

Appendix B.10

Final – Long-Term Groundwater Monitoring Technical Memorandum, Golder Associates

TECHNICAL MEMORANDUM

DATE February 24, 2020 **Project No.** 1895674-011

TO Atlantic Mining NS Corp

409 Billybell Way, Mooseland Middle Musquodoboit, Nova Scotia

B0N 1X0

CC Sheri Burton

FROM Phyllis McCrindle EMAIL Phyllis_McCrindle@golder.com

LONG-TERM GROUNDWATER MONITORING, FIFTEEN MILE STREAM, ROUND 8

1.0 INTRODUCTION

Atlantic Mining NS Corp (AMNS), a wholly owned subsidiary of St. Barbara Ltd., is planning to develop the Fifteen Mile Stream (FMS) Gold Project (the Project) located approximately 115 km east of Halifax, in Halifax County, in the province of Nova Scotia.

This technical memo presents the results of Round 8 of the long-term groundwater monitoring conducted for the Project, with the objective of supporting the Environmental Impact Statement (EIS) process necessary to develop the Project.

1.1 Overview of the Fifteen Mile Stream Project

AGC is planning to construct, operate, and eventually reclaim a new open pit gold mine at the Project site. The major proposed Project components are expected to consist of:

- Open pit
- Tailings Management Facility
- Ore Stockpile
- Waste Rock Stockpile
- Till Stockpile
- Plant Site

These facilities will be supported by other infrastructure, as required, during the construction, operations, and closure of the Project.

Golder Associates Ltd.

201 Brownlow Avenue, Suite 26, Dartmouth, Nova Scotia, B3B 1W2, Canada

T: +1 902 466 1668 F: +1 902 466 1669

February 24, 2020

1.2 Coordinate, Datum and Unit Systems

All coordinates given in this report are referenced to North American Datum 1983 (NAD83[CSRS]), Universal Transverse Mercator (UTM) Grid Projection Zone 20. All vertical levels discussed in this report are referenced to Canadian Geodetic Vertical Datum of 1928 (CGVD28).

This report is presented using the International System of Units (SI), where length is described in meters (m), mass in kilograms (kg), and pressure in Pascals (Pa).

2.0 OBJECTIVES

The objectives of the long-term groundwater monitoring were to collect baseline data on the local groundwater levels and quality. This baseline hydrogeological data will provide a hydrogeological technical background for the EIS submission for the FMS project.

3.0 BACKGROUND INFORMATION

For background information on the FMS site surficial geology, bedrock geology, and groundwater conditions from Round 1-6 monitoring events, see the "Fifteen Mile Stream Gold Project Hydrogeological Investigation", dated September 10, 2019.

4.0 INVESTIGATION METHODOLODY

This section describes the site investigation program, including the number and location of boreholes. Herein is described the methodology for collecting groundwater levels and laboratory testing of groundwater quality samples.

4.1 Borehole Locations

The in-field investigations were carried out at 14 drilling locations over the site. At each drilling location, up to two monitoring wells were installed within individual offset boreholes. The completed borehole/monitoring well locations are listed in Table 1, below. The location surveying was conducted by WSP, with coordinates received on August 29, 2018. Borehole locations are denoted as FMS-HG18-01 through to FMS-HG18-16, with the exception of proposed locations FMS-HG18-01 and FMS-HG18-12, which were removed from the scope during the investigation.

Atlantic Mining NS Corp

Project No. 1895674-011

February 24, 2020

Table 1: Borehole Locations and Elevations

Borehole /		inates NAD83[CSRS])	Ground Surface	Drilled Depth
Monitoring Well ID	Northing (m)	Easting (m)	Elevation (m CGVD28)	(mbgs¹)
FMS-HG18-02A	536074.78	5001177.74	135.97	24.24
FMS-HG18-02B	536073.90	5001174.33	135.85	8.22
FMS-HG18-02X	Aban	doned borehole loca	ted adjacent to FMS-HG	18-02A
FMS-HG18-03A	537293.47	4999550.33	121.58	12.08
FMS-HG18-03B	537290.61	4999550.81	121.77	7.05
FMS-HG18-04A	535801.11	4998824.55	106.66	25.74
FMS-HG18-04B	535800.77	4998822.68	106.67	7.79
FMS-HG18-05A	537263.21	4998507.48	113.53	13.81
FMS-HG18-05B	537262.41	4998509.10	113.68	6.36
FMS-HG18-06A	537513.23	4998697.25	111.97	8.36
FMS-HG18-07A	537889.27	4998795.88	112.98	12.37
FMS-HG18-07B	537883.79	4998796.17	112.78	4.85
FMS-HG18-08A	537612.69	4997771.11	140.03	13.93
FMS-HG18-08B	537611.40	4997771.21	139.98	6.45
FMS-HG18-09A	538367.38	4999479.78	123.58	12.38
FMS-HG18-09B	538367.24	4999477.38	123.62	6.32
FMS-HG18-10A	539251.88	4998600.50	140.31	12.3
FMS-HG18-10B	539248.83	4998600.75	140.19	6.56
FMS-HG18-11A	538575.33	4997758.94	162.38	10.92
FMS-HG18-11B	538573.36	4997760.25	162.41	4.94
FMS-HG18-13A	539918.74	4997839.08	151.29	12.43
FMS-HG18-13B	539918.74	4997839.08	151.33	3.08
FMS-HG18-14A	536802.34	4998352.85	116.89	13.81

Coordinates **Ground Surface** (UTM Zone 20, NAD83[CSRS]) Borehole / **Drilled Depth** Elevation **Monitoring Well ID** (mbgs¹) **Northing Easting** (m CGVD28) (m) (m) FMS-HG18-14B 536804.30 4998352.73 7.83 116.97 FMS-HG18-15A 536367.44 4998746.87 107.46 10.83 FMS-HG18-15B 536367.09 4998743.63 107.56 4.17

Note:

540442.99

540445.43

FMS-HG18-16A

FMS-HG18-16B

Borehole locations were selected to provide broad coverage of the proposed site facility areas, and due to proximity to key infrastructure, such as proposed pit, dam, and processing facility locations and existing surface water features.

4999567.69

4999567.50

142.17

142.19

Borehole locations were constrained by the existing access road network, property access agreements, and offsets from environmentally sensitive areas.

4.2 Groundwater Levels

Groundwater levels in the FMS monitoring wells are monitored manually, with an electric water level probe. Some wells have also had dataloggers installed to record water levels automatically. Pressure transducer dataloggers have been installed in both A and B wells at locations FMS-HG18-02, -04, -05, -07, -09, and -10. Groundwater levels are measured in the field, relative to a surveyed reference point (typically the top of the PVC riser pipe) so that they can be converted to equivalent groundwater elevations for comparison across the site.

4.3 Laboratory Testing

Groundwater samples were collected from each monitoring well on-site from September 4 to 6, 2018 (Round 1), from November 19 to 20, 2018 (Round 3), from March 21 to 22, 2019 (Round 5), from June 5 to 6, 2019 (Round 6), from October 2 to 3, 2019 (Round 7), and January 7 and 10, 2020. Prior to the collection of samples, each monitoring well was developed by the removal of 10 well volumes of water, or by pumping the well dry and allowing it to recover three times. This development process was done using a Waterra Hydrolift inertial pump system. To minimize the influence of suspended sediment on the groundwater quality results, all samples were collected using low-flow sampling methodology with a peristaltic pump. This method involved positioning the pump intake approximately 1 m below the water surface, with the pump allowed to run at a flow rate of approximately 1 L/min.

Analytical bottles for each sample were provided by AGAT Laboratories and were filled directly from the peristaltic pump discharge. Samples containing preservatives, including petroleum hydrocarbons, cyanide, mercury,

February 24, 2020

11.02

5.65

¹ meters below ground surface (mbgs)

Atlantic Mining NS Corp Project No. 1895674-011

February 24, 2020

dissolved metals, phosphorous, chemical oxygen demand, dissolved organic carbon, radium-226, and a portion of the general chemistry bottles, were first filtered using 0.45 micron in-line filters to reduce turbidity. Groundwater quality samples were submitted under chain of custody to AGAT Laboratories in Dartmouth, NS. Radium-226 analysis was conducted by the Saskatchewan Research Council, as subcontracted by AGAT.

Groundwater quality samples were analysed for the following parameter suites: Atlantic RBCA Tier 1 Hydrocarbons (including benzene, toluene, ethylbenzene, and xylene [BTEX] and petroleum hydrocarbons [PHC]), total and free cyanide, total and dissolved mercury, general chemistry, total and dissolved phosphorous, chemical oxygen demand, dissolved organic carbon, and total suspended solids.

Standard sampling protocols were followed to ensure accuracy and precision of results. This included decontamination procedures, the collection of QA/QC samples, labelling, preserving, completed Chain of Custody forms, and packaging QA/QC procedures in the laboratory.

QA/QC sampling was conducted for approximately 10% of samples that were analyzed. Field QA/QC was addressed by collecting blind field duplicates. The results of the QA/QC sampling were used to evaluate the reliability of the sampling and analysis methods.

5.0 INVESTIGATION RESULTS

This section describes the results of groundwater level measurements and laboratory testing results.

5.1 Groundwater Levels

Data from eight complete groundwater level monitoring rounds of the wells installed at FMS are presented in Table 2, below. The first two rounds of groundwater level monitoring from August 2018 were taken opportunistically following well installation and development. The regular groundwater level monitoring program commenced in September 2018, when the first baseline groundwater quality samples were collected from the wells. Hydrographs for select wells showing the manual and continuous groundwater levels are presented alongside precipitation records in Appendix A.

The groundwater levels measured were shallow, ranging from 0.13 to 5.16 mbgs. Groundwater elevations ranged from 103.42 to 160.52 m relative to CGVD28. In general, the groundwater elevations are similar, with less than 2 m difference, when comparing the bedrock (A) and bedrock-soil interface (B) wells at each location. Groundwater elevations at most borehole locations indicate slightly downward or nearly neutral gradients. Slight upward gradients between A/B well pairs were observed at locations FMS-HG18-04, -09, and -16. It should be noted that wells FMS-HG18-14A and FMS-HG18-14B were inaccessible in January 2020, due to road conditions.

The hydrographs for wells at FMS-HG18-02, -04, -05, -07, -09, and -10 (Appendix A) generally show consistent groundwater levels over the monitoring period to date. Some fluctuation in groundwater levels is apparent, likely related to precipitation events. Precipitation data shown on the hydrographs between August 2018 and June 6, 2019, is from the Malay Falls weather station, located approximately 18 km from the site. Precipitation data presented between June 7, 2019, and January 6, 2020, is from the Upper Stewiacke weather station, located approximately 42 km from the site, as data was no longer available from Malay Falls.

Atlantic Mining NS Corp

February 24, 2020

Table 2: Groundwater levels for FMS 2018 Hydrogeological Boreholes

Borehole	Water Level (mbgs), Collected on Aug. 15, 2018	Water Level (m CGVD28), Collected on Aug. 15, 2018	Water Level (mbgs), Collected on Aug. 20, 2018	Water Level (m CGVD28), Collected on Aug. 20, 2018	Water Level (mbgs), Collected on Sep. 4-6, 2018	Water Level (m CGVD28), Collected on Sep. 4-6, 2018	Water Level (mbgs), Collected on Oct. 9, 2018	Water Level (m CGVD28), Collected on Oct. 9, 2018	Water Level (mbgs), Collected on Nov. 17- 18, 2018	Water Level (m CGVD28), Collected on Nov. 17- 18, 2018	Water Level (mbgs), Collected on Dec. 11, 2018	Water Level (m CGVD28), Collected on Dec. 11, 2018	Water Level (mbgs), Collected on Mar. 19- 21, 2019	Water Level (m CGVD28), Collected on Mar. 19- 21, 2019	Water Level (mbgs), Collected on Jun. 4, 2019	Water Level (m CGVD28), Collected on Jun. 4, 2019	Water Level (mbgs), Collected on Oct. 1-2, 2019	Water Level (m CGVD28), Collected on Oct. 1-2, 2019	Water Level (mbgs), Collected on Jan. 6-7, 2020	Water Level (m CGVD28), Collected on Jan. 6-7, 2020
FMS-HG18- 02A	3.56	132.41	3.60	132.37	3.69	132.28	3.66	132.31	2.77	133.20	2.94	133.03	2.87	133.10	4.22	132.74	3.73	132.24	3.41	132.56
FMS-HG18- 02B	3.35	132.5	3.34	132.51	3.42	132.43	3.55	132.30	2.59	133.26	2.76	133.09	2.65	133.20	3.95	132.87	3.51	132.34	3.14	132.71
FMS-HG18- 03A	4.48	117.1	4.68	116.9	4.79	116.79	4.51	117.07	3.33	118.25	3.61	117.97	3.39	118.19	4.95	117.67	4.48	117.10	4.11	117.47
FMS-HG18- 03B	4.07	117.7	4.68	117.09	4.85	116.92	4.52	117.25	3.44	118.33	3.72	118.05	3.52	118.25	4.89	117.75	4.60	117.17	4.35	117.42
FMS-HG18- 04A	1.98	104.68	2.07	104.59	2.23	104.43	1.98	104.68	1.40	105.26	1.42	105.23	1.60	105.06	2.53	105.16	2.02	104.64	1.52	105.14
FMS-HG18- 04B	2.88	103.79	2.04	104.63	3.23	103.44	2.74	103.93	2.20	104.47	2.42	104.24	2.37	104.30	2.96	104.68	3.04	103.63	2.44	104.23
FMS-HG18- 05A	2.28	111.25	2.12	111.41	2.46	111.07	2.12	111.41	1.85	111.68	2.05	111.48	1.99	111.54	2.82	111.64	2.35	111.18	1.96	111.57
FMS-HG18- 05B	2.09	111.59	2.00	111.68	2.28	111.40	1.81	111.87	1.22	112.46	1.59	112.09	1.61	112.07	2.30	112.44	2.07	111.61	1.61	112.07
FMS-HG18- 06A	1.41	110.56	1.46	110.51	1.50	110.47	1.36	110.61	1.22	110.75	1.35	110.62	1.36	110.61	2.19	110.72	1.46	110.51	1.44	110.53
FMS-HG18- 07A	0.45	112.53	0.41	112.57	0.50	112.48	0.44	112.54	0.28	112.70	0.35	112.63	Frozen, in	accessible.	1.29	112.59	0.51	112.47	0.34	112.64
FMS-HG18- 07B	0.29	112.49	0.29	112.49	0.32	112.46	0.24	112.54	0.13	112.65	0.21	112.57	Frozen, in	accessible.	1.16	112.60	0.30	112.48	0.20	112.58
FMS-HG18- 08A	2.60	137.43	2.48	137.55	2.79	137.24	2.46	137.57	2.11	137.92	2.32	137.71	2.24	137.79	3.08	137.83	2.72	137.31	2.34	137.69

Borehole	Water Level (mbgs), Collected on Aug. 15, 2018	Water Level (m CGVD28), Collected on Aug. 15, 2018	Water Level (mbgs), Collected on Aug. 20, 2018	Water Level (m CGVD28), Collected on Aug. 20, 2018	Water Level (mbgs), Collected on Sep. 4-6, 2018	Water Level (m CGVD28), Collected on Sep. 4-6, 2018	Water Level (mbgs), Collected on Oct. 9, 2018	Water Level (m CGVD28), Collected on Oct. 9, 2018	Water Level (mbgs), Collected on Nov. 17- 18, 2018	Water Level (m CGVD28), Collected on Nov. 17- 18, 2018	Water Level (mbgs), Collected on Dec. 11, 2018	Water Level (m CGVD28), Collected on Dec. 11, 2018	Water Level (mbgs), Collected on Mar. 19- 21, 2019	Water Level (m CGVD28), Collected on Mar. 19- 21, 2019	Water Level (mbgs), Collected on Jun. 4, 2019	Water Level (m CGVD28), Collected on Jun. 4, 2019	Water Level (mbgs), Collected on Oct. 1-2, 2019	Water Level (m CGVD28), Collected on Oct. 1-2, 2019	Water Level (mbgs), Collected on Jan. 6-7, 2020	Water Level (m CGVD28), Collected on Jan. 6-7, 2020
FMS-HG18- 08B	2.17	137.81	2.32	137.66	2.69	137.29	2.26	137.72	1.55	138.43	1.86	138.12	1.61	138.37	2.45	138.38	2.52	137.46	1.88	138.10
FMS-HG18- 09A	2.16	121.42	2.06	121.52	2.35	121.23	1.93	121.65	1.39	122.19	1.62	121.97	1.49	122.09	2.43	122.10	2.20	121.38	1.73	121.85
FMS-HG18- 09B	1.59	122.03	1.44	122.18	1.87	121.75	1.36	122.26	0.62	123.00	0.87	122.76	0.68	122.94	1.58	122.96	1.66	121.96	1.01	122.61
FMS-HG18- 10A	1.60	138.71	1.34	138.97	1.60	138.71	1.27	139.04	0.96	139.35	1.14	139.17	1.07	139.24	2.00	139.25	1.44	138.87	1.18	139.13
FMS-HG18- 10B	1.34	138.85	1.24	138.95	1.45	138.74	1.20	138.99	0.88	139.31	1.19	138.99	1.09	139.10	2.98	139.23	1.32	138.87	1.12	139.07
FMS-HG18- 11A	3.90	158.48	4.07	158.31	4.18	158.20	3.74	158.64	3.20	159.18	3.57	158.82	3.28	159.10	4.22	159.05	4.08	158.30	3.55	158.83
FMS-HG18- 11B	3.33	159.08	3.24	159.17	3.57	158.84	2.97	159.44	1.98	160.43	2.62	159.79	2.30	160.11	2.85	160.52	3.43	158.98	2.45	159.96
FMS-HG18- 13A	3.67	147.62	3.50	147.79	4.04	147.25	3.50	147.79	2.93	148.36	3.15	148.14	3.06	148.23	3.99	148.27	3.79	147.50	3.16	148.13
FMS-HG18- 13B	1.79	149.54	1.57	149.76	2.26	149.07	1.50	149.83	0.36	150.97	0.80	150.53	0.54	150.79	1.50	150.88	1.87	149.46	0.72	150.61
FMS-HG18- 14A	4.75	112.14	4.72	112.17	4.83	112.06	4.60	112.29	3.92	112.97	3.14	113.76	4.11	112.78	5.23	112.63	4.67	112.22		ible due to
FMS-HG18- 14B	4.71	112.26	4.68	112.29	4.80	112.17	4.55	112.42	3.76	113.21	4.00	112.97	3.98	112.99	5.16	112.80	4.64	112.33		ible due to
FMS-HG18- 15A	0.66	106.8	0.61	106.85	0.82	106.64	0.59	106.87	0.48	106.98	0.56	106.90	Frozen, in	accessible.	1.52	106.94	0.62	106.84	0.53	106.93

