

Upper Case (P_{95}) and Layer Approach Succeeds Sulphate

WQ Criteria Legend

Average Case (P_{50}) and Layer Approach Fails Sulphate

WQ Criteria Legend

Average Case (P₅₀) and Layer Approach Succeeds Sulphate

WQ Criteria Legend

WQ Results - Sulphate

Confluence of West Alexander Creek and Upper Alexander Creek

WQ Criteria Legend

WQ Criteria Legend

WQ Criteria Legend

Average Case (P_{50}) and Layer Approach Succeeds Sulphate

WQ Criteria Legend

WQ Results - Sulphate

Upstream of Alexander Creek and Michel Creek Confluence

WQ Criteria Legend

WQ Criteria Legend

WQ Criteria Legend

Average Case (P_{50}) and Layer Approach Succeeds Sulphate

WQ Criteria Legend

WQ Results - Sulphate

EV_ER1 Station at Sparwood

WQ Criteria Legend

Average Case (P_{50}) and Layer Approach Succeeds Sulphate

WQ Criteria Legend

WQ Results - Sulphate

RG_ELKORES Station at Elko Reservoir

WQ Criteria Legend

Average Case (P_{50}) and Layer Approach Succeeds Sulphate

WQ Criteria Legend

WQ Results - Sulphate

RG_DSELK Station at Lake Koocanusa

WQ Criteria Legend

Average Case (P₅₀) and Layer Approach Succeeds Sulphate

WQ Criteria Legend

Questions and Group Discussion

Follow-up Action Items

Closing

