Appendix 4-00 Groundwater Working Group Meeting - December 2020 ## Groundwater Assessment Crown Mountain Coking Coal Project Dan Mackie, P.Geo. & Claudia Hidalgo December 16, 2020 ### Contents - 1. Objectives and Scope - 2. Project Overview - 3. Hydrogeological Data - 4. Conceptual Models - 5. Potential Effects on Groundwater - 6. Discussion ### Contents - 1. Objectives and Scope - 2. Project Overview - 3. Hydrogeological Data - 4. Conceptual Models - 5. Potential Effects on Groundwater - 6. Discussion ## **Objectives and Scope** - Objective: To assess potential impacts of the project on groundwater quantity and quality - Scope: Groundwater potentially affected by all pertinent mine components in Alexander Creek and Grave Creek catchments, including Baseline, End of Mining and Post-Closure periods. - Impacts to surface water (quantity and quality) are covered elsewhere. ### Contents - Objectives and Scope - 2. Project Overview - 3. Hydrogeological Data - 4. Conceptual Models - 5. Potential Effects on Groundwater - 6. Discussion ## Project Overview Regional Setting ## Project Overview Regional Setting - Nominal Production Rate (ROM) 4M tonnes/year - Life of Mine 15 years - Primary source of water will be the Interim Sedimentation Pond with Grave Creek Reservoir as a back up source ## Project Overview – Waste Rock Design #### Waste Rock Management: Layered Approach ## Project Overview – Waste Rock Design #### **Expected role of** plant refuse layers: - Retain moisture retarding oxygen transport. - Generate dissolved organic carbon. - Provide sub-oxic zones where reductive processes could occur. Oxygen movement by diffusion not advection Reductive **Processes** Breaker Reject Waste rock Plant refuse Breaker reject Waste Rock decreasing When DO<0.5 mg/L: $NO_3 \rightarrow N_2$ $SeO_4^{2-} \rightarrow Se^0$ ### Contents - 1. Objectives and Scope - 2. Project Overview - 3. Hydrogeological Data - 4. Conceptual Models - 5. Potential Effects on Groundwater - 6. Discussion ## Hydrogeological Data Climate and Hydrology | Month | Total Precipitation
(1972–2018 Water Years)
[mm] | Lake Evaporation
(1971 – 2018) [mm] | | |-----------|--|--|--| | January | 59.8 | 0 | | | February | 48.6 | 0 | | | March | 57.1 | 0 | | | April | 49.3 | 0 | | | May | 67.1 | 72.3 | | | June | 73.1 | 88.9 | | | July | 52.6 | 115.3 | | | August | 47.1 | 104.5 | | | September | 51.9 | 65.6 | | | October | 57.4 | 0 | | | November | 81.6 | 0 | | | December | 71.1 | 0 | | | Annual | 717 | 446.5 | | Note: Lake Evaporation is 0 when it's frozen ## Hydrogeological Data Climate and Hydrology Average Monthly Flow of Grave Creek and West Alexander Creek | Month | Grave Creek
Average Monthly Flow (m³/s) | | | West Alexander
Creek Average Monthly Flow (m³/s) | | | | |--------------|--|------|------|---|------|------|--| | | Min | Mean | Max | Min | Mean | Max | | | January | 0.04 | 0.10 | 0.19 | 0.04 | 0.09 | 0.17 | | | February | 0.04 | 0.09 | 0.17 | 0.03 | 0.08 | 0.15 | | | March | 0.03 | 0.08 | 0.15 | 0.03 | 0.07 | 0.13 | | | April | 0.03 | 0.08 | 0.19 | 0.03 | 0.07 | 0.17 | | | May | 0.18 | 0.51 | 1.48 | 0.16 | 0.45 | 1.32 | | | June | 0.39 | 1.06 | 3.23 | 0.35 | 0.95 | 2.88 | | | July | 0.20 | 0.42 | 1.22 | 0.17 | 0.37 | 1.10 | | | August | 0.13 | 0.25 | 0.64 | 0.12 | 0.22 | 0.57 | | | September | 0.10 | 0.18 | 0.39 | 0.09 | 0.16 | 0.35 | | | October | 0.08 | 0.15 | 0.29 | 0.07 | 0.13 | 0.26 | | | November | 0.07 | 0.13 | 0.24 | 0.07 | 0.11 | 0.22 | | | December | 0.06 | 0.11 | 0.21 | 0.06 | 0.10 | 0.19 | | | Annual Total | 0.14 | 0.26 | 0.58 | 0.13 | 0.23 | 0.51 | | Source: NWP, 2014 ## Hydrogeological Data Climate and Hydrology | Creek | Baseflow