Atlantic Mining NS Corp

February 24, 2020

Borehole	Water Level (mbgs), Collected on Aug. 15, 2018	Water Level (m CGVD28), Collected on Aug. 15, 2018	Water Level (mbgs), Collected on Aug. 20, 2018	Water Level (m CGVD28), Collected on Aug. 20, 2018	Water Level (mbgs), Collected on Sep. 4-6, 2018	Water Level (m CGVD28), Collected on Sep. 4-6, 2018	Water Level (mbgs), Collected on Oct. 9, 2018	Water Level (m CGVD28), Collected on Oct. 9, 2018	Water Level (mbgs), Collected on Nov. 17- 18, 2018	Water Level (m CGVD28), Collected on Nov. 17- 18, 2018	Water Level (mbgs), Collected on Dec. 11, 2018	Water Level (m CGVD28), Collected on Dec. 11, 2018	Water Level (mbgs), Collected on Mar. 19- 21, 2019	Water Level (m CGVD28), Collected on Mar. 19- 21, 2019	Water Level (mbgs), Collected on Jun. 4, 2019	Water Level (m CGVD28), Collected on Jun. 4, 2019	Water Level (mbgs), Collected on Oct. 1-2, 2019	Water Level (m CGVD28), Collected on Oct. 1-2, 2019	Water Level (mbgs), Collected on Jan. 6-7, 2020	Water Level (m CGVD28), Collected on Jan. 6-7, 2020
FMS-HG18- 15B	0.92	106.64	0.93	106.63	1.07	106.49	0.87	106.69	0.78	106.78	0.85	106.71	0.80	106.76	1.84	106.75	0.91	106.65	0.84	106.72
FMS-HG18- 16A	2.79	139.38	2.79	139.38	3.07	139.10	2.86	139.31	0.84	141.33	1.14	141.04	1.51	140.66	2.44	140.61	2.97	139.20	1.82	140.35
FMS-HG18- 16B	3.39	138.8	3.44	138.75	3.60	138.59	2.45	139.74	0.84	141.35	1.17	141.02	1.58	140.61	2.48	140.59	3.40	138.79	0.92	141.27

5.2 Analytical Results

5.2.1 Groundwater

All groundwater quality results were compared to the Guidelines for Canadian Drinking Water Quality (CDWQ) and the Nova Scotia Environment Pathway Specific Standards for Groundwater (NSE PSS) for groundwater discharging to surface water (0-10 m from a freshwater body). Groundwater quality results are shown compared to the CDWQ and the NSE PSS, in the laboratory results provided in Appendix B. The results of the laboratory analysis are summarized as follows:

- PHC/BTEX and were not detected in any of the samples collected.
- Free and total cyanide was not detected in any of the samples collected in January 2020. Total cyanide was detected in well FMS-HG18-15B in the March 2019 sampling event below CDWQ and NSE PSS guidelines (0.038 mg/L) but was not detected in any other sampling event.
- Total and dissolved mercury were not detected during the January 2020 sampling event. Total mercury exceeded the NSE PSS in wells FMS-HG18-06A and FMS-HG18-11B in September 2018, and total and dissolved mercury exceeded the NSE PSS in well FMS-HG18-15A in November 2018. Total and dissolved mercury did not exceed the CDWQ in any of the samples collected.
- Table 3 (below) provides a summary of the groundwater exceedances of the CDWQ MAC for the September 2018, November 2018, March 2019, June 2019, October 2019, and January 2020 sampling events:
 - Dissolved arsenic exceeded in CDWQ MAC in six wells in January 2020 (FMS-HG18-02A, FMS-HG18-04A, FMS-HG18-05A, FMS-HG18-06A, FMS-HG18-07A, and FMS-HG18-07B), all of which exceeded in previous sampling events.
 - Dissolved manganese exceeded the CDWQ in 12 wells in January 2020 (FMS-HG18-04A, FMS-HG18-04B, FMS-HG18-06A, FMS-HG18-07A, FMS-HG18-07B, FMS-HG18-09A, FMS-HG18-09B, FMS-HG18-11A, FMS-HG18-11B, FMS-HG18-15A, FMS-HG18-15B, and FMS-HG18-16A). Health Canada established a guideline for manganese in May 2019. The September 2018, November 2018, and March 2019 sampling events were not compared to the new Health Canada CDWQ guideline; however, concentrations reported for the June 2019, October 2019, and January 2020 sampling events are consistent with manganese concentrations from previous sampling events.
 - Aluminum and iron exceeded aesthetic objectives (AO)/operational guidance (OG) values in multiple wells during all monitoring events. Zinc exceeded the AO in November 2018 only.
 - Health Canada established new CDWQ MAC guidelines in March 2019 (lead) and June 2019 (copper and strontium). Groundwater results were compared to guidelines in effect at the time of sampling and no results for these parameters exceeded CDWQ MAC. Previous sampling events were not compared to the new Health Canada CDWQ guideline; however, lead, copper, and strontium concentrations reported for the March, June, October 2019, and January 2020 sampling events are consistent with lead, copper, and strontium concentrations from previous sampling events.
 - No other metals parameters exceeded CDWQ MAC.

Atlantic Mining NS Corp

Project No. 1895674-011

February 24, 2020

Parameters exceeding the NSE PSS in groundwater for the September 2018, November 2018, March 2019, June 2019, October 2019, and January 2020 sampling events are presented in Table 4. Metals parameters exceeding the NSE PSS in January 2020 included dissolved aluminum, arsenic, cadmium, cobalt, copper, iron, manganese, silver, and zinc. All of these parameters have exceeded historically. It should be noted that the laboratory detection limit for dissolved cadmium (0.017 μg/L) is greater than the NSE PSS (0.01 μg/L). Detected concentrations of dissolved cadmium are presented in Table 4.

Table 3: Groundwater Concentrations Exceeding the MAC

		Groundw	ater Concentrat	ions Exceedin	g the MAC	
Monitoring Well ID	September 2018	November 2018	March 2019	June 2019	October 2019	January 2020
FMS-HG18-02A	None	None	Dissolved arsenic	Dissolved arsenic	Dissolved arsenic	Dissolved arsenic
FMS-HG18-02B	None	None	None	None	None	None
FMS-HG18-03A	Dissolved arsenic	Dissolved arsenic	Dissolved arsenic	Dissolved manganese	Dissolved arsenic	None
FMS-HG18-03B	None	None	None	None	None	None
FMS-HG18-04A	Dissolved arsenic	Dissolved arsenic	Dissolved arsenic	Dissolved arsenic and manganese	Dissolved arsenic and manganese	Dissolved arsenic and manganese
FMS-HG18-04B	None	None	None	Dissolved manganese	Dissolved manganese	Dissolved manganese
FMS-HG18-05A	Dissolved arsenic	Dissolved arsenic	Dissolved arsenic	Dissolved arsenic	Dissolved arsenic	Dissolved arsenic
FMS-HG18-05B	None	None	None	None	None	None
FMS-HG18-06A	Dissolved arsenic	None	Dissolved arsenic	Dissolved manganese	Dissolved arsenic and manganese	Dissolved arsenic and manganese
FMS-HG18-07A	Dissolved arsenic	Dissolved arsenic	Not sampled, as well frozen	Dissolved arsenic and manganese	Dissolved arsenic and manganese	Dissolved arsenic and manganese
FMS-HG18-07B	Dissolved arsenic	Dissolved arsenic	Not sampled, as well frozen	Dissolved arsenic and manganese	Dissolved arsenic and manganese	Dissolved arsenic and manganese

Project No. 1895674-011

		Groundw	ater Concentrat	ions Exceeding	g the MAC	
Monitoring Well ID	September 2018	November 2018	March 2019	June 2019	October 2019	January 2020
FMS-HG18-08A	None	None	None	None	None	None
FMS-HG18-08B	None	None	None	None	None	None
FMS-HG18-09A	None	None	None	Dissolved manganese	Dissolved manganese	Dissolved manganese
FMS-HG18-09B	None	None	None	Dissolved manganese	Dissolved manganese	Dissolved manganese
FMS-HG18-10A	None	None	None	None	Dissolved manganese	None
FMS-HG18-10B	None	None	None	None	None	None
FMS-HG18-11A	None	None	None	Dissolved manganese	Dissolved manganese	Dissolved manganese
FMS-HG18-11B	None	None	None	Dissolved manganese	Dissolved manganese	Dissolved and manganese
FMS-HG18-13A	None	None	None	None	None	None
FMS-HG18-13B	None	None	None	None	None	None
FMS-HG18-14A	None	None	None	None	Dissolved uranium	Inaccessible
FMS-HG18-14B	None	None	None	None	None	Inaccessible
FMS-HG18-15A	Dissolved arsenic	Dissolved arsenic	Not sampled, as well frozen	Dissolved manganese	None	Dissolved manganese
FMS-HG18-15B	None	None	None	Dissolved manganese	Dissolved manganese	Dissolved manganese
FMS-HG18-16A	None	None	None	Dissolved manganese	None	Dissolved manganese
FMS-HG18-16B	None	None	None	None	None	None

Atlantic Mining NS Corp

Project No. 1895674-011

February 24, 2020

Table 4: Dissolved Groundwater Concentrations Exceeding the NSE PSS

	Di	ssolved Groun	dwater Concen	trations Exceed	ding the NSE PS	SS
Monitoring Well ID	September 2018	November 2018	March 2019	June 2019	October 2019	January 2020
FMS-HG18-02A	Aluminum and arsenic	Aluminum and arsenic	Arsenic and copper	Arsenic and copper	Arsenic and copper	Arsenic, copper, and silver
FMS-HG18-02B	Aluminum, iron, and manganese	Aluminum, cadmium, and copper	Aluminum, cadmium, and copper	Aluminum and copper	Aluminum, cadmium, and copper	Aluminium and copper
FMS-HG18-03A	Arsenic	Aluminum and arsenic	Arsenic	Aluminum and arsenic	Aluminum and arsenic	Arsenic
FMS-HG18-03B	Cadmium, copper, and zinc	Aluminum	Cadmium, copper, and silver	Silver	Cadmium, copper, and silver	Copper
FMS-HG18-04A	Aluminum, arsenic, and cadmium	Aluminum and arsenic	Arsenic	Aluminum	Aluminum and arsenic	Arsenic
FMS-HG18-04B	Cadmium, manganese, and zinc	Cadmium, iron, manganese, and zinc	Cadmium, iron, manganese, and zinc	Cadmium and zinc	Aluminum, cadmium, iron, and zinc	Cadmium and zinc
FMS-HG18-05A	Aluminum, arsenic, and cadmium	Aluminum and arsenic	Arsenic	Aluminum	Aluminum, arsenic, cadmium, and copper	Aluminum, arsenic, and copper
FMS-HG18-05B	Aluminum, arsenic, and cadmium	Aluminum, cadmium, and copper	Aluminum, cadmium, and copper	Aluminum, cadmium, and copper	Aluminum, arsenic, cadmium, and copper	Aluminum, cadmium, and copper
FMS-HG18-06A	Aluminum, arsenic, iron, manganese, and total mercury	Aluminum and cadmium	Aluminum, arsenic, and iron	Aluminum and cadmium	Aluminum, arsenic, cadmium, and iron	Aluminum, arsenic, cadmium, and iron

	Di	ssolved Groun	dwater Concen	trations Exceed	ding the NSE P	SS
Monitoring Well ID	September 2018	November 2018	March 2019	June 2019	October 2019	January 2020
FMS-HG18-07A	Arsenic	Arsenic	Not sampled, as well frozen	Arsenic	Aluminum and arsenic	Arsenic
FMS-HG18-07B	Aluminum, arsenic, and iron	Aluminum, arsenic, and iron	Not sampled, as well frozen	Aluminum, arsenic, and iron	Aluminum, arsenic, and iron	Aluminum, arsenic, and iron
FMS-HG18-08A	None	None	None	None	Aluminium	None
FMS-HG18-08B	Copper	Aluminum and cadmium	Aluminum	Aluminum, cadmium, and silver	Aluminium and silver	Aluminum and cadmium
FMS-HG18-09A	None	None	None	None	Aluminum	None
FMS-HG18-09B	Cadmium, silver, and zinc	Cadmium and copper	Cadmium, copper, and iron	Aluminum, cadmium, copper, and iron	Cadmium and copper	Cadmium, copper, and iron
FMS-HG18-10A	Cadmium and zinc	Aluminum	Aluminum	Aluminum	Aluminium	Aluminium
FMS-HG18-10B	Aluminum and cadmium	Aluminum	Aluminum and cadmium	Aluminum	Aluminium and silver	Aluminium
FMS-HG18-11A	Cadmium and manganese	Cadmium and manganese	Cadmium and manganese	Cadmium and manganese	Cadmium and manganese	Cadmium and manganese
FMS-HG18-11B	Aluminum, cadmium, copper, manganese, and total mercury	Aluminum, cadmium, cobalt, copper, iron, and manganese	Aluminum, cobalt, copper, iron, and manganese	Aluminum, cadmium, cobalt, iron, manganese, and selenium	Aluminium, cadmium, cobalt, manganese, and selenium	Aluminium, cadmium, cobalt, copper, and manganese
FMS-HG18-13A	None	Aluminum	Aluminum	None	None	None

	Di	ssolved Groun	dwater Concen	trations Exceed	ding the NSE P	SS
Monitoring Well ID	September 2018	November 2018	March 2019	June 2019	October 2019	January 2020
FMS-HG18-13B	Aluminum, copper and, silver	Aluminum, copper, and silver	Aluminum, cadmium, copper, and silver	Aluminum and silver	Aluminum and silver	Aluminum
FMS-HG18-14A	Arsenic and cadmium	Cadmium	Cadmium	Aluminum	Cadmium	Inaccessible
FMS-HG18-14B	Cadmium	Aluminum, cadmium, and copper	Aluminum and cadmium	Aluminum and cadmium	Cadmium	Inaccessible
FMS-HG18-15A	Aluminum and arsenic	Aluminum, arsenic, and mercury, and total mercury	Not sampled, as well frozen	Arsenic	None	Arsenic
FMS-HG18-15B	None	None	Aluminum	None	Arsenic	None
FMS-HG18-16A	None	None	Silver	None	Cadmium	None
FMS-HG18-16B	Aluminum, cadmium, and copper	Aluminum, cadmium, copper, and silver	Aluminum, copper, and silver	Aluminum, cadmium, copper, and silver	Aluminum and cadmium	Aluminum, cadmium, copper, and silver

Note:

The analytical results for the September 2018, November 2018, March 2019, and June 2019 sampling events are presented in the

[&]quot;Fifteen Mile Stream Gold Project Hydrogeological Investigation" report, dated September 10, 2019.

The NSE PSS for Groundwater (NSE PSS) for groundwater discharging to surface water (0-10 m from a freshwater body) are equivalent to the NSE Tier 1 Environmental Quality Standards (EQS) for surface water.

Atlantic Mining NS Corp Project No. 1895674-011

February 24, 2020

6.0 CLOSURE

The information presented in this technical memo describes the results of long-term groundwater monitoring Round 8 at the FMS Project site, with the objective of supporting the EIS process necessary to develop the Project.

We trust that the above is adequate for your current needs. Should you have any questions, comments or concerns please do not hesitate to contact the undersigned

Golder Associates Ltd.

Glen Merkley, P.Eng.

Environmental Services Practitioner

GM/PM/sg/sm

Phyllis McCrindle, M.Sc., P.Geo. Associate, Senior Hydrogeologist

https://golderassociates.sharepoint.com/sites/23819g/deliverables/1895674-011-tm-monitoring rnd 8 fms/1895674-011-tm-rev0-monitoring rnd 8 fms-2402_20.docx

Attachments: Appendix A – Groundwater Level Hydrographs

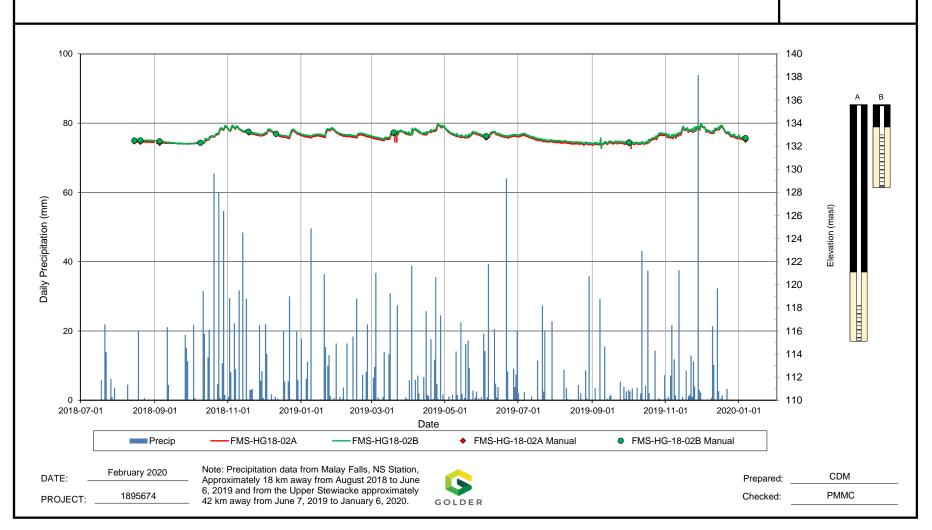
Appendix B – Groundwater Quality

Atlantic Mining NS Corp Project No. 1895674-011

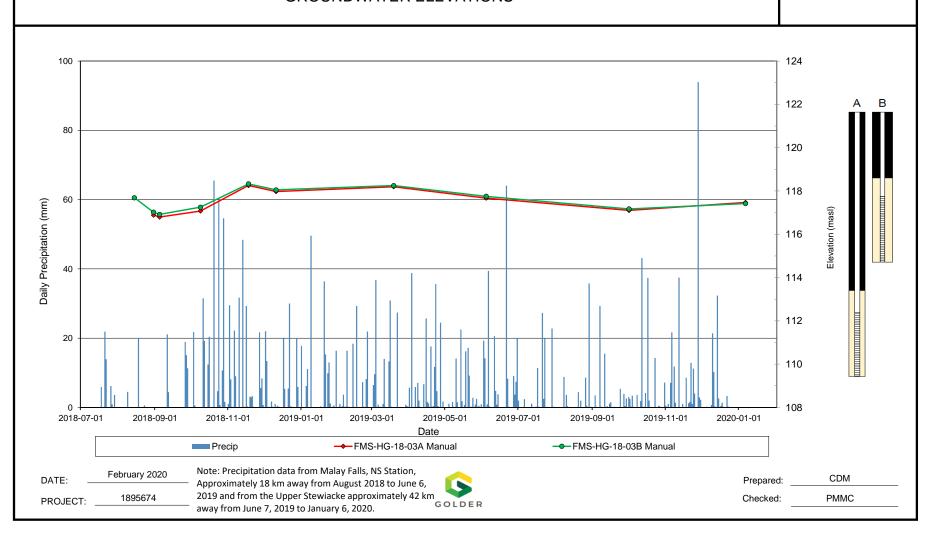
References

Health Canada. (2019). Guidelines for Canadian Drinking Water Quality Summary Table.