(m³/s) | Catchment
Area (km²) | |-------------------|--------------------|-------------------------| | West
Alexander | 0.07-0.10 | 14.7 | | Grave | 0.08-0.10 | 80.9 | Source: NWP, 2014 ## **Hydrogeological Data Bedrock Geology** **Fernie** Formation Kootenay Group > Spray River Group ## Hydrogeological Data Bedrock Geology #### **LEGEND** Source: NWP, 2014 Seam 9 Rider ## Hydrogeological Data Bedrock Geology - There are mapped faults within pit areas - Generally, trend subparallel to bedding strike - Generally, intersect pits at base Source: NWP, 2014 ## Hydrogeological Data Karst potential #### Legend Streams Proposed Main Sediment Pond Proposed Open Pit Proposed Waste Dump #### **Faults** - Fault ---- Normal Fault ---- Thrust Fault #### Karst Likelihood >50% soluble bedrock 20 to 49% soluble bedrock 5 to 19% soluble bedrock **Project** Source: BC EMPR, 2019 **Hydrogeological Data** Overburden Geology **Bedrock Outcrops** #### Legend Proposed Main Sediment Pond Proposed Open Pit Proposed Waste Dump Topographic Contours ~ Streams #### Overburden Geology Colluvium Fluvial Glaciofluvial Lacustrine Glaciolacustrine Organic Materials Source: BGC, 2019 Weathered Bedrock Bedrock Undifferentiated Materials Glaciolacustrine ### Hydrogeological Data Groundwater Monitoring Network - 28 monitoring wells - stratigraphy, hydraulic parameters, groundwater levels and groundwater quality - 12 seepage points - 16 flow accretion survey points #### Legend - Seepage Points - Surface Water Points - Local Monitoring Wells Proposed Main Sediment Pond Proposed Open Pit Proposed Waste Dump Streams ## Hydrogeological Data Hydraulic Parameters | Primary
Hydrostratigraphic
Unit | Secondary
Hydrostratigraphic
Unit | Description | Thickness (m) | Horizontal Hydraulic Conductivity (m/d) | |---------------------------------------|---|--|---------------|---| | Overburden
Aquifer | Colluvium | Sands, gravels and cemented till lenses | 10 - 20 | 7E+00 to 9E+00 | | | Fluvial | gravels interbedded with sands and silty sands | 0 - 30 | 2E+00 to 5E+01 | | | Glaciofluvial | sand and gravel | 0 - 34 | 1E+00 to 1E+04 | | | Till | pebbles, cobbles and boulders in a matrix of sand, silt and clay | <27 | 2E-01 to 6E-01 | | Overburden | Lacustrine | fine sand, silt and clay | - | 4E-02 | | Confining Layers | Glaciolacustrine | silts and plastic clays but also include some fine sands | <18 | 2E-02 to 8E-02 | | Bedrock | Fractured or Weathered Bedrock | Fractured or weathered sandstone, mudstone and shale | <10 | 2E-01 to 8E+00 | | | Coal seams | Coal seams | - | 2E-03 to 4E-01 | | | Competent Bedrock | Sandstone, mudstone and shale | - | 2E-03 to 2E+00 | ## Hydrogeological Data Hydraulic Conductivity ## Hydrogeological Data Water Levels - Continuous data at nine stations - Manual at all others ## Hydrogeological Data Groundwater Quality Monitoring - Four wells in pit areas between 2013 and 2016 (23 samples) - Quarterly sampling since fall 2018 to winter 2020 from 26 wells (146 samples) ## Legend Local Monitor Streams Local Monitoring Wells Proposed Main Sediment Pond Proposed Open Pit Proposed Waste Dump ## Hydrogeological Data Groundwater quality - Bedrock dominated by Ca-CO3 to Na-K-Cl water types with higher average electrical conductivity and TDS - Overburden dominated by Ca-CO3 water types with lower average electrical conductivity and TDS ### Hydrogeological Data General characteristics for constituents of concern - Vast majority of groundwater quality at monitoring wells are below Aquatic Life and CSR guidelines