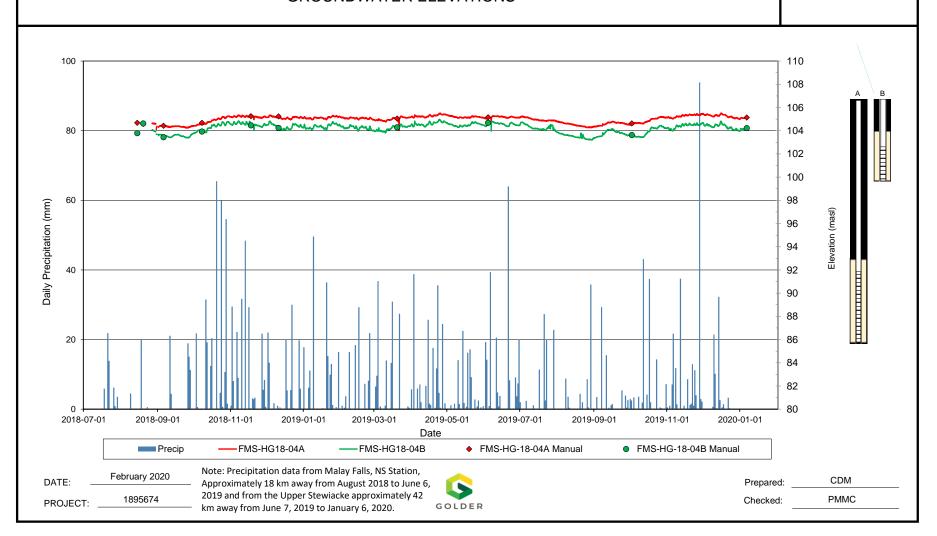
Nova Scotia Environment. (2013). Remediation Levels Protocol. Table 3, Pathway Specific Standards for Groundwater.



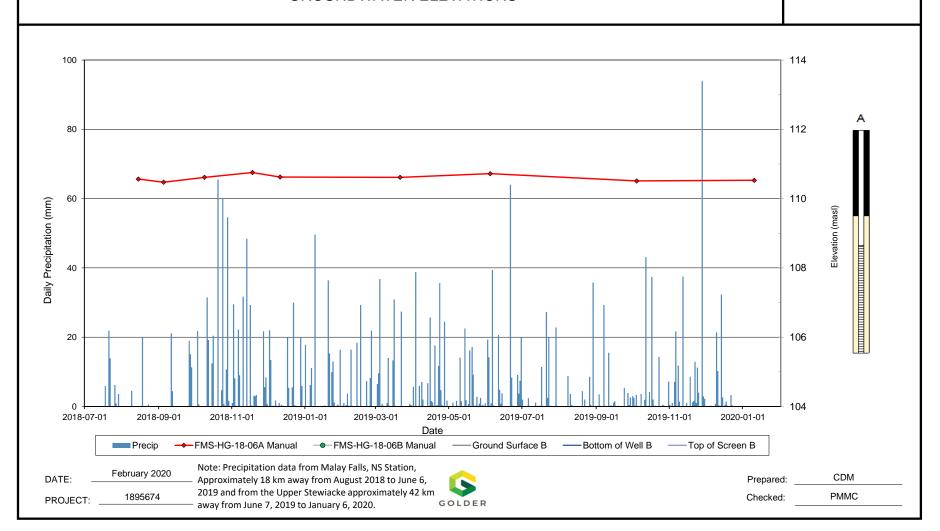
February 24, 2020

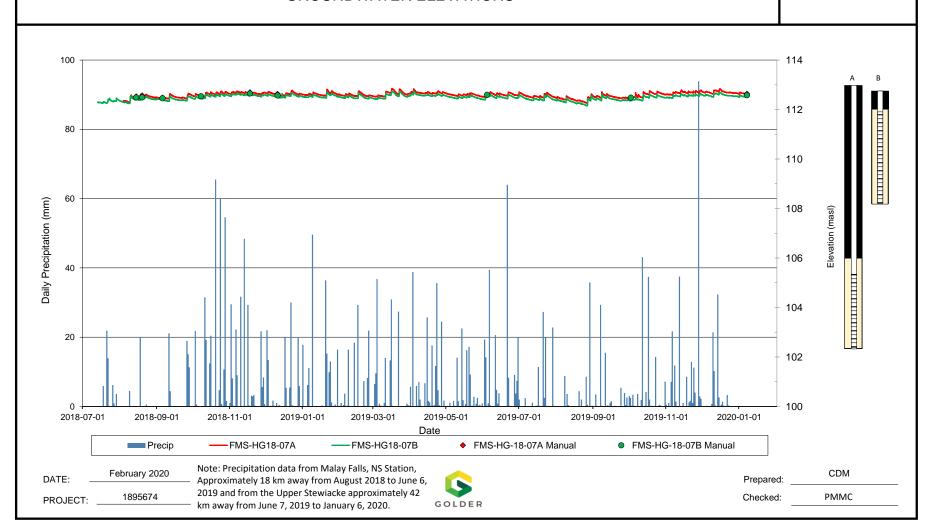

APPENDIX A

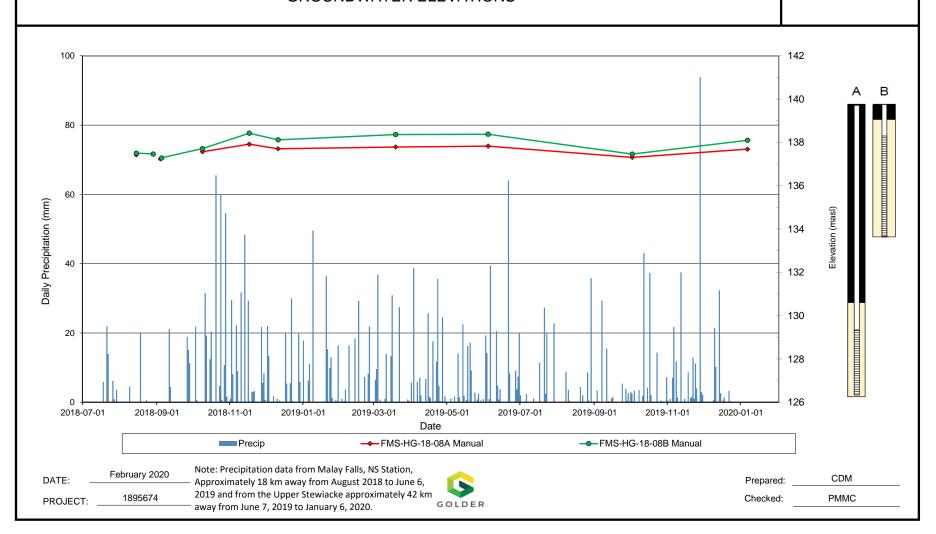
Groundwater Level Hydrographs

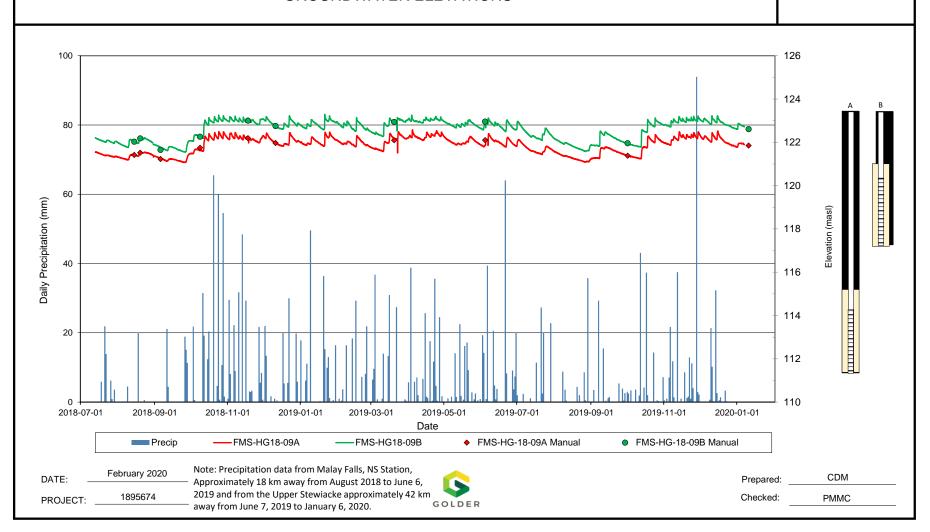


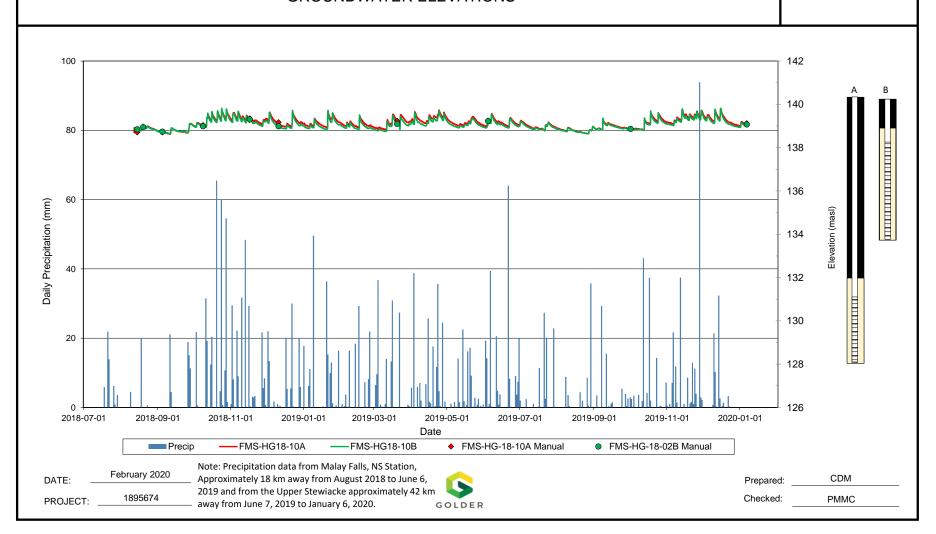

HYDROGRAPH OF MONITORING WELL NEST FMS-HG18-03A/B GROUNDWATER ELEVATIONS

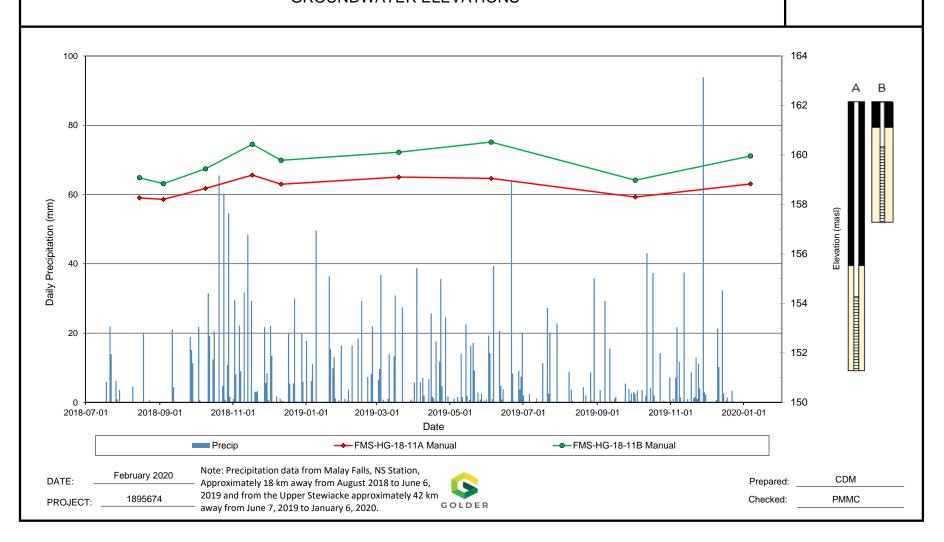

HYDROGRAPH OF MONITORING WELL NEST FMS-HG18-04A/B GROUNDWATER ELEVATIONS

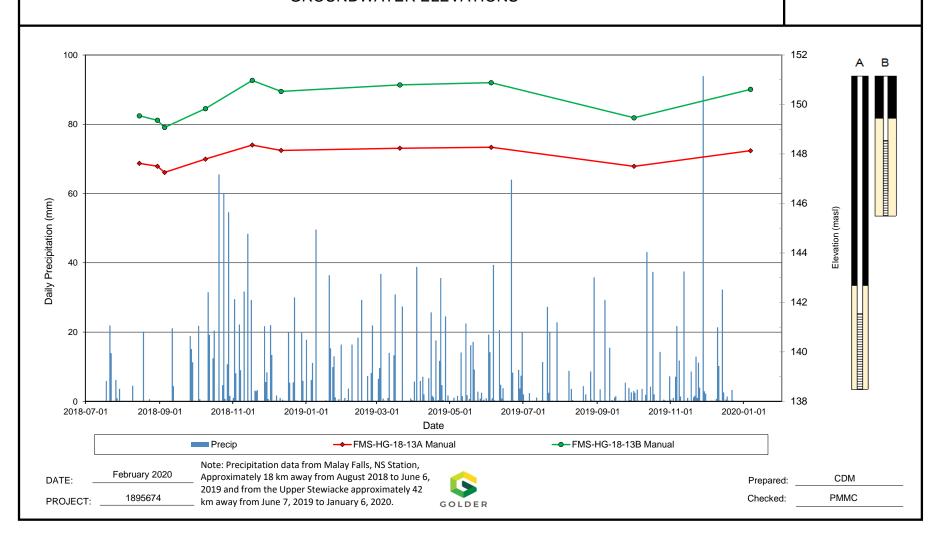

HYDROGRAPH OF MONITORING WELL NEST FMS-HG18-05A/B GROUNDWATER ELEVATIONS

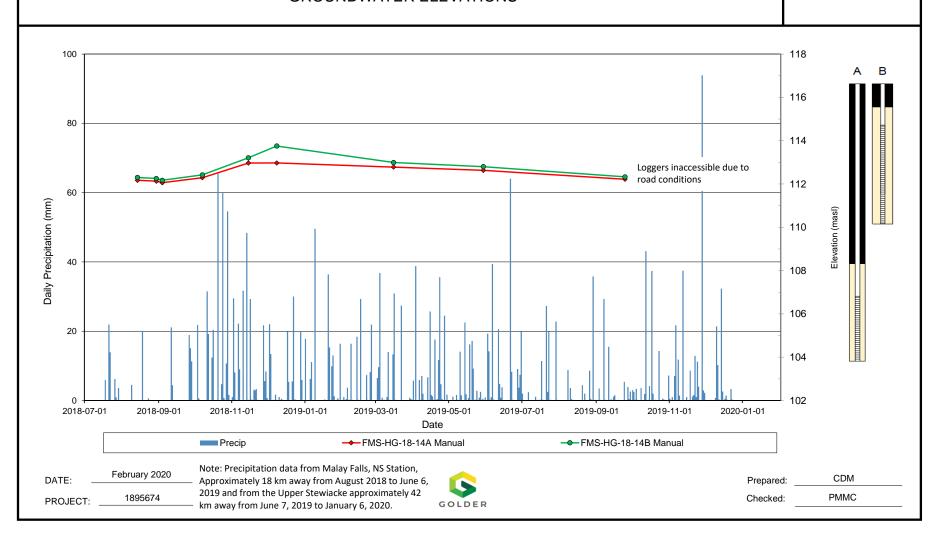


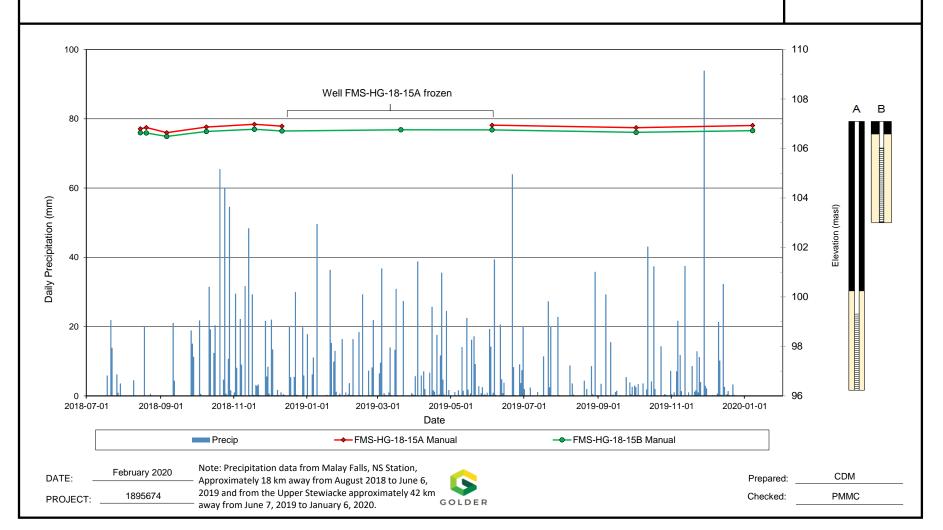

HYDROGRAPH OF MONITORING WELL NEST FMS-HG18-07A/B GROUNDWATER ELEVATIONS

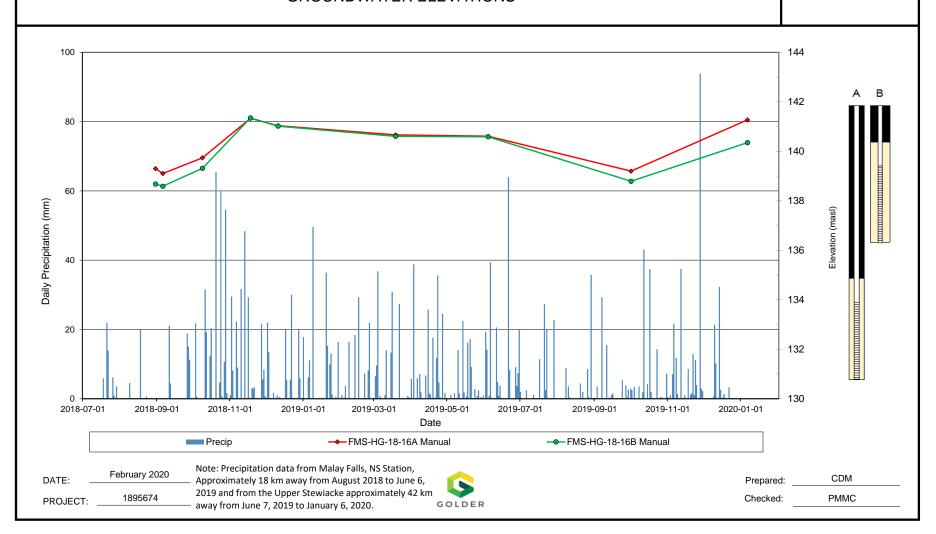

HYDROGRAPH OF MONITORING WELL NEST FMS-HG18-08A/B GROUNDWATER ELEVATIONS


HYDROGRAPH OF MONITORING WELL NEST FMS-HG18-09A/B GROUNDWATER ELEVATIONS


HYDROGRAPH OF MONITORING WELL NEST FMS-HG18-10A/B GROUNDWATER ELEVATIONS


HYDROGRAPH OF MONITORING WELL NEST FMS-HG18-11A/B GROUNDWATER ELEVATIONS


HYDROGRAPH OF MONITORING WELL NEST FMS-HG18-13A/B GROUNDWATER ELEVATIONS


HYDROGRAPH OF MONITORING WELL NEST FMS-HG18-14A/B GROUNDWATER ELEVATIONS

APPENDIX B

Groundwater Quality

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES

201 Brownlow Avenue, Suite 26 DARTMOUTH, NS B3B 1W2

(902) 466-1668

ATTENTION TO: Glen Merkley

PROJECT: 1895674

AGAT WORK ORDER: 20X562733

MISCELLANEOUS ANALYSIS REVIEWED BY: Jason Coughtrey, Inorganics Supervisor

TRACE ORGANICS REVIEWED BY: Amy Hunter, Trace Organics Supervisor, B.Sc.

WATER ANALYSIS REVIEWED BY: Marta Manka, Data Reporter

DATE REPORTED: Jan 22, 2020

PAGES (INCLUDING COVER): 33

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (902) 468-8718

*NOTES	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Page 1 of 33

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

CLIENT NAME: GOLDER ASSOCIATES

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 20X562733

PROJECT: 1895674

ATTENTION TO: Glen Merkley

SAMPLED BY:

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

Subcontracted Data Received

				Subco	miracied D	ala Receive	t u				
DATE RECEIVED: 2020-01-10								Ī	DATE REPORTE	ED: 2020-01-22	
		SAME	CRIPTION: PLE TYPE: SAMPLED:	FMS-HG18-02A Water 2020-01-07	FMS-HG18-02B Water 2020-01-07	FMS-HG18-03A Water 2020-01-07	FMS-HG18-03B Water 2020-01-07	FMS-HG18-04A Water 2020-01-10	FMS-HG18-04B Water 2020-01-10	FMS-HG18-05A Water 2020-01-10	FMS-HG18-05B Water 2020-01-10
Parameter	Unit	G/S	RDL	856220	856250	856251	856252	856253	856254	856255	856256
Subcontracted Data				у	у	у	у	у	у	у	у
		SAME	CRIPTION: PLE TYPE: SAMPLED:	FMS-HG18-06A Water 2020-01-10	FMS-HG18-07A Water 2020-01-10	FMS-HG18-07B Water 2020-01-10	FMS-HG18-08A Water 2020-01-07	FMS-HG18-08B Water 2020-01-07	FMS-HG18-09A Water 2020-01-10	FMS-HG18-09B Water 2020-01-10	FMS-HG18-10A Water 2020-01-07
Parameter	Unit	G/S	RDL	856257	856258	856259	856260	856261	856262	856263	856264
Subcontracted Data		SAME	CRIPTION: PLE TYPE: SAMPLED:	y FMS-HG18-10B Water 2020-01-07	y FMS-HG18-11A Water 2020-01-07	y FMS-HG18-11B Water 2020-01-07	y FMS-HG18-13A Water 2020-01-07	y FMS-HG18-13B Water 2020-01-07	y FMS-HG18-15A Water 2020-01-10	y FMS-HG18-15B Water 2020-01-10	y FMS-HG18-16A Water 2020-01-07
Parameter	Unit	G/S	RDL	856265	856266	856267	856268	856269	856270	856271	856272
Subcontracted Data		SAME	CRIPTION: PLE TYPE: SAMPLED:	y FMS-HG18-16B Water 2020-01-07	y DUP-A Water 2020-01-07	y DUP-B Water 2020-01-07	y DUP-C Water 2020-01-10	у	у	у	у
Parameter	Unit	G/S	RDL	856273	856274	856275	856276				
Subcontracted Data				у	У	у	у				

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Analysis performed at AGAT Halifax (unless marked by *)

Certified By:

Josephan Coaghtry

CLIENT NAME: GOLDER ASSOCIATES

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 20X562733

PROJECT: 1895674

ATTENTION TO: Glen Merkley

SAMPLED BY:

Atlantic RBCA Tier 1 Hydrocarbons in Water (Version 3.1)

DATE RECEIVED: 2020-01-10 DATE REPORTED: 2020-01-22

Parameter Unit SAMPLE TYPE: Water DATE SAMPLED: 2020-01-07 2020-01-07 2020-01-07 2020-01-07 2020-01-10 2020-01-1	D7112 11202112D1 2020 01 10								-	-,		
Parameter Unit G/S RDL 856220 856250 856251 856252 856253 856254 856254 856255 856255 856253 856254 856254 856255 856255 856253 856254 856255 856255 856255 856255 856255 856255 856255 856255 856255 856254 856255 856255 856255 856255 856255 856255 856255 856255 856255 856254 856255 856255 856255 856255 856255 856255 856255 856255 856255 856255 856255 856255 856255 856255 856255 856254 856255 856255 856255 856255 856255 856255 856255 856254 856255 856255 856255 856255 856255 856255 856255 856254 856255 856255 856251 856255 856255 856255 856255 856255 856255 856255 856255 856255 856255			SAMPLE DESC	RIPTION:	FMS-HG18-02A	FMS-HG18-02B	FMS-HG18-03A	FMS-HG18-03B	FMS-HG18-04A	FMS-HG18-04B	FMS-HG18-05A	FMS-HG18-05B
Parameter Unit G / S RDL 856220 856250 856251 856252 856253 856254 856255 856250 <th></th> <th></th> <th>SAMF</th> <th>LE TYPE:</th> <th>Water</th> <th>Water</th> <th>Water</th> <th>Water</th> <th>Water</th> <th>Water</th> <th>Water</th> <th>Water</th>			SAMF	LE TYPE:	Water							
Benzene mg/L 46 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001			DATE S	AMPLED:	2020-01-07	2020-01-07	2020-01-07	2020-01-07	2020-01-10	2020-01-10	2020-01-10	2020-01-10
Toluene mg/L 4.2 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	Parameter	Unit	G/S	RDL	856220	856250	856251	856252	856253	856254	856255	856256
Ethylbenzene mg/L 3.2 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.000 <0.002 <0.000 <0.002 <0.000 <0.002 <0.000 <0.002 <0.000 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0	Benzene	mg/L	46	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Xylene (Total) mg/L 2.8 0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.001 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	Toluene	mg/L	4.2	0.001	< 0.001	<0.001	<0.001	< 0.001	<0.001	< 0.001	<0.001	<0.001
C6-C10 (less BTEX) mg/L 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <	Ethylbenzene	mg/L	3.2	0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	<0.001
>C10-C16 Hydrocarbons mg/L 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.01 <0.10 <0.11 <0.11 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01<	Xylene (Total)	mg/L	2.8	0.002	< 0.002	<0.002	<0.002	< 0.002	<0.002	< 0.002	<0.002	<0.002
>C16-C21 Hydrocarbons mg/L 0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11<	C6-C10 (less BTEX)	mg/L		0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
>C21-C32 Hydrocarbons mg/L 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <th< td=""><td>>C10-C16 Hydrocarbons</td><td>mg/L</td><td></td><td>0.05</td><td>< 0.05</td><td>< 0.05</td><td>< 0.05</td><td>< 0.05</td><td>< 0.05</td><td>< 0.05</td><td>< 0.05</td><td>< 0.05</td></th<>	>C10-C16 Hydrocarbons	mg/L		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Modified TPH (Tier 1) mg/L 13 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <td>>C16-C21 Hydrocarbons</td> <td>mg/L</td> <td></td> <td>0.10</td> <td><0.10</td> <td><0.10</td> <td><0.10</td> <td><0.10</td> <td><0.10</td> <td><0.10</td> <td><0.10</td> <td><0.10</td>	>C16-C21 Hydrocarbons	mg/L		0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Resemblance Comment NR NR <td>>C21-C32 Hydrocarbons</td> <td>mg/L</td> <td></td> <td>0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td>	>C21-C32 Hydrocarbons	mg/L		0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Return to Baseline at C32 Y <td>Modified TPH (Tier 1)</td> <td>mg/L</td> <td>13</td> <td>0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td>	Modified TPH (Tier 1)	mg/L	13	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate Unit Acceptable Limits Isobutylbenzene - EPH % 70-130 113 118 112 112 110 109 109 111	Resemblance Comment				NR							
Isobutylbenzene - EPH % 70-130 113 118 112 112 110 109 109 111	Return to Baseline at C32				Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
•	Surrogate	Unit	Acceptabl	e Limits								
	Isobutylbenzene - EPH	%	70-1	30	113	118	112	112	110	109	109	111
sobutylbenzene - VPH % 70-130 92 96 94 92 91 94 92 91	Isobutylbenzene - VPH	%	70-1	30	92	96	94	92	91	94	92	91
n-Dotriacontane - EPH % 70-130 116 119 114 112 116 115 116 122	n-Dotriacontane - EPH	%	70-1	30	116	119	114	112	116	115	116	122

Certified By:

11 Morris Drive, Unit 122

Dartmouth, Nova Scotia CANADA B3B 1M2

http://www.agatlabs.com

TEL (902)468-8718 FAX (902)468-8924

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 20X562733

PROJECT: 1895674

ATTENTION TO: Glen Merkley

SAMPLED BY:

Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

11 Morris Drive, Unit 122

Atlantic RBCA Tier 1 Hydrocarbons in Water (Version 3.1)

DATE RECEIVED: 2020-01-10 DATE REPORTED: 2020-01-22

water 2020-01-10 31 856262 1 <0.001 1 <0.001	Water 2020-01-10 856263 <0.001	Water 2020-01-07 856264
81 856262 1 <0.001	856263	856264
1 <0.001		
	<0.001	0.004
1 <0.001		<0.001
	<0.001	<0.001
1 <0.001	< 0.001	<0.001
2 <0.002	< 0.002	< 0.002
1 <0.01	<0.01	<0.01
5 <0.05	< 0.05	< 0.05
<0.10	<0.10	<0.10
<0.1	<0.1	<0.1
<0.1	<0.1	<0.1
NR	NR	NR
Υ	Υ	Υ
113	108	109
88	85	86
123	117	120
	Y 113 88	Y Y 113 108 88 85

Certified By:

any Hu

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 20X562733

PROJECT: 1895674

ATTENTION TO: Glen Merkley

SAMPLED BY:

Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

11 Morris Drive, Unit 122

Atlantic RBCA Tier 1 Hydrocarbons in Water (Version 3.1)

DATE RECEIVED: 2020-01-10 DATE REPORTED: 2020-01-22

		SAMPLE DESC	RIPTION:	FMS-HG18-10B	FMS-HG18-11A	FMS-HG18-11B	FMS-HG18-13A	FMS-HG18-13B	FMS-HG18-15A	FMS-HG18-15B	FMS-HG18-16A
		SAMP	LE TYPE:	Water							
		DATE S	AMPLED:	2020-01-07	2020-01-07	2020-01-07	2020-01-07	2020-01-07	2020-01-10	2020-01-10	2020-01-07
Parameter	Unit	G/S	RDL	856265	856266	856267	856268	856269	856270	856271	856272
Benzene	mg/L	0.005	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Toluene	mg/L	0.06, 0.024	0.001	<0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	<0.001	<0.001
Ethylbenzene	mg/L	0.14,	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001
Kylene (Total)	mg/L	0.09, 0.02	0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
C6-C10 (less BTEX)	mg/L		0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
C10-C16 Hydrocarbons	mg/L		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
C16-C21 Hydrocarbons	mg/L		0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
C21-C32 Hydrocarbons	mg/L		0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Modified TPH (Tier 1)	mg/L		0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Resemblance Comment				NR							
Return to Baseline at C32				Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Surrogate	Unit	Acceptable	Limits								
sobutylbenzene - EPH	%	70-13	30	110	108	109	104	103	107	105	108
sobutylbenzene - VPH	%	70-13	30	86	80	80	79	79	83	85	86
n-Dotriacontane - EPH	%	70-13	80	119	122	123	119	103	108	107	116

Certified By:

any Huj

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 20X562733

PROJECT: 1895674

ATTENTION TO: Glen Merkley

SAMPLED BY:

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

Atlantic RBCA Tier 1 Hydrocarbons in Water (Version 3.1)

DATE RECEIVED: 2020-01-10 DATE REPORTED: 2020-01-22 DUP-C SAMPLE DESCRIPTION: FMS-HG18-16B DUP-A DUP-B **SAMPLE TYPE:** Water Water Water Water DATE SAMPLED: 2020-01-07 2020-01-07 2020-01-07 2020-01-10 **RDL** 856273 856274 856275 856276 **Parameter** Unit G/S Benzene 0.005 0.001 < 0.001 < 0.001 < 0.001 < 0.001 mg/L Toluene mg/L 0.06, 0.024 0.001 < 0.001 < 0.001 < 0.001 < 0.001 Ethylbenzene 0.14, < 0.001 < 0.001 mg/L 0.001 < 0.001 < 0.001 Xylene (Total) 0.09. 0.02 < 0.002 < 0.002 < 0.002 mg/L 0.002 < 0.002 C6-C10 (less BTEX) 0.01 < 0.01 < 0.01 < 0.01 < 0.01 mg/L >C10-C16 Hydrocarbons mg/L 0.05 < 0.05 < 0.05 < 0.05 < 0.05 >C16-C21 Hydrocarbons mg/L 0.10 < 0.10 < 0.10 <0.10 < 0.10 >C21-C32 Hydrocarbons mg/L 0.1 < 0.1 < 0.1 < 0.1 < 0.1 Modified TPH (Tier 1) 0.1 < 0.1 <0.1 < 0.1 <0.1 mg/L Resemblance Comment NR NR NR NR Return to Baseline at C32 Υ Υ Υ Υ **Acceptable Limits** Surrogate Unit Isobutylbenzene - EPH % 70-130 105 106 106 104 Isobutylbenzene - VPH % 70-130 82 85 85 85 n-Dotriacontane - EPH % 70-130 108 110 112 110

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to NS Contaminated Sites GW to SW >10m from SW body

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

856220-856276

Resemblance Comment Key: GF - Gasoline Fraction

WGF - Weathered Gasoline Fraction GR - Product in Gasoline Range

FOF - Fuel Oil Fraction

WFOF - Weathered Fuel Oil Fraction FR - Product in Fuel Oil Range

LOF - Lube Oil Fraction

LR - Lube Range

UC - Unidentified Compounds

NR - No Resemblance

NA - Not Applicable

Analysis performed at AGAT Halifax (unless marked by *)

Certified By:

my Hut

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 20X562733

PROJECT: 1895674

ATTENTION TO: Glen Merkley

SAMPLED BY:

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

Dissolved TP (Water)

					13301704 11	(Water)					
DATE RECEIVED: 2020-01-10								Ī	DATE REPORTI	ED: 2020-01-22	
		SAMPLE DES	CRIPTION:	FMS-HG18-02A	FMS-HG18-02B	FMS-HG18-03A	FMS-HG18-03B	FMS-HG18-04A	FMS-HG18-04B	FMS-HG18-05A	FMS-HG18-05E
		SAMI	PLE TYPE:	Water	Water						
		DATES	SAMPLED:	2020-01-07	2020-01-07	2020-01-07	2020-01-07	2020-01-10	2020-01-10	2020-01-10	2020-01-10
Parameter	Unit	G/S	RDL	856220	856250	856251	856252	856253	856254	856255	856256
Total Phosphorus, Dissolved	mg/L		0.02	0.02	0.02	0.02	0.02	0.02	<0.02	0.03	<0.02
		SAMPLE DES	CRIPTION:	FMS-HG18-06A	FMS-HG18-07A	FMS-HG18-07B	FMS-HG18-08A	FMS-HG18-08B	FMS-HG18-09A	FMS-HG18-09B	FMS-HG18-10A
		SAMI	PLE TYPE:	Water	Water						
		DATE S	SAMPLED:	2020-01-10	2020-01-10	2020-01-10	2020-01-07	2020-01-07	2020-01-10	2020-01-10	2020-01-07
Parameter	Unit	G/S	RDL	856257	856258	856259	856260	856261	856262	856263	856264
Total Phosphorus, Dissolved	mg/L		0.02	0.02	<0.02	0.06	0.02	<0.02	<0.02	0.02	<0.02
		SAMPLE DES	CRIPTION:	FMS-HG18-10B	FMS-HG18-11A	FMS-HG18-11B	FMS-HG18-13A	FMS-HG18-13B	FMS-HG18-15A	FMS-HG18-15B	FMS-HG18-16A
		SAMI	PLE TYPE:	Water	Water						
		DATE S	SAMPLED:	2020-01-07	2020-01-07	2020-01-07	2020-01-07	2020-01-07	2020-01-10	2020-01-10	2020-01-07
Parameter	Unit	G/S	RDL	856265	856266	856267	856268	856269	856270	856271	856272
Total Phosphorus, Dissolved	mg/L		0.02	<0.02	0.02	<0.02	0.03	<0.02	<0.02	0.02	0.02
		SAMPLE DES	CRIPTION:	FMS-HG18-16B	DUP-A	DUP-B	DUP-C				
		SAMI	PLE TYPE:	Water	Water	Water	Water				
		DATE S	SAMPLED:	2020-01-07	2020-01-07	2020-01-07	2020-01-10				
Parameter	Unit	G/S	RDL	856273	856274	856275	856276				
Total Phosphorus, Dissolved	mg/L		0.02	0.02	0.02	0.02	0.02				

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 20X562733

PROJECT: 1895674

ATTENTION TO: Glen Merkley

SAMPLED BY:

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

Free & Total CN (Water)

DATE RECEIVED: 2020-01-10 DATE REPORTED: 2020-01-22

		SAMPLE DESCRIPTION:	FMS-HG18-07B	FMS-HG18-15B	
		SAMPLE TYPE:	Water	Water	
		DATE SAMPLED:	2020-01-10	2020-01-10	
Parameter	Unit	G/S RDL	856259	856271	
Cyanide, Free	mg/L	0.002	< 0.002	< 0.002	
Total Cyanide	mg/L	0.002	< 0.002	< 0.002	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 20X562733

PROJECT: 1895674

ATTENTION TO: Glen Merkley

SAMPLED BY:

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

Mercury Analysis in Water (Dissolved)