for dissolved metals - Only notable exceptions are: - Cobalt at GW-6-BR (Upper Alexander Creek) - Lithium at many wells (possible drilling artifact) - Nitrate and nitrite are below all guidelines ### Hydrogeological Data Groundwater-surface interaction ### Contents - 1. Objectives and Scope - 2. Project Overview - 3. Hydrogeological Data - 4. Conceptual Models - 5. Potential Effects on Groundwater - 6. Discussion - / - **/** - **/** ## Conceptual Models Current Conditions ## Conceptual Models End of Mine ## Conceptual Models Long Term Closure ### Contents - Objectives and Scope - 2. Project Overview - 3. Hydrogeological Data - 4. Conceptual Models - 5. Potential Effects on Groundwater - 6. Discussion ## **Potential Effects on Groundwater Methods** - Available hydrogeological data was used for the conceptual model - A numerical model was developed to assess potential changes - Numerical model calibrated to current (baseline) conditions and run for two predictive scenarios - End of Mine (EoM) - 2. Long Term Closure (LTC) # Potential Effects on Groundwater Numerical model Set Up - Feflow finite element model - Includes all pits and dumps - Steady-state simulations # Potential Effects on Groundwater Numerical model Set Up Model boundary conditions # Potential Effects on Groundwater Numerical model Set Up Model parameters | Zone | Geology | Approximate K Range from Field Data & Conceptual (m/s) | K1 & K2
(horizontal)
(m/s) | K3
(perpendicular/
vertical) (m/s) | Specific
Storage
(1/m) | Specific
Yield (-) | |------|-------------------------------|--|--|--|------------------------------|-----------------------| | 1 | Bedrock | 2x10 ⁻⁸ to 2x10 ⁻⁵ | 1x10 ⁻⁷
(decreasing
with depth) | 4x10 ⁻⁸
(decreasing
with depth) | 1x10 ⁻⁶ | 0.001 | | 2 | Till/Colluvium | 5x10 ⁻⁸ to
1x10 ⁻⁵ | 1x10 ⁻⁷ | 1x10 ⁻⁷ | 5x10 ⁻⁵ | 0.01 | | 3 | Glaciofluvial (set = fluvial) | 1x10 ⁻⁴ to
2x10 ⁻³ | 5x10 ⁻⁴ | 5x10 ⁻⁵ | 1x10 ⁻⁴ | 0.20 | | 4 | Glaciolacustrine | 2x10 ⁻⁷ to
1x10 ⁻⁶ | 4x10 ⁻⁷ | 4x10 ⁻⁷ | 1x10 ⁻⁵ | 0.005 | | 5 | Fluvial | 5x10 ⁻⁵ to
5x10 ⁻⁴ | 5x10 ⁻⁵ | 5x10 ⁻⁶ | 1x10 ⁻⁴ | 0.05 | ### **Model process** - Calibrated to heads and baseflow conditions - Sensitivities (K, anisotropy, recharge) - Model run for predictive scenarios - End Of Mine - Long Term Closure - Particle tracking and transport to assess flow directions and movement of potentially impacted water #### **Cross Section: South Pit (West – East)** | Pit | Inflow (m3/d) | | | |-----------|---------------|--|--| | North Pit | 271 | | | | East Pit | 130 | | | | South Pit | 748 | | | - Gaining stream under dumps - Changes to losing stream at pond - Uncertainty on gaining/losing reaches increases downstream of southern-most monitoring well (red dot) - In area between confluence and this well, overburden is thick with confining unit – any discharge is likely to be shallow GW Baseline flux through creek valleys | Flux
Section | Length
(m) | Depth
(m) | Total Flux
(m3/d) | Total Flux
(L/s) | |--------------------|---------------|--------------|----------------------|---------------------| | West
Alexander | 500 | 50 | 215 | 2 | | Upper
Alexander | 600 | 50 | 796 | 9 | | Alexander | 450 | 60 | 1001 | 12 | ## Potential Effects on Groundwater Results – Expected changes on gw quantity | GW Flux Cross
Section ¹ | Baseline | EOM
(most likely)
% change
from baseline | EOM
(uncertainty
range)
% change from
baseline | LTC
(most likely)
% change from
baseline | LTC
(uncertainty
range)
% change
from baseline | |---------------------------------------|----------|---|--|---|--| | West Alexander
Creek | 100% | -17% | -25% to -9% | -12% | -18% to -6% | | Upper Alexander
Creek | 100% | -9% | -14% to -4% | -4% | -9% to 0% | | Alexander Creek | 100% | -4% | -7% to -1% | -3% | -6% to 0% | ## Potential Effects on Groundwater Results – Expected changes on baseflows | | Pre-mining | | | | | |---|------------------|-------------------|-------------------------|------------------------|--| | Mass Balance | Inflow
(m³/d) | Outflow
(m³/d) | EOM | LTC | | | | | | % change from baseline* | % change from baseline | | | West Alexander Creek | 74 | 3.280 | -30% | -21% | | | Baseflow | 74 | 3,200 | -30 /0 | - 21/0 | | | Upper Alexander Creek Baseflow | 63 | 10,368 | -5% | -4% | | | Alexander Creek Baseflow** | 189 | 9,169 | -2% | -1% | | | Alexander Creek Cumulative Change*** | 326 | 22,817 | -7% | -5% | | | Grave Creek (Upper) Baseflow | | 2,893 | -4% | -2% | | | * A negative value represents a reduction with respect to baseline flow | | | | | | ^{**} Alexander Creek below confluence to model boundary ^{***} Includes West Alexander Creek, Upper Alexander Creek and Alexander Creek below confluence # Potential Effects on Groundwater Considerations/Assumptions for groundwater quality - Lined sedimentation pond - >WRD source control design ### Potential Effects on Groundwater Results – groundwater quality - Particle tracking results indicate: - Almost all particles from mine directed towards West Alexander - Waste placed on Upper Alexander side of divide could move towards Upper Alexander, but anisotropy and control of waste placement can minimize risk - Particles started at dumps typically discharge to West Alexander locally - Only particles starting at sedimentation pond travel significant distances downgradient - for illustration recall, pond lined ### Potential Effects on Groundwater Results – groundwater quality Model run in transport mode, assuming a conservative parameter, for 100 years - Load does not generally travel far from sources - Near surface load in West Alexander creek does not migrate past sedimentation pond - Anywhere, load transported to any appreciable distance is in bedrock, but will be lower in magnitude ### **Summary of Potential Effects** - No significant effects expected within Grave Creek catchment - Key mine components within Grave Creek catchment represents less than 1% of its total area. - Potential reduction to baseflows in Alexander Creek catchment is most significant in West Alexander Creek but cumulative reduction in Alexander Creek is <10% - As much as 20-30% reduction in West Alexander - Reduces to 5-7% in Alexander Creek - Any long-term impacts reduced by surface flow returned to natural catchment - Groundwater quality will be affected locally - Largest potential impact in West Alexander Creek valley - Load in shallow groundwater system estimated to discharge by sedimentation pond - Load in deeper bedrock could travel further, but at reduced concentrations ### **Mitigations** #### Mitigations built into mine plan: - Design of the WRD to reduce source load - Lining of sedimentation pond to minimize leakage - If WRD source control does not meet water quality objects, the geological setting downgradient of the waste rock dump is well suited for groundwater collection - Narrow valley with low thickness of permeable (non-till) overburden (10-20m of relatively permeable shallow sediment overlying 15-20m of clayey till) - Low groundwater flux (on the order of a few L/s) ### Contents - Objectives and Scope - 2. Project Overview - Hydrogeological Data - 4. Conceptual Models - Potential Effects on Groundwater - 6. Discussion ### Discussion ### Thank you