					J	,	/				
DATE RECEIVED: 2020-01-10								Ī	DATE REPORTI	ED: 2020-01-22	
		SAMPLE DES	CRIPTION:	FMS-HG18-02A	FMS-HG18-02B	FMS-HG18-03A	FMS-HG18-03B	FMS-HG18-04A	FMS-HG18-04B	FMS-HG18-05A	FMS-HG18-05E
		SAM	PLE TYPE:	Water	Water						
		DATE	SAMPLED:	2020-01-07	2020-01-07	2020-01-07	2020-01-07	2020-01-10	2020-01-10	2020-01-10	2020-01-10
Parameter	Unit	G/S	RDL	856220	856250	856251	856252	856253	856254	856255	856256
Dissolved Mercury	ug/L	0.26	0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016
		SAMPLE DES	CRIPTION:	FMS-HG18-06A	FMS-HG18-07A	FMS-HG18-07B	FMS-HG18-08A	FMS-HG18-08B	FMS-HG18-09A	FMS-HG18-09B	FMS-HG18-10A
		SAM	PLE TYPE:	Water	Water						
		DATE	SAMPLED:	2020-01-10	2020-01-10	2020-01-10	2020-01-07	2020-01-07	2020-01-10	2020-01-10	2020-01-07
Parameter	Unit	G/S	RDL	856257	856258	856259	856260	856261	856262	856263	856264
Dissolved Mercury	ug/L	0.26	0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016
		SAMPLE DES	CRIPTION:	FMS-HG18-10B	FMS-HG18-11A	FMS-HG18-11B	FMS-HG18-13A	FMS-HG18-13B	FMS-HG18-15A	FMS-HG18-15B	FMS-HG18-16A
		SAM	PLE TYPE:	Water	Water						
		DATE	SAMPLED:	2020-01-07	2020-01-07	2020-01-07	2020-01-07	2020-01-07	2020-01-10	2020-01-10	2020-01-07
Parameter	Unit	G/S	RDL	856265	856266	856267	856268	856269	856270	856271	856272
Dissolved Mercury	ug/L	0.26	0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016
		SAMPLE DES	CRIPTION:	FMS-HG18-16B	DUP-A	DUP-B	DUP-C				
		SAM	PLE TYPE:	Water	Water	Water	Water				
		DATE	SAMPLED:	2020-01-07	2020-01-07	2020-01-07	2020-01-10				
Parameter	Unit	G/S	RDL	856273	856274	856275	856276				
Dissolved Mercury	ug/L	0.26	0.016	<0.016	<0.016	<0.016	<0.016				

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to NS Contaminated Sites GW to SW >10m from SW body

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Analysis performed at AGAT Halifax (unless marked by *)

Certified By:

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 20X562733

PROJECT: 1895674

ATTENTION TO: Glen Merkley

SAMPLED BY:

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

Mercury Analysis in Water (Total)

				Wiercur	y Allalysis i	iii watei (it	Jiaij				
DATE RECEIVED: 2020-01-10								ı	DATE REPORTI	ED: 2020-01-22	
			CRIPTION: PLE TYPE:	FMS-HG18-02A Water	FMS-HG18-02B Water	FMS-HG18-03A Water	FMS-HG18-03B Water	FMS-HG18-04A Water	FMS-HG18-04B Water	FMS-HG18-05A Water	FMS-HG18-05B Water
		DATE	SAMPLED:	2020-01-07	2020-01-07	2020-01-07	2020-01-07	2020-01-10	2020-01-10	2020-01-10	2020-01-10
Parameter	Unit	G/S	RDL	856220	856250	856251	856252	856253	856254	856255	856256
Total Mercury	ug/L	0.26	0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016
		SAMPLE DES	CRIPTION:	FMS-HG18-06A	FMS-HG18-07A	FMS-HG18-07B	FMS-HG18-08A	FMS-HG18-08B	FMS-HG18-09A	FMS-HG18-09B	FMS-HG18-10A
		SAM	PLE TYPE:	Water							
		DATE	SAMPLED:	2020-01-10	2020-01-10	2020-01-10	2020-01-07	2020-01-07	2020-01-10	2020-01-10	2020-01-07
Parameter	Unit	G/S	RDL	856257	856258	856259	856260	856261	856262	856263	856264
Total Mercury	ug/L	0.26	0.016	<0.016	<0.016	0.026	0.021	<0.016	<0.016	<0.016	<0.016
		SAMPLE DES	CRIPTION:	FMS-HG18-10B	FMS-HG18-11A	FMS-HG18-11B	FMS-HG18-13A	FMS-HG18-13B	FMS-HG18-15A	FMS-HG18-15B	FMS-HG18-16A
		SAM	PLE TYPE:	Water							
		DATE	SAMPLED:	2020-01-07	2020-01-07	2020-01-07	2020-01-07	2020-01-07	2020-01-10	2020-01-10	2020-01-07
Parameter	Unit	G/S	RDL	856265	856266	856267	856268	856269	856270	856271	856272
Total Mercury	ug/L	0.26	0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016
		SAMPLE DES	CRIPTION:	FMS-HG18-16B	DUP-A	DUP-B	DUP-C				
		SAM	PLE TYPE:	Water	Water	Water	Water				
		DATE	SAMPLED:	2020-01-07	2020-01-07	2020-01-07	2020-01-10				
Parameter	Unit	G/S	RDL	856273	856274	856275	856276				
Total Mercury	ug/L	0.26	0.016	<0.016	<0.016	<0.016	<0.016				

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to NS Contaminated Sites GW to SW >10m from SW body

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Analysis performed at AGAT Halifax (unless marked by *)

Certified By:

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 20X562733

PROJECT: 1895674

ATTENTION TO: Glen Merkley

SAMPLED BY:

Standard Water Analysis + Dissolved Metals

DATE REPORTED: 2020-01-22 DATE RECEIVED: 2020-01-10

DATE RECEIVED. 2020-01-10							•	DATE REPORTE	_DLU_LU-U I-ZZ	
	:	SAMPLE DESCRIPTION:	FMS-HG18-02A	FMS-HG18-02B	FMS-HG18-03A	FMS-HG18-03B	FMS-HG18-04A	FMS-HG18-04B	FMS-HG18-05A	FMS-HG18-05B
		SAMPLE TYPE:	Water	Water						
		DATE SAMPLED:	2020-01-07	2020-01-07	2020-01-07	2020-01-07	2020-01-10	2020-01-10	2020-01-10	2020-01-10
Parameter	Unit	G/S RDL	856220	856250	856251	856252	856253	856254	856255	856256
рН			8.02	6.24	7.52	6.66	8.14	6.87	6.64	6.63
Reactive Silica as SiO2	mg/L	0.5	8.0	3.4	10.4	5.7	9.6	7.9	9.2	6.0
Chloride	mg/L	1	4	4	3	2	3	4	4	2
Fluoride	mg/L	0.12	<0.12	<0.12	<0.12	<0.12	0.21	<0.12	<0.12	<0.12
Sulphate	mg/L	2	14	<2	6	<2	6	3	3	4
Alkalinity	mg/L	5	63	<5	26	6	135	17	11	9
True Color	TCU	5	5	5	6	<5	8	<5	10	59
Turbidity	NTU	0.1	2.4	12.6	7.3	66.4	1.1	431	1.5	31.6
Electrical Conductivity	umho/cm	1	176	28	85	32	290	61	56	48
Nitrate + Nitrite as N	mg/L	0.05	< 0.05	< 0.05	0.11	0.23	< 0.05	< 0.05	0.43	0.58
Nitrate as N	mg/L	0.05	< 0.05	< 0.05	0.11	0.23	< 0.05	< 0.05	0.43	0.58
Nitrite as N	mg/L	0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Ammonia as N	mg/L	0.03	0.06	0.06	0.06	0.06	0.10	0.07	0.06	0.06
Total Organic Carbon	mg/L	0.5	1.2	0.6	<0.5	<0.5	1.1	<0.5	<0.5	0.7
Ortho-Phosphate as P	mg/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01
Dissolved Sodium	mg/L	- 0.1	5.3	2.7	5.9	2.9	36.5	4.9	2.7	4.3
Dissolved Potassium	mg/L	0.1	1.6	0.4	0.9	0.5	1.7	0.7	2.6	1.6
Dissolved Calcium	mg/L	0.1	23.1	0.8	7.5	1.9	22.9	4.6	3.5	2.4
Dissolved Magnesium	mg/L	0.1	1.9	0.4	0.5	0.3	2.8	1.1	0.7	0.4
Bicarb. Alkalinity (as CaCO3)	mg/L	5	63	<5	26	6	135	17	11	9
Carb. Alkalinity (as CaCO3)	mg/L	10	<10	<10	<10	<10	<10	<10	<10	<10
Hydroxide	mg/L	5	<5	<5	<5	<5	<5	<5	<5	<5
Calculated TDS	mg/L	1	88	8	40	12	154	29	25	23
Hardness	mg/L		65.5	3.6	20.8	6.0	68.7	16.0	11.6	7.6
Langelier Index (@20C)	NA		-0.40	-4.66	-1.74	-3.78	0.02	-2.77	-3.30	-3.56
Langelier Index (@ 4C)	NA		-0.72	-4.98	-2.06	-4.10	-0.30	-3.09	-3.62	-3.88
Saturation pH (@ 20C)	NA		8.42	10.9	9.26	10.4	8.12	9.64	9.94	10.2
Saturation pH (@ 4C)	NA		8.74	11.2	9.58	10.8	8.44	9.96	10.3	10.5
Anion Sum	me/L		1.66	0.11	0.74	0.19	2.91	0.52	0.43	0.36
Cation sum	me/L		1.59	0.21	0.70	0.27	3.02	0.57	0.42	0.39

Certified By:

Marta Manka

11 Morris Drive, Unit 122

Dartmouth, Nova Scotia CANADA B3B 1M2

http://www.agatlabs.com

TEL (902)468-8718 FAX (902)468-8924

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 20X562733

PROJECT: 1895674

ATTENTION TO: Glen Merkley

SAMPLED BY:

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

Standard Water Analysis + Dissolved Metals

DATE RECEIVED: 2020-01-10 DATE REPORTED: 2020-01-22

DATE RECEIVED: 2020-01-10								L	JA IE KEPUK II	ED: 2020-01-22	
		SAMPLE DESC	CRIPTION:	FMS-HG18-02A	FMS-HG18-02B	FMS-HG18-03A	FMS-HG18-03B	FMS-HG18-04A	FMS-HG18-04B	FMS-HG18-05A	FMS-HG18-05E
		_	PLE TYPE:	Water	Water	Water	Water	Water	Water	Water	Water
			SAMPLED:	2020-01-07	2020-01-07	2020-01-07	2020-01-07	2020-01-10	2020-01-10	2020-01-10	2020-01-10
Parameter	Unit	G/S	RDL	856220	856250	856251	856252	856253	856254	856255	856256
% Difference/ Ion Balance	%			2.3	30.8	2.6	15.8	1.9	5.4	0.5	3.5
Dissolved Aluminum	ug/L	50	5	<5	60	<5	<5	<5	<5	6	9
Dissolved Antimony	ug/L	200	2	<2	<2	<2	<2	<2	<2	<2	<2
Dissolved Arsenic	ug/L	50	2	11	<2	10	<2	29	<2	12	5
Dissolved Barium	ug/L	10000	5	7	10	<5	<5	7	13	8	<5
Dissolved Beryllium	ug/L	53	2	<2	<2	<2	<2	<2	<2	<2	<2
Dissolved Bismuth	ug/L		2	<2	<2	<2	<2	<2	<2	<2	<2
Dissolved Boron	ug/L	12000	5	12	<5	<5	<5	14	<5	5	<5
Dissolved Cadmium	ug/L	0.1	0.017	< 0.017	<0.017	<0.017	< 0.017	< 0.017	0.083	< 0.017	0.019
Dissolved Chromium	ug/L	-	1	1	<1	<1	<1	2	<1	<1	<1
Dissolved Cobalt	ug/L	100	1	<1	<1	<1	<1	<1	5	<1	2
Dissolved Copper	ug/L	20	1	24	6	<1	4	<1	<1	4	5
Dissolved Iron	ug/L	3000	50	<50	<50	<50	<50	<50	<50	<50	<50
Dissolved Lead	ug/L	10	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dissolved Manganese	ug/L	8200	2	19	32	18	44	280	417	3	25
Dissolved Molybdenum	ug/L	730	2	<2	<2	<2	<2	8	<2	<2	<2
Dissolved Nickel	ug/L	250	2	<2	<2	<2	10	<2	9	<2	6
Dissolved Phosphorus	mg/L		0.02	<0.02	<0.02	< 0.02	< 0.02	< 0.02	<0.02	<0.02	< 0.02
Dissolved Selenium	ug/L	10	1	<1	<1	<1	<1	<1	<1	<1	<1
Dissolved Silver	ug/L	1	0.1	0.6	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1
Dissolved Strontium	ug/L	210000	5	174	9	43	13	109	17	21	13
Dissolved Thallium	ug/L	8	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dissolved Tin	ug/L	-	2	<2	<2	<2	<2	<2	<2	<2	<2
Dissolved Titanium	ug/L		2	<2	<2	<2	<2	<2	<2	<2	<2
Dissolved Uranium	ug/L	3000	0.1	2.1	<0.1	0.3	<0.1	7.1	<0.1	<0.1	<0.1
Dissolved Vanadium	ug/L	60	2	<2	<2	<2	<2	<2	<2	<2	<2
Dissolved Zinc	ug/L	300	5	<5	<5	<5	14	<5	92	<5	8

Certified By:

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 20X562733

PROJECT: 1895674

ATTENTION TO: Glen Merkley

SAMPLED BY:

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

Standard Water Analysis + Dissolved Metals

DATE RECEIVED: 2020-01-10 DATE REPORTED: 2020-01-22

DATE RECEIVED: 2020 01 10							•			
	S	SAMPLE DESCRIPTION:	FMS-HG18-06A	FMS-HG18-07A	FMS-HG18-07B	FMS-HG18-08A	FMS-HG18-08B	FMS-HG18-09A	FMS-HG18-09B	FMS-HG18-10A
		SAMPLE TYPE:	Water							
		DATE SAMPLED:	2020-01-10	2020-01-10	2020-01-10	2020-01-07	2020-01-07	2020-01-10	2020-01-10	2020-01-07
Parameter	Unit	G/S RDL	856257	856258	856259	856260	856261	856262	856263	856264
pH			6.66	7.97	6.38	7.59	6.35	7.54	6.62	7.96
Reactive Silica as SiO2	mg/L	0.5	9.6	15.4	5.4	9.2	3.5	15.0	10.5	11.8
Chloride	mg/L	1	11	5	4	3	3	5	4	4
Fluoride	mg/L	0.12	<0.12	0.15	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12
Sulphate	mg/L	2	17	3	2	4	<2	3	2	12
Alkalinity	mg/L	5	15	91	9	48	5	70	22	66
True Color	TCU	5	9	<5	252	<5	9	<5	11	6
Turbidity	NTU	0.1	12.3	2.0	15.9	14.7	3.0	3.3	11.5	5.1
Electrical Conductivity	umho/cm	1	131	205	47	120	31	166	67	181
Nitrate + Nitrite as N	mg/L	0.05	0.13	<0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05
Nitrate as N	mg/L	0.05	0.13	<0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Nitrite as N	mg/L	0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Ammonia as N	mg/L	0.03	0.07	0.06	0.15	0.06	0.06	0.06	0.05	0.07
Total Organic Carbon	mg/L	0.5	1.0	1.9	20.0	0.7	1.7	3.0	1.1	<0.5
Ortho-Phosphate as P	mg/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Dissolved Sodium	mg/L	- 0.1	6.0	4.8	4.0	3.8	2.0	4.6	4.6	6.0
Dissolved Potassium	mg/L	0.1	1.6	1.8	0.5	0.6	0.5	1.3	1.0	1.2
Dissolved Calcium	mg/L	0.1	14.8	30.4	2.0	15.0	2.2	22.1	4.3	28.0
Dissolved Magnesium	mg/L	0.1	0.9	1.7	0.5	0.8	0.4	0.8	0.7	1.6
Bicarb. Alkalinity (as CaCO3)	mg/L	5	15	91	9	48	5	70	22	66
Carb. Alkalinity (as CaCO3)	mg/L	10	<10	<10	<10	<10	<10	<10	<10	<10
Hydroxide	mg/L	5	<5	<5	<5	<5	<5	<5	<5	<5
Calculated TDS	mg/L	1	62	102	27	56	11	79	31	93
Hardness	mg/L		40.7	82.9	7.1	40.7	7.1	58.5	13.6	76.5
Langelier Index (@20C)	NA		-2.56	-0.18	-3.90	-1.11	-4.10	-0.85	-2.94	-0.36
Langelier Index (@ 4C)	NA		-2.88	-0.50	-4.22	-1.43	-4.42	-1.17	-3.26	-0.68
Saturation pH (@ 20C)	NA		9.22	8.15	10.3	8.70	10.5	8.39	9.56	8.32
Saturation pH (@ 4C)	NA		9.54	8.47	10.6	9.02	10.8	8.71	9.88	8.64
Anion Sum	me/L		0.97	2.02	0.33	1.13	0.18	1.60	0.59	1.68
Cation sum	me/L		1.16	1.94	0.69	1.00	0.26	1.42	0.55	1.83

Certified By:

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 20X562733

PROJECT: 1895674

ATTENTION TO: Glen Merkley

SAMPLED BY:

Standard Water Analysis + Dissolved Metals

DATE RECEIVED: 2020-01-10 DATE REPORTED: 2020-01-22

DATE RECEIVED. 2020-01-10									DATE REPORT	_D. 2020-01-22	
			RIPTION: PLE TYPE:	FMS-HG18-06A Water	FMS-HG18-07A Water	FMS-HG18-07B Water	FMS-HG18-08A Water	FMS-HG18-08B Water	FMS-HG18-09A Water	FMS-HG18-09B Water	FMS-HG18-10A Water
		_	AMPLED:	vvater 2020-01-10	2020-01-10	2020-01-10	2020-01-07	2020-01-07	2020-01-10	2020-01-10	2020-01-07
Parameter	Unit	G/S	RDL	856257	856258	856259	856260	856261	856262	856263	856264
% Difference/ Ion Balance	%			8.8	2.1	34.6	6.0	16.7	6.1	3.6	4.3
Dissolved Aluminum	ug/L	50	5	12	<5	520	<5	80	<5	<5	8
Dissolved Antimony	ug/L	200	2	<2	<2	<2	<2	<2	<2	<2	<2
Dissolved Arsenic	ug/L	50	2	18	16	13	2	<2	<2	<2	<2
Dissolved Barium	ug/L	10000	5	21	8	7	<5	7	12	10	6
Dissolved Beryllium	ug/L	53	2	<2	<2	<2	<2	<2	<2	<2	<2
Dissolved Bismuth	ug/L		2	<2	<2	<2	<2	<2	<2	<2	<2
Dissolved Boron	ug/L	12000	5	6	10	<5	6	<5	5	<5	18
Dissolved Cadmium	ug/L	0.1	0.017	0.084	<0.017	<0.017	<0.017	0.027	<0.017	0.030	< 0.017
Dissolved Chromium	ug/L	-	1	<1	2	1	<1	<1	1	1	1
Dissolved Cobalt	ug/L	100	1	7	<1	3	<1	<1	<1	1	<1
Dissolved Copper	ug/L	20	1	<1	<1	<1	<1	<1	<1	5	2
Dissolved Iron	ug/L	3000	50	757	<50	7730	<50	<50	<50	1060	<50
Dissolved Lead	ug/L	10	0.5	0.7	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dissolved Manganese	ug/L	8200	2	303	645	408	3	76	332	346	95
Dissolved Molybdenum	ug/L	730	2	<2	<2	<2	<2	<2	<2	<2	<2
Dissolved Nickel	ug/L	250	2	9	<2	3	<2	3	<2	4	<2
Dissolved Phosphorus	mg/L		0.02	<0.02	<0.02	<0.02	< 0.02	< 0.02	<0.02	<0.02	< 0.02
Dissolved Selenium	ug/L	10	1	<1	<1	<1	<1	<1	<1	<1	<1
Dissolved Silver	ug/L	1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dissolved Strontium	ug/L	210000	5	42	155	9	50	11	81	39	105
Dissolved Thallium	ug/L	8	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dissolved Tin	ug/L	-	2	<2	<2	<2	<2	<2	<2	<2	<2
Dissolved Titanium	ug/L		2	<2	<2	5	<2	<2	<2	<2	<2
Dissolved Uranium	ug/L	3000	0.1	<0.1	0.5	0.1	0.3	<0.1	0.3	<0.1	0.5
Dissolved Vanadium	ug/L	60	2	<2	<2	2	<2	<2	<2	<2	<2
Dissolved Zinc	ug/L	300	5	6	<5	<5	<5	<5	<5	7	<5

Certified By:

Marta Manta

11 Morris Drive, Unit 122

Dartmouth, Nova Scotia CANADA B3B 1M2

http://www.agatlabs.com

TEL (902)468-8718 FAX (902)468-8924

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 20X562733

PROJECT: 1895674

ATTENTION TO: Glen Merkley

SAMPLED BY:

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

Standard Water Analysis + Dissolved Metals

DATE RECEIVED: 2020-01-10 DATE REPORTED: 2020-01-22

DATE RECEIVED. 2020-01-10								DATE REPORT	LD. 2020-01-22	
		SAMPLE DESCRIPTION:	FMS-HG18-10B	FMS-HG18-11A	FMS-HG18-11B	FMS-HG18-13A	FMS-HG18-13B	FMS-HG18-15A	FMS-HG18-15B	FMS-HG18-16A
		SAMPLE TYPE:	Water	Water						
		DATE SAMPLED:	2020-01-07	2020-01-07	2020-01-07	2020-01-07	2020-01-07	2020-01-10	2020-01-10	2020-01-07
Parameter	Unit	G/S RDL	856265	856266	856267	856268	856269	856270	856271	856272
рН			6.61	6.77	6.18	6.72	5.98	7.98	7.58	7.88
Reactive Silica as SiO2	mg/L	0.5	3.9	7.7	3.6	7.6	3.6	9.8	9.0	18.4
Chloride	mg/L	1	4	5	6	3	3	3	3	4
Fluoride	mg/L	0.12	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12	<0.12	0.16
Sulphate	mg/L	2	3	4	7	2	2	12	8	10
Alkalinity	mg/L	5	6	39	28	10	<5	75	47	54
True Color	TCU	5	10	12	<5	<5	5	<5	8	6
Turbidity	NTU	0.1	5.6	10.7	8.9	2.3	6.7	1.3	133	3.1
Electrical Conductivity	umho/cm	1	34	122	121	43	25	196	131	151
Nitrate + Nitrite as N	mg/L	0.05	0.07	0.84	1.47	0.12	0.06	< 0.05	< 0.05	< 0.05
Nitrate as N	mg/L	0.05	0.07	0.66	1.47	0.12	0.06	< 0.05	< 0.05	< 0.05
Nitrite as N	mg/L	0.05	< 0.05	0.18	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Ammonia as N	mg/L	0.03	0.06	0.04	0.11	0.06	0.06	0.06	0.07	0.06
Total Organic Carbon	mg/L	0.5	<0.5	1.8	4.8	0.7	0.5	1.8	1.8	2.1
Ortho-Phosphate as P	mg/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Dissolved Sodium	mg/L	- 0.1	2.6	3.9	4.4	3.1	2.2	6.1	5.0	5.2
Dissolved Potassium	mg/L	0.1	0.2	0.8	0.3	0.4	0.3	0.9	0.8	1.3
Dissolved Calcium	mg/L	0.1	2.7	13.7	1.9	3.2	1.1	31.8	20.0	20.9
Dissolved Magnesium	mg/L	0.1	0.4	1.1	1.7	0.5	0.4	1.7	1.0	1.8
Bicarb. Alkalinity (as CaCO3)	mg/L	5	6	39	28	10	<5	75	47	54
Carb. Alkalinity (as CaCO3)	mg/L	10	<10	<10	<10	<10	<10	<10	<10	<10
Hydroxide	mg/L	5	<5	<5	<5	<5	<5	<5	<5	<5
Calculated TDS	mg/L	1	17	58	61	19	10	101	66	76
Hardness	mg/L		8.4	38.7	11.7	10.0	4.4	86.4	54.1	59.6
Langelier Index (@20C)	NA		-3.69	-2.07	-3.66	-3.29	-4.78	-0.23	-1.02	-0.64
Langelier Index (@ 4C)	NA		-4.01	-2.39	-3.98	-3.61	-5.10	-0.55	-1.34	-0.96
Saturation pH (@ 20C)	NA		10.3	8.84	9.84	10.0	10.8	8.21	8.60	8.52
Saturation pH (@ 4C)	NA		10.6	9.16	10.2	10.3	11.1	8.53	8.92	8.84
Anion Sum	me/L		0.30	1.06	0.98	0.33	0.13	1.83	1.19	1.40
Cation sum	me/L		0.29	1.04	1.05	0.35	0.21	2.03	1.34	1.46

Certified By:

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 20X562733

PROJECT: 1895674

ATTENTION TO: Glen Merkley

SAMPLED BY:

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

Standard Water Analysis + Dissolved Metals

DATE RECEIVED: 2020-01-10 DATE REPORTED: 2020-01-22

DATE RECEIVED: 2020-01-10								L	DATE REPORT	ED: 2020-01-22	
			_				FMS-HG18-13A				
		_	LE TYPE:	Water	Water	Water	Water	Water	Water	Water	Water
			AMPLED:	2020-01-07	2020-01-07	2020-01-07	2020-01-07	2020-01-07	2020-01-10	2020-01-10	2020-01-07
Parameter	Unit	G/S	RDL	856265	856266	856267	856268	856269	856270	856271	856272
% Difference/ Ion Balance	%			0.9	1.1	3.6	2.3	23.7	5.0	5.7	2.1
Dissolved Aluminum	ug/L	50	5	37	<5	256	<5	128	5	<5	<5
Dissolved Antimony	ug/L	200	2	<2	<2	<2	<2	<2	<2	<2	<2
Dissolved Arsenic	ug/L	50	2	<2	<2	<2	<2	<2	6	<2	<2
Dissolved Barium	ug/L	10000	5	<5	<5	14	<5	7	<5	7	<5
Dissolved Beryllium	ug/L	53	2	<2	<2	<2	<2	<2	<2	<2	<2
Dissolved Bismuth	ug/L		2	<2	<2	<2	<2	<2	<2	<2	<2
Dissolved Boron	ug/L	12000	5	<5	5	6	<5	6	7	5	7
Dissolved Cadmium	ug/L	0.1	0.017	< 0.017	0.072	0.199	< 0.017	<0.017	< 0.017	< 0.017	< 0.017
Dissolved Chromium	ug/L	-	1	<1	1	2	<1	<1	1	1	1
Dissolved Cobalt	ug/L	100	1	<1	<1	21	<1	<1	<1	<1	<1
Dissolved Copper	ug/L	20	1	1	<1	3	<1	<1	<1	<1	<1
Dissolved Iron	ug/L	3000	50	<50	<50	<50	<50	<50	<50	<50	<50
Dissolved Lead	ug/L	10	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dissolved Manganese	ug/L	8200	2	10	2030	16000	5	31	167	308	156
Dissolved Molybdenum	ug/L	730	2	<2	<2	<2	<2	<2	<2	<2	<2
Dissolved Nickel	ug/L	250	2	<2	<2	3	<2	<2	<2	2	<2
Dissolved Phosphorus	mg/L		0.02	<0.02	<0.02	<0.02	< 0.02	< 0.02	<0.02	<0.02	<0.02
Dissolved Selenium	ug/L	10	1	<1	<1	<1	<1	<1	<1	<1	<1
Dissolved Silver	ug/L	1	0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1
Dissolved Strontium	ug/L	210000	5	10	62	14	26	13	79	40	76
Dissolved Thallium	ug/L	8	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dissolved Tin	ug/L	-	2	<2	<2	<2	<2	<2	<2	<2	<2
Dissolved Titanium	ug/L		2	<2	<2	<2	<2	<2	<2	<2	<2
Dissolved Uranium	ug/L	3000	0.1	<0.1	0.3	<0.1	<0.1	<0.1	0.8	0.2	0.2
Dissolved Vanadium	ug/L	60	2	<2	<2	<2	<2	<2	<2	<2	<2
Dissolved Zinc	ug/L	300	5	<5	<5	<5	<5	<5	<5	<5	<5

Certified By:

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 20X562733

PROJECT: 1895674

ATTENTION TO: Glen Merkley

SAMPLED BY:

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

Standard Water Analysis + Dissolved Metals

			andara wat	or Amaryon	5 1 D1000110	od Motalo	
DATE RECEIVED: 2020-01-10							DATE REPORTED: 2020-01-22
	SA	MPLE DESCRIPTION:	FMS-HG18-16B	DUP-A	DUP-B	DUP-C	
		SAMPLE TYPE:	Water	Water	Water	Water	
		DATE SAMPLED:	2020-01-07	2020-01-07	2020-01-07	2020-01-10	
Parameter	Unit	G/S RDL	856273	856274	856275	856276	
pH			6.34	7.92	6.29	6.73	
Reactive Silica as SiO2	mg/L	0.5	4.2	8.6	3.5	8.5	
Chloride	mg/L	1	4	4	4	11	
Fluoride	mg/L	0.12	<0.12	0.12	<0.12	<0.12	
Sulphate	mg/L	2	2	13	2	18	
Alkalinity	mg/L	5	<5	64	<5	15	
True Color	TCU	5	7	<5	<5	5	
Turbidity	NTU	0.1	4.4	2.3	15.6	11.7	
Electrical Conductivity	umho/cm	1	31	178	28	134	
Nitrate + Nitrite as N	mg/L	0.05	0.20	< 0.05	< 0.05	0.13	
Nitrate as N	mg/L	0.05	0.20	< 0.05	< 0.05	0.13	
Nitrite as N	mg/L	0.05	<0.05	< 0.05	< 0.05	<0.05	
Ammonia as N	mg/L	0.03	0.10	0.06	0.08	0.07	
Total Organic Carbon	mg/L	0.5	1.0	2.2	0.9	1.3	
Ortho-Phosphate as P	mg/L	0.01	<0.01	<0.01	<0.01	<0.01	
Dissolved Sodium	mg/L	- 0.1	3.4	5.9	2.8	6.2	
Dissolved Potassium	mg/L	0.1	0.6	1.6	0.4	1.6	
Dissolved Calcium	mg/L	0.1	1.0	24.7	0.8	14.1	
Dissolved Magnesium	mg/L	0.1	0.5	2.1	0.4	0.9	
Bicarb. Alkalinity (as CaCO3)	mg/L	5	<5	64	<5	15	
Carb. Alkalinity (as CaCO3)	mg/L	10	<10	<10	<10	<10	
Hydroxide	mg/L	5	<5	<5	<5	<5	
Calculated TDS	mg/L	1	13	90	11	62	
Hardness	mg/L		4.6	70.3	3.6	38.9	
Langelier Index (@20C)	NA		-4.47	-0.46	-4.61	-2.51	
Langelier Index (@ 4C)	NA		-4.79	-0.78	-4.93	-2.83	
Saturation pH (@ 20C)	NA		10.8	8.38	10.9	9.24	
Saturation pH (@ 4C)	NA		11.1	8.70	11.2	9.56	
Anion Sum	me/L		0.17	1.66	0.15	0.99	
Cation sum	me/L		0.30	1.71	0.22	1.13	

Certified By:

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 20X562733

PROJECT: 1895674

ATTENTION TO: Glen Merkley

SAMPLED BY:

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

Standard Water Analysis + Dissolved Metals

DATE RECEIVED: 2020-01-10								DATE REPORTED: 2020-01-22
		SAME	CRIPTION: PLE TYPE: SAMPLED:	FMS-HG18-16B Water 2020-01-07	DUP-A Water 2020-01-07	DUP-B Water 2020-01-07	DUP-C Water 2020-01-10	
Parameter	Unit	G/S	RDL	856273	856274	856275	856276	
% Difference/ Ion Balance	%			27.4	1.4	17.6	6.3	
Dissolved Aluminum	ug/L	50	5	275	5	71	9	
Dissolved Antimony	ug/L	200	2	<2	<2	<2	<2	
Dissolved Arsenic	ug/L	50	2	<2	12	<2	12	
Dissolved Barium	ug/L	10000	5	15	8	11	24	
Dissolved Beryllium	ug/L	53	2	<2	<2	<2	<2	
Dissolved Bismuth	ug/L		2	<2	<2	<2	<2	
Dissolved Boron	ug/L	12000	5	6	12	<5	7	
Dissolved Cadmium	ug/L	0.1	0.017	0.029	<0.017	<0.017	0.093	
Dissolved Chromium	ug/L	-	1	<1	1	<1	<1	
Dissolved Cobalt	ug/L	100	1	1	<1	<1	8	
Dissolved Copper	ug/L	20	1	6	25	6	<1	
Dissolved Iron	ug/L	3000	50	<50	<50	<50	560	
Dissolved Lead	ug/L	10	0.5	<0.5	<0.5	<0.5	<0.5	
Dissolved Manganese	ug/L	8200	2	86	21	34	305	
Dissolved Molybdenum	ug/L	730	2	<2	<2	<2	<2	
Dissolved Nickel	ug/L	250	2	2	<2	<2	10	
Dissolved Phosphorus	mg/L		0.02	<0.02	<0.02	<0.02	<0.02	
Dissolved Selenium	ug/L	10	1	<1	<1	<1	<1	
Dissolved Silver	ug/L	1	0.1	0.3	<0.1	<0.1	<0.1	
Dissolved Strontium	ug/L	210000	5	15	186	10	49	
Dissolved Thallium	ug/L	8	0.1	<0.1	<0.1	<0.1	<0.1	
Dissolved Tin	ug/L	-	2	<2	<2	<2	<2	
Dissolved Titanium	ug/L		2	<2	<2	<2	<2	
Dissolved Uranium	ug/L	3000	0.1	<0.1	2.3	<0.1	<0.1	
Dissolved Vanadium	ug/L	60	2	<2	<2	<2	<2	
Dissolved Zinc	ug/L	300	5	6	<5	<5	7	

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 20X562733

PROJECT: 1895674

ATTENTION TO: Glen Merkley

SAMPLED BY:

Standard Water Analysis + Dissolved Metals

DATE RECEIVED: 2020-01-10 DATE REPORTED: 2020-01-22

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to NS Contaminated Sites GW to SW >10m from SW body Comments:

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

856220 Metals analysis completed on a filtered sample. 856250-856252 Metals analysis completed on a filtered sample.

CLIENT NAME: GOLDER ASSOCIATES

SAMPLING SITE:

The cation and anion sums are at, or below, 1 me/L, therefore the acceptable criteria is a difference of less than 0.3me/L.

856253 Metals analysis completed on a filtered sample. 856254-856256 Metals analysis completed on a filtered sample.

The cation and anion sums are at, or below, 1 me/L, therefore the acceptable criteria is a difference of less than 0.3me/L.

856257-856258 Metals analysis completed on a filtered sample. 856259 Metals analysis completed on a filtered sample.

Ion balance is high due to high concentration of iron.

856260 Metals analysis completed on a filtered sample. 856261 Metals analysis completed on a filtered sample.

The cation and anion sums are at, or below, 1 me/L, therefore the acceptable criteria is a difference of less than 0.3me/L.

856262 Metals analysis completed on a filtered sample. 856263 Metals analysis completed on a filtered sample.

The cation and anion sums are at, or below, 1 me/L, therefore the acceptable criteria is a difference of less than 0.3me/L.

856264 Metals analysis completed on a filtered sample. 856265 Metals analysis completed on a filtered sample.

The cation and anion sums are at, or below, 1 me/L, therefore the acceptable criteria is a difference of less than 0.3me/L.

856266-856267 Metals analysis completed on a filtered sample. 856268-856269 Metals analysis completed on a filtered sample.

The cation and anion sums are at, or below, 1 me/L, therefore the acceptable criteria is a difference of less than 0.3me/L.

856270-856272 Metals analysis completed on a filtered sample. 856273 Metals analysis completed on a filtered sample.

The cation and anion sums are at, or below, 1 me/L, therefore the acceptable criteria is a difference of less than 0.3me/L.

856274 Metals analysis completed on a filtered sample. 856275 Metals analysis completed on a filtered sample.

The cation and anion sums are at, or below, 1 me/L, therefore the acceptable criteria is a difference of less than 0.3me/L.

856276 Metals analysis completed on a filtered sample.

Analysis performed at AGAT Halifax (unless marked by *)

Certified By: Marta Manka

11 Morris Drive, Unit 122

Dartmouth, Nova Scotia

http://www.agatlabs.com

CANADA B3B 1M2

TEL (902)468-8718 FAX (902)468-8924

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 20X562733

PROJECT: 1895674

ATTENTION TO: Glen Merkley

SAMPLED BY:

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

Various Inorganics (Water)

DATE RECEIVED: 2020-01-10 DATE REPORTED: 2020-01-22

		SAMPLE DES	SAMPLE DESCRIPTION: FI	FMS-HG18-02A	FMS-HG18-02B	FMS-HG18-03A	FMS-HG18-03B	FMS-HG18-04A	FMS-HG18-04B	FMS-HG18-05A	FMS-HG18-05B
		SAM	PLE TYPE:	Water							
		DATE	DATE SAMPLED:		2020-01-07	2020-01-07	2020-01-07	2020-01-10	2020-01-10	2020-01-10	2020-01-10
Parameter	Unit	G/S	RDL	856220	856250	856251	856252	856253	856254	856255	856256
Chemical Oxygen Demand	mg/L		3	5	<3	<3	4	<3	<3	6	<3
Dissolved Organic Carbon	mg/L		0.5	1.0	0.5	<0.5	<0.5	<0.5	<0.5	1.1	1.2
Total Phosphorous as P	mg/L		0.03	0.11	< 0.03	0.04	< 0.03	< 0.03	< 0.03	< 0.03	0.04
Total Suspended Solids	mg/L		5	<5	17	6	130	<5	239	<5	58

	SAMPLE DESCRIPTION:	FMS-HG18-06A	FMS-HG18-07A	FMS-HG18-07B	FMS-HG18-08A	FMS-HG18-08B	FMS-HG18-09A	FMS-HG18-09B	FMS-HG18-10A
	SAMPLE TYPE:	Water	Water	Water	Water	Water	Water	Water	Water
	DATE SAMPLED:	2020-01-10	2020-01-10	2020-01-10	2020-01-07	2020-01-07	2020-01-10	2020-01-10	2020-01-07
Parameter Unit	G/S RDL	856257	856258	856259	856260	856261	856262	856263	856264
Chemical Oxygen Demand mg/L	3	3	3	50	<3	4	<3	<3	4
Dissolved Organic Carbon mg/L	0.5	1.2	1.4	14.7	1.3	1.8	1.8	1.5	8.0
Total Phosphorous as P mg/L	0.03	< 0.03	< 0.03	0.06	< 0.03	< 0.03	< 0.03	0.04	< 0.03
Total Suspended Solids mg/L	5	5	<5	13	33	5	<5	6	5
Chemical Oxygen Demand mg/L Dissolved Organic Carbon mg/L Total Phosphorous as P mg/L	G/S RDL 3 0.5 0.03	856257 3 1.2	856258 3 1.4 <0.03	856259 50 14.7 0.06	856260 <3 1.3 <0.03	856261 4 1.8	856262 <3 1.8 <0.03	856263 <3 1.5	85

		SAM	CRIPTION: PLE TYPE: SAMPLED:	FMS-HG18-10B Water 2020-01-07	FMS-HG18-11A Water 2020-01-07	FMS-HG18-11B Water 2020-01-07	FMS-HG18-13A Water 2020-01-07	FMS-HG18-13B Water 2020-01-07	FMS-HG18-15A Water 2020-01-10	FMS-HG18-15B Water 2020-01-10	FMS-HG18-16A Water 2020-01-07
Parameter	Unit	G/S	RDL	856265	856266	856267	856268	856269	856270	856271	856272
Chemical Oxygen Demand	mg/L		3	<3	6	7	<3	<3	<3	<3	<3
Dissolved Organic Carbon	mg/L		0.5	0.6	1.8	3.4	0.9	0.5	1.2	1.4	1.9
Total Phosphorous as P	mg/L		0.03	0.08	< 0.03	0.03	< 0.03	< 0.03	< 0.03	<0.03	<0.03
Total Suspended Solids	mg/L		5	16	26	<5	<5	13	<5	170	5

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 20X562733

PROJECT: 1895674

ATTENTION TO: Glen Merkley

SAMPLED BY:

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

Various Inorganics (Water)

				· · · · ·	ouo iiioi gui	moo (mator)	<u> </u>	
DATE RECEIVED: 2020-01-10								DATE REPORTED: 2020-01-22
		SAMPLE DES	CRIPTION:	FMS-HG18-16B	DUP-A	DUP-B	DUP-C	
		SAM	PLE TYPE:	Water	Water	Water	Water	
		DATE	SAMPLED:	2020-01-07	2020-01-07	2020-01-07	2020-01-10	
Parameter	Unit	G/S	RDL	856273	856274	856275	856276	
Chemical Oxygen Demand	mg/L		3	<3	4	4	<3	
Dissolved Organic Carbon	mg/L		0.5	1.0	2.5	1.0	1.0	
Total Phosphorous as P	mg/L		0.03	< 0.03	0.03	0.04	0.07	
Total Suspended Solids	mg/L		5	7	<5	20	5	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Analysis performed at AGAT Halifax (unless marked by *)

CLIENT NAME: GOLDER ASSOCIATES

SAMPLING SITE:

Certified By:

Guideline Violation

AGAT WORK ORDER: 20X562733

PROJECT: 1895674

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES ATTENTION TO: Glen Merkley

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
856220	FMS-HG18-02A	NS- ContSiteGW_SW>10m	Standard Water Analysis + Dissolved Metals	Dissolved Copper	ug/L	20	24
856250	FMS-HG18-02B	NS- ContSiteGW_SW>10m	Standard Water Analysis + Dissolved Metals	Dissolved Aluminum	ug/L	50	60
856259	FMS-HG18-07B	NS- ContSiteGW_SW>10m	Standard Water Analysis + Dissolved Metals	Dissolved Aluminum	ug/L	50	520
856259	FMS-HG18-07B	NS- ContSiteGW_SW>10m	Standard Water Analysis + Dissolved Metals	Dissolved Iron	ug/L	3000	7730
856261	FMS-HG18-08B	NS- ContSiteGW_SW>10m	Standard Water Analysis + Dissolved Metals	Dissolved Aluminum	ug/L	50	80
856267	FMS-HG18-11B	NS- ContSiteGW_SW>10m	Standard Water Analysis + Dissolved Metals	Dissolved Aluminum	ug/L	50	256
856267	FMS-HG18-11B	NS- ContSiteGW_SW>10m	Standard Water Analysis + Dissolved Metals	Dissolved Cadmium	ug/L	0.1	0.199
856267	FMS-HG18-11B	NS- ContSiteGW_SW>10m	Standard Water Analysis + Dissolved Metals	Dissolved Manganese	ug/L	8200	16000
856269	FMS-HG18-13B	NS- ContSiteGW_SW>10m	Standard Water Analysis + Dissolved Metals	Dissolved Aluminum	ug/L	50	128
856273	FMS-HG18-16B	NS- ContSiteGW_SW>10m	Standard Water Analysis + Dissolved Metals	Dissolved Aluminum	ug/L	50	275
856274	DUP-A	NS- ContSiteGW_SW>10m	Standard Water Analysis + Dissolved Metals	Dissolved Copper	ug/L	20	25
856275	DUP-B	NS- ContSiteGW_SW>10m	Standard Water Analysis + Dissolved Metals	Dissolved Aluminum	ug/L	50	71

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES

AGAT WORK ORDER: 20X562733 PROJECT: 1895674 **ATTENTION TO: Glen Merkley**

SAMPLING SITE: SAMPLED BY:

OAIIII EIITO OITE.							•	<i></i>		• •					
			Trac	e Or	ganio	s An	alys	is							
RPT Date: Jan 22, 2020				UPLICATI	=		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Lie	ptable nits	Recovery	Lin	ptable nits
Mantia BBCA Tion 4 Under contra		ld	·				Value	Lower	Upper		l	Upper		1	Upper
Atlantic RBCA Tier 1 Hydrocar	bons in Wat	er (Versior	າ 3.1)												
Benzene	1	856220	< 0.001	< 0.001	NA	< 0.001	97%	70%	130%	111%	70%	130%			
Toluene	1	856220	< 0.001	< 0.001	NA	< 0.001	94%	70%	130%	102%	70%	130%			
Ethylbenzene	1	856220	< 0.001	< 0.001	NA	< 0.001	92%	70%	130%	101%	70%	130%			
Xylene (Total)	1	856220	< 0.002	< 0.002	NA	< 0.002	93%	70%	130%	100%	70%	130%			
C6-C10 (less BTEX)	1	856220	< 0.01	< 0.01	NA	< 0.01	107%	70%	130%	128%	70%	130%	130%	70%	130%
>C10-C16 Hydrocarbons	1	TW	1.25	1.08	14.6%	< 0.05	101%	70%	130%	102%	70%	130%	104%	70%	130%
>C16-C21 Hydrocarbons	1	TW	3.80	3.33	13.2%	< 0.10	82%	70%	130%	102%	70%	130%	104%	70%	130%
>C21-C32 Hydrocarbons	1	TW	2.14	1.80	17.3%	< 0.1	94%	70%	130%	102%	70%	130%	104%	70%	130%

Comments: If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution. VPH matrix spike performed on a different sample than the duplicate.

If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

Atlantic RBCA Tier 1 Hydrocarbons in Water (Version 3.1)

		•	•												
Benzene	1	859169	< 0.001	< 0.001	NA	< 0.001	82%	70%	130%	96%	70%	130%			
Toluene	1	859169	< 0.001	< 0.001	NA	< 0.001	79%	70%	130%	86%	70%	130%			
Ethylbenzene	1	859169	< 0.001	< 0.001	NA	< 0.001	78%	70%	130%	85%	70%	130%			
Xylene (Total)	1	859169	< 0.002	< 0.002	NA	< 0.002	80%	70%	130%	86%	70%	130%			
C6-C10 (less BTEX)	1	859169	0.25	0.20	22.2%	< 0.01	101%	70%	130%	120%	70%	130%	127%	70%	130%

Comments: If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution. VPH matrix spike performed on a different sample than

If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

Atlantic RBCA Tier 1 Hydrocarbons in Water (Version 3.1)

>C10-C16 Hydrocarbons	1	TW	1.02	1.05	2.9%	< 0.05	102%	70%	130%	103%	70%	130%	98%	70%	130%
>C16-C21 Hydrocarbons	1	TW	3.85	4.16	7.7%	< 0.10	105%	70%	130%	103%	70%	130%	98%	70%	130%
>C21-C32 Hydrocarbons	1	TW	1.93	2.03	5.1%	< 0.1	94%	70%	130%	103%	70%	130%	98%	70%	130%

Comments: If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution. VPH matrix spike performed on a different sample than

If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

Certified By:

my Wu

Page 23 of 33

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES

AGAT WORK ORDER: 20X562733 PROJECT: 1895674 **ATTENTION TO: Glen Merkley**

SAMPLING SITE: SAMPLED BY:

				Wate	er Ar	alys	is								
RPT Date: Jan 22, 2020			С	UPLICATI	.		REFEREN	NCE MA	TERIAL	METHOD	BLAN	(SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	1 1 10	eptable mits	Recovery		ptable nits
TANAMETER	Batch	ld	Dup#1	Dup #2	III D		Value	Lower	Upper	Recovery	Lower	Upper	Recovery	Lower	Upper
Standard Water Analysis + Dis	solved Meta	ls									•	•	•		
рН	855278		7.84	7.82	0.3%	<	101%	80%	120%	NA	80%	120%	NA	80%	120%
Reactive Silica as SiO2	859521		9.1	10.4	13.1%	< 0.5	99%	80%	120%	96%	80%	120%	100%	80%	120%
Chloride	856220	856220	4	5	NA	< 1	111%	80%	120%	NA	80%	120%	96%	80%	120%
Fluoride	856220	856220	<0.12	0.13	NA	< 0.12	120%	80%	120%	NA	80%	120%	101%	80%	120%
Sulphate	856220	856220	14	15	4.4%	< 2	107%	80%	120%	NA	80%	120%	NA	80%	120%
Alkalinity	855278		612	616	0.7%	< 5	91%	80%	120%	NA	80%	120%	NA	80%	120%
True Color	856220	856220	5	<5	NA	< 5	95%	80%	120%	NA			NA		
Turbidity	856269	856269	6.7	6.5	3%	< 0.1	99%	80%	120%	NA			NA		
Electrical Conductivity	855278		1260	1270	0.6%	< 1	101%	80%	120%	NA	80%	120%	NA	80%	120%
Nitrate as N	856220	856220	<0.05	<0.05	NA	< 0.05	99%	80%	120%	NA	80%	120%	81%	80%	120%
Nitrite as N	856220	856220	<0.05	<0.05	NA	< 0.05	82%	80%	120%	NA	80%	120%	114%	80%	120%
Ammonia as N	859106	000220	0.09	0.08	NA	< 0.03	104%	80%	120%	94%	80%	120%	98%	80%	120%
Total Organic Carbon	856257	856257	1.0	1.4	NA	< 0.5	95%	80%	120%	NA	80%	120%	94%	80%	120%
Ortho-Phosphate as P	859521	00020.	0.01	0.01	NA	< 0.01	93%	80%	120%	102%	80%	120%	99%	80%	120%
Dissolved Sodium	856268	856268	3.1	3.1	2.0%	< 0.1	107%	80%	120%	108%	80%	120%	NA	70%	130%
Dissolved Potassium	856268	856268	0.4	0.4	NA	< 0.1	105%	80%	120%	106%	80%	120%	96%	70%	130%
Dissolved Calcium	856268	856268	3.2	3.1	0.9%	< 0.1	100%	80%	120%	107%	80%	120%	NA	70%	130%
Dissolved Magnesium	856268	856268	0.5	0.5	NA	< 0.1	103%	80%	120%	107%	80%	120%	83%	70%	130%
Bicarb. Alkalinity (as CaCO3)	855278	000200	612	616	0.7%	< 5	NA	80%	120%	NA	80%	120%	NA	80%	120%
Carb. Alkalinity (as CaCO3)	855278		<10	<10	NA	< 10	NA	80%	120%	NA	80%	120%	NA	80%	120%
Hydroxide	855278		<5	<5	NA	< 5	NA	80%	120%	NA	80%	120%	NA	80%	120%
Dissolved Aluminum	856268	856268	<5	<5	NA	< 5	104%	80%	120%	110%	80%	120%	100%	70%	130%
Dissolved Antimony	856268	856268	<2	<2	NA	< 2	80%	80%	120%	93%	80%	120%	82%	70%	130%
Dissolved Antimorry Dissolved Arsenic	856268	856268	<2	<2	NA	< 2	89%	80%	120%	93%	80%	120%	87%	70%	130%
Dissolved Barium	856268	856268	<5	<5	NA	< 5	87%	80%	120%	95%	80%	120%	86%	70%	130%
Dissahuad Darullium	050000	050000			NIA	. 0	050/	000/	4000/	070/	000/	4000/	000/	700/	1200/
Dissolved Beryllium	856268	856268	<2	<2	NA	< 2	95%	80%	120%	97%	80%	120%	99%	70%	130%
Dissolved Bismuth	856268	856268	<2	<2	NA	< 2	90%	80%	120%	105%	80%	120%	87%	70%	130%
Dissolved Boron	856268	856268	<5 -0.017	<5 -0.017	NA	< 5	95%	80%	120%	97%	80%	120%	98%	70%	130%
Dissolved Cadmium Dissolved Chromium	856268 856268	856268 856268	<0.017 <1	<0.017 <1	NA NA	< 0.017 < 1	91% 88%	80% 80%	120% 120%	97% 95%	80% 80%	120% 120%	90% 83%	70% 70%	130% 130%
Dissolved Cobalt	856268	856268	<1	<1	NA	< 1	91%	80%	120%	97%	80%	120%	90%		130%
Dissolved Copper	856268	856268	<1	<1	NA	< 2	94%	80%	120%	98%	80%	120%	91%	70%	130%
Dissolved Iron	856268	856268	<50	<50	NA	< 50	89%	80%	120%	96%	80%	120%	87%		130%
Dissolved Lead	856268	856268	<0.5	<0.5	NA	< 0.5	93%	80%	120%	103%	80%	120%	92%		130%
Dissolved Manganese	856268	856268	5	3	NA	< 2	91%	80%	120%	95%	80%	120%	81%	70%	130%
Dissolved Molybdenum	856268	856268	<2	<2	NA	< 2	90%	80%	120%	95%	80%	120%	87%		
Dissolved Nickel	856268	856268	<2	<2	NA	< 2	96%	80%	120%	101%	80%	120%	90%	70%	130%
Dissolved Phosphorus	856268	856268	<0.02	< 0.02	NA	< 0.02	100%	80%	120%	103%	80%	120%	91%	70%	130%
Dissolved Selenium	856268	856268	<1	<1	NA	< 1	91%	80%	120%	95%	80%	120%	87%	70%	130%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 24 of 33

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

AGAT WORK ORDER: 20X562733

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES

PROJECT: 1895674 ATTENTION TO: Glen Merkley

SAMPLING SITE: SAMPLED BY:

RPT Date: Jan 22, 2020				UPLICATI	Ε		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Lin	ptable nits	Recovery	Liv	eptable mits
		ld					Value	Lower	Upper	,	Lower	Upper	,	Lower	Uppe
Dissolved Silver	856268	856268	<0.1	<0.1	NA	< 0.1	95%	80%	120%	99%	80%	120%	93%	70%	130%
Dissolved Strontium	856268	856268	26	27	2.5%	< 5	95%	80%	120%	98%	80%	120%	NA	70%	1309
Dissolved Thallium	856268	856268	<0.1	<0.1	NA	< 0.1	95%	80%	120%	102%	80%	120%	92%	70%	1309
Dissolved Tin	856268	856268	<2	<2	NA	< 2	90%	80%	120%	99%	80%	120%	87%	70%	130
Dissolved Titanium	856268	856268	<2	<2	NA	< 2	99%	80%	120%	104%	80%	120%	87%	70%	130
Dissolved Uranium	856268	856268	<0.1	<0.1	NA	< 0.1	89%	80%	120%	98%	80%	120%	90%	70%	130
Dissolved Vanadium	856268	856268	<2	<2	NA	< 2	88%	80%	120%	92%	80%	120%	85%	70%	130
Dissolved Zinc	856268	856268	<5	<5	NA	< 5	90%	80%	120%	96%	80%	120%	91%	70%	130
Comments: If RPD value is NA, the		e duplicates	s are less t	han 5x the	RDL and	the RPD v	vill not be	calcula	ted.						
Mercury Analysis in Water (Dis Dissolved Mercury	856258		<0.016	<0.016	NA	< 0.016	98%	80%	120%		80%	120%	103%	80%	1209
Mercury Analysis in Water (Tot Fotal Mercury Comments: If RPD value is NA, the	856266	e duplicates	<0.016 s are less t	0.019 han 5x the	NA RDL and	< 0.016	98% vill not be		120% ted.		80%	120%	100%	80%	120
/arious Inorganics (Water)	0.50000	050000	•	_			1010/	200/	1000/				200/	000/	400
Chemical Oxygen Demand	856266	856266	6	5	NA 17.00/	< 3	101%	80%	120%	NA	000/	4000/	99%	80%	
Dissolved Organic Carbon	853779	856257	4.1	3.4	17.0%	< 0.5	89%	80%	120%	NA	80%	120%	104%	80%	
Total Phosphorous as P	861233	050000	41.4	40.0	3.4%	< 0.03	85%	80%	120%	95%	80%	120%	NA	80%	
Total Suspended Solids	856220	856220	<5	<5	NA	< 5	106%	80%	120%	NA			117%	80%	120
Comments: If RPD value is NA, the		·	s are less t	han 5x the	RDL and	the RPD v	vill not be	calcula	ted.						
Standard Water Analysis + Diss oH			7.50	7.40	0.49/	_	102%	900/	1200/	NΙΛ	900/	1200/	NΙΛ	900/	120
	856251	856251	7.52	7.49	0.4%	< .0.5		80%	120%	NA oco/	80%	120%	NA 105%	80%	
Reactive Silica as SiO2	856266	856266	7.7	8.5	10.3%	< 0.5	98%	80%	120%	96%	80%	120%	105%	80%	
Chloride	856265	856265	4	4	NA	< 1	118%	80%	120%	NA	80%	120%	99%	80%	
Fluoride	856265	856265	<0.12	<0.12	NA	< 0.12	109%	80%	120%	NA	80%	120%	118%	80%	
Sulphate	856265	856265	3	3	NA	< 2	105%	80%	120%	NA	80%	120%	111%	80%	120
Alkalinity	856251	856251	26	26	1.9%	< 5	93%	80%	120%	NA	80%	120%	NA	80%	120
Electrical Conductivity	856251	856251	85	85	0.5%	< 1	102%	80%	120%	NA	80%	120%	NA	80%	
litrate as N	856265	856265	0.07	0.07	NA	< 0.05	101%	80%	120%	NA	80%	120%	84%	80%	120
litrite as N	856265	856265	< 0.05	< 0.05	NA	< 0.05	89%	80%	120%	NA	80%	120%	116%	80%	120
Ammonia as N	856253	856253	0.10	0.11	NA	< 0.03	103%	80%	120%	94%	80%	120%	99%	80%	120
otal Organic Carbon	856275	856275	0.9	0.9	NA	< 0.5	86%	80%	120%	NA	80%	120%	98%	80%	120
Ortho-Phosphate as P	856266	856266	<0.01	<0.01	NA	< 0.01	94%	80%	120%	104%	80%	120%	101%	80%	120
Bicarb. Alkalinity (as CaCO3)	856251	856251	26	26	1.9%	< 5	NA	80%	120%	NA	80%	120%	NA	80%	120
, ,															

AGAT QUALITY ASSURANCE REPORT (V1)

Page 25 of 33

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

AGAT WORK ORDER: 20X562733

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES

PROJECT: 1895674 ATTENTION TO: Glen Merkley

SAMPLING SITE: SAMPLED BY:

		V	Nate	r A na	lysis	(Co	ntinu	ed)							
RPT Date: Jan 22, 2020				DUPLICAT	Έ		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Lin	ptable nits	Recovery	Lin	ptable nits
		ld					Value	Lower	Upper		Lower	Upper	,	Lower	Upper
Hydroxide	856251	856251	<5	<5	NA	< 5	NA	80%	120%	NA	80%	120%	NA	80%	120%

Comments: If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

Standard	Water	Analys	is + D	issolved	Metals
----------	-------	--------	--------	----------	--------

рН	852966	7.07	7.07	0.0%	<	101%	80%	120%	NA	80%	120%	NA	80%	120%
Alkalinity	852966	8	7	NA	< 5	95%	80%	120%	NA	80%	120%	NA	80%	120%
Electrical Conductivity	852966	34	34	0.9%	< 1	104%	80%	120%	NA	80%	120%	NA	80%	120%
Ammonia as N	856273 856273	0.10	0.06	NA	< 0.03	102%	80%	120%	92%	80%	120%	102%	80%	120%
Bicarb. Alkalinity (as CaCO3)	852966	8	7	NA	< 5	NA	80%	120%	NA	80%	120%	NA	80%	120%
Carb. Alkalinity (as CaCO3)	852966	<10	<10	NA	< 10	NA	80%	120%	NA	80%	120%	NA	80%	120%
Hydroxide	852966	<5	<5	NA	< 5	NA	80%	120%	NA	80%	120%	NA	80%	120%

Comments: If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

Standard Water Analysis + Dissolved Metals

Total Organic Carbon 853779 3.5 3.4 1.4% < 0.5 89% 80% 120% NA 80% 120% 107% 80% 120%

000/

1200/

Comments: If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

E 0

Standard Water Analysis + Dissolved Metals

061200

Dissolved Sedium

Dissolved Sodium	861299	5.8	5.5	4.3%	< 0.1	112%	80%	120%	110%	80%	120%	NA	70%	130%
Dissolved Potassium	861299	1.8	1.8	1.5%	< 0.1	114%	80%	120%	111%	80%	120%	NA	70%	130%
Dissolved Calcium	861299	45.0	52.9	16.1%	< 0.1	117%	80%	120%	108%	80%	120%	NA	70%	130%
Dissolved Magnesium	861299	11.5	13.0	12.4%	< 0.1	114%	80%	120%	107%	80%	120%	NA	70%	130%
Dissolved Aluminum	861299	<5	<5	NA	< 5	118%	80%	120%	106%	80%	120%	88%	70%	130%
Discolused Austinesses	004000			NIA	. 0	000/	000/	4000/	020/	000/	4000/	000/	700/	4000/
Dissolved Antimony	861299	<2	<2	NA	< 2	88%	80%	120%	93%	80%	120%	89%	70%	130%
Dissolved Arsenic	861299	<2	<2	NA	< 2	104%	80%	120%	101%	80%	120%	100%	70%	130%
Dissolved Barium	861299	79	77	3.2%	< 5	100%	80%	120%	95%	80%	120%	NA	70%	130%
Dissolved Beryllium	861299	<2	<2	NA	< 2	117%	80%	120%	108%	80%	120%	99%	70%	130%
Dissolved Bismuth	861299	<2	<2	NA	< 2	107%	80%	120%	109%	80%	120%	86%	70%	130%
Dissolved Boron	861299	20	20	NA	< 5	117%	80%	120%	109%	80%	120%	98%	70%	130%
Dissolved Cadmium	861299	< 0.017	< 0.017	NA	< 0.017		80%	120%	95%	80%	120%	96%	70%	130%
						101%								
Dissolved Chromium	861299	2	2	NA	< 1	106%	80%	120%	99%	80%	120%	90%	70%	130%
Dissolved Cobalt	861299	<1	<1	NA	< 1	107%	80%	120%	100%	80%	120%	96%	70%	130%
Dissolved Copper	861299	3	3	NA	< 2	110%	80%	120%	100%	80%	120%	96%	70%	130%
Dissolved Iron	861299	<50	<50	NA	< 50	108%	80%	120%	100%	80%	120%	95%	70%	130%
Dissolved Lead	861299	<0.5	<0.5	NA	< 0.5	113%	80%	120%	108%	80%	120%	97%	70%	130%
Dissolved Manganese	861299	16	16	0.9%	< 2	108%	80%	120%	99%	80%	120%	NA	70%	130%
Dissolved Molybdenum	861299	<2	<2	NA	< 2	107%	80%	120%	99%	80%	120%	90%	70%	130%
•														
Dissolved Nickel	861299	2	2	NA	< 2	108%	80%	120%	102%	80%	120%	95%	70%	130%
Dissolved Phosphorus	861299	< 0.02	<0.02	NA	< 0.02	118%	80%	120%	114%	80%	120%	81%	70%	130%
Dissolved Selenium	861299	<1	<1	NA	< 1	111%	80%	120%	108%	80%	120%	100%	70%	130%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 26 of 33

700/ 1200/

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES

AGAT WORK ORDER: 20X562733 PROJECT: 1895674 **ATTENTION TO: Glen Merkley**

SAMPLING SITE: SAMPLED BY:

		\	Vate	r Ana	lysis	(Co	ntinu	ed)							
RPT Date: Jan 22, 2020			С	UPLICATI	E		REFEREN	NCE MA	TERIAL	METHOD	BLAN	SPIKE	MAT	RIX SP	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		eptable mits	Recovery	1 1:-	ptable nits	Recovery	1 1 11	eptable mits
		Id		-			value	Lower	Upper		Lower	Upper		Lower	Upper
Dissolved Silver	861299		<0.1	<0.1	NA	< 0.1	110%	80%	120%	99%	80%	120%	89%	70%	130%
Dissolved Strontium	861299		142	138	3.0%	< 5	115%	80%	120%	105%	80%	120%	NA	70%	130%
Dissolved Thallium	861299		<0.1	<0.1	NA	< 0.1	112%	80%	120%	108%	80%	120%	98%	70%	130%
Dissolved Tin	861299		<2	<2	NA	< 2	98%	80%	120%	95%	80%	120%	92%	70%	130%
Dissolved Titanium	861299		<2	<2	NA	< 2	113%	80%	120%	105%	80%	120%	89%	70%	130%
Dissolved Uranium	861299		0.5	0.5	NA	< 0.1	112%	80%	120%	106%	80%	120%	98%	70%	130%
Dissolved Vanadium	861299		<2	<2	NA	< 2	106%	80%	120%	97%	80%	120%	97%	70%	130%
Dissolved Zinc	861299		6	6	NA	< 5	105%	80%	120%	98%	80%	120%	97%	70%	130%
Comments: If RPD value is NA, the	results of th	e duplicates	s are less t	han 5x the	RDL and	the RPD	will not be	calcula	ted.						
Various Inorganics (Water)															
Dissolved Organic Carbon	856275	856275	1.0	0.9	NA	< 0.5	86%	80%	120%	NA	80%	120%	98%	80%	120%
Total Phosphorous as P	856264	856264	<0.03	< 0.03	NA	< 0.03	86%	80%	120%	92%	80%	120%	95%	80%	120%
Comments: If RPD value is NA, the	results of th	e duplicates	s are less t	han 5x the	RDL and	the RPD	will not be	calcula	ted.						
Dissolved TP (Water)															
Total Phosphorus, Dissolved	856220	856220	0.02	0.02	NA	< 0.02	96%	90%	110%	98%	90%	110%	101%	80%	120%
Dissolved TP (Water)															
Total Phosphorus, Dissolved	856269	856269	<0.02	<0.02	NA	< 0.02	98%	90%	110%	95%	90%	110%	92%	80%	120%
Free & Total CN (Water)															
Cyanide, Free	862624		< 0.002	< 0.002	NA	< 0.002	100%	90%	110%	100%	90%	110%	88%	70%	130%
Total Cyanide	860523		<0.002	< 0.002	NA	< 0.002	107%	80%	120%	101%	90%	110%	98%	70%	130%

Comments: If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

Certified By:

Method Summary

CLIENT NAME: GOLDER ASSOCIATES

AGAT WORK ORDER: 20X562733 PROJECT: 1895674 **ATTENTION TO: Glen Merkley**

SAMPLING SITE: SAMPLED BY:

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Miscellaneous Analysis	'		
Subcontracted Data			
Trace Organics Analysis			
Benzene	VOL-120-5013	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS
Toluene	VOL-120-5013	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS
Ethylbenzene	VOL-120-5013	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS
Xylene (Total)	VOL-120-5013	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS
C6-C10 (less BTEX)	VOL-120-5013	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS
>C10-C16 Hydrocarbons	ORG-120-5101	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/FID
>C16-C21 Hydrocarbons	ORG-120-5101	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/FID
>C21-C32 Hydrocarbons	ORG-120-5101	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/FID
Modified TPH (Tier 1)	ORG-120-5101	Atlantic RBCA Guidelines for Laboratories Tier 1	CALCULATION
Resemblance Comment	ORG-120-5101	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS/FID
Return to Baseline at C32	ORG-120-5101	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/FID
Isobutylbenzene - EPH	ORG-120-5101	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/FID
Isobutylbenzene - VPH	VOL-120-5013	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS
n-Dotriacontane - EPH	ORG-120-5101	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/FID

Method Summary

CLIENT NAME: GOLDER ASSOCIATES AGAT WORK ORDER: 20X562733
PROJECT: 1895674 ATTENTION TO: Glen Merkley

SAMPLING SITE: SAMPLED BY:

SAMPLING SITE:		SAMPLED BT:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis			·
Total Phosphorus, Dissolved	INOR-93-6022	SM 4500-P B&E	SPECTROPHOTOMETER
Cyanide, Free	INOR-93-6052	MOE CN-3015 & SM 4500 CN- I	TECHNICON AUTO ANALYZER
Total Cyanide	INOR-93-6051	MOE 3015 & SM 4500 CN- A,B,C	TECHNICON AUTO ANALYZER
Dissolved Mercury	MET-121-6100 & MET-121-6107	SM 3112 B	CV/AA
Total Mercury	MET-121-6100 & MET-121-6107	SM 3112 B	CV/AA
рН	INOR-121-6001	SM 4500 H+B	PC TITRATE
Reactive Silica as SiO2	INOR-121-6027	SM 4500-SiO2 F	COLORIMETER
Chloride	INORG-121-6005	SM 4110 B	ION CHROMATOGRAPH
Fluoride	INORG-121-6005	SM 4110 B	ION CHROMATOGRAPH
Sulphate	INORG-121-6005	SM 4110 B	ION CHROMATOGRAPH
Alkalinity	INOR-121-6001	SM 2320 B	
True Color	INOR-121-6014	SM 2120 C	NEPHELOMETER
Turbidity	INOR-121-6022	SM 2130 B	NEPHELOMETER
Electrical Conductivity	INOR-121-6001	SM 2510 B	PC TITRATE
Nitrate + Nitrite as N	INORG-121-6005	SM 4110 B	CALCULATION
Nitrate as N	INORG-121-6005	SM 4110 B	ION CHROMATOGRAPH
Nitrite as N	INORG-121-6005	SM 4110 B	ION CHROMATOGRAPH
Ammonia as N	INOR-121-6047	SM 4500-NH3 H	COLORIMETER
Total Organic Carbon	INOR-121-6026	SM 5310 B	TOC ANALYZER
Ortho-Phosphate as P	INOR-121-6012	SM 4500-P G	COLORIMETER
Dissolved Sodium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Potassium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Calcium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Magnesium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Bicarb. Alkalinity (as CaCO3)	INORG-121-6001	SM 2320 B	PC TITRATE
Carb. Alkalinity (as CaCO3)	INORG-121-6001	SM 2320 B	PC TITRATE
Hydroxide	INORG-121-6001	SM 2320 B	PC-TITRATE
Calculated TDS	CALCULATION	SM 1030E	CALCULATION
Hardness	CALCULATION	SM 2340B	CALCULATION
Langelier Index (@20C)	CALCULATION	CALCULATION	CALCULATION
Langelier Index (@ 4C)	CALCULATION	CALCULATION	CALCULATION
Saturation pH (@ 20C)	CALCULATION	CALCULATION	CALCULATION
Saturation pH (@ 4C)	CALCULATION	CALCULATION	CALCULATION
Anion Sum	CALCULATION	SM 1030E	CALCULATION
Cation sum	CALCULATION	SM 1030E	CALCULATION
% Difference/ Ion Balance	CALCULATION	SM 1030E	CALCULATION
Dissolved Aluminum	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Antimony	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Arsenic	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Barium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS

Method Summary

CLIENT NAME: GOLDER ASSOCIATES AGAT WORK ORDER: 20X562733
PROJECT: 1895674 ATTENTION TO: Glen Merkley

SAMPLING SITE: SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Dissolved Beryllium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Bismuth	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Boron	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Cadmium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Chromium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Cobalt	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Copper	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Iron	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Lead	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Manganese	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Molybdenum	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Nickel	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Phosphorus	MET-121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Selenium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Silver	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Strontium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Thallium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Tin	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Titanium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Uranium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Vanadium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Zinc	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Chemical Oxygen Demand	INORG-121-6013	SM 5220 B	SPECTROPHOTOMETER
Dissolved Organic Carbon	INOR-121-6026	SM 5310 B	TOC ANALYZER
Total Phosphorous as P	INOR-121-6046	SM 4500-P H, EPA 365.4	COLORIMETER
Total Suspended Solids	INOR-121-6024, 6025	SM 2540C, D	GRAVIMETRIC

Unit 122 * 11 Morris Drive Dartmouth, NS

B3B 1M2

webearth.agatlabs.com • www.agatlabs.com

Laboratory Use	Only
Arrival Condition: Arrival Temperature	□ Good □ Poor (see notes)
Hold Time:	
AGAT Job Number:	20x 562 733

Chain	of	Custody	Record
VIII	VI	Oustouy	ILECUIU

Chain c	of Custod	y Record				P:	902	.468	.871	8 - F:	902.	468.	8924		_						X	56	00/	1	33	느
Report Inf	formation			Report I	nformation (Pl	ease print):				R	epor	For	mat] No	tes:	ee	ole	5, 1	16	2						
Company:	Golder Associate	s		1, Name	Glen Merkley					_ _	¬ Sing	le San	nple													
Company.	Glen Merkley			— Email	1 11 0	golder.com				_ -	•	page		Tur	naro	un	d Ti	ime	Re	qui	red	(TAI)	r)			
Address:	201 Brownlow Av	venue, Suite 26		 	Sheri Burton							tiple Si page	ample		gular	TA	T F	7 5	to 7	wo.	rkin	g da	vs			
Audress.	Dartmouth, NS, 1			— Email	showi burton@	golder.com] [el Form	nat													
	9024661668		669	- 1		. (01 1)				- ii	_ inci	uded		Rus	sh TA	ı			ame			□1				
Phone:		Fax: 9024661	007		ory Requireme		Suide	dinoo o	n Dono	11 -	Exp	ort					L	J 2	day	S		3	days	1		
	ect #: 1895674				lidelines on Repor	t 🗀 DO NOCIISCO	zulue	illries u	перо					Dat	e Red	uir	ed:				_					-
AGAT Quot	tation: 204505	ot provided client will be billed fu	Ill price for analy		r1 □ Res	☐ Pot		Co:	arse	1		_								_				_	_	
	4			🗆 Tier	2 Com	☐ N/Pot		☐ Fin	е	111			er Sar	nple: 🗆	Yes		No		Salt	Wate	er Sa	mpl	e [] Yes	3 🗌	No
Invoice To		Same	Yes ☑/ No	, □	s □ Fuel □ L	ube.	_			R	eg, No.	_	17			_		_	_	_	_	_	=	_	-4	_
Company:				☐ CCME					م ا ه	JU			+DISS.(Miss											1		
				—	dott to:	EQS-Cont Sites			□ Available	2			13	- Ne								₽ F	Į ų		,	
Address:				—	/Dorl	M 101			<u> ا</u> ا	+			55.	□ low level	tion						- 1			· □ □		
714410001	-			— □ Agr	icultural □ N	torm Water /aste Water	p	sis	8 +	12	9	2	151		tions							MPN PN	ign i	Tree C.		
Phone:		Fax:		—	AL diment ☑ Oth	er NSE	eserv	Analy	S Diss	3 3			\\\\-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	X SF	X Frac	BTB						□ ∀		n mrn mrn mrn and Free Cvanide	-226	9
PO/Credit (_P59	SW CION	ered/Pi	Water	Total □Di	B-889-E	1 6	3	Sphor	PH/BTE	эн/вте	NS TPH							Ps	Total	Radium-226	I/X) sno
Sample le	dentification	Date/Time Sampled	Sample Matrix	# Containers		ite/Sample Info. ontainment	Field Filtered/Preserved	Standard Water Analysis	Metals: □ Total	698-6	H	TKN TKN	Total Phosphorus	Phenols Tier 1: TPH/BTEX (PIRI)	Tier 2: TPH/BTEX Fractionation	CCME-CWS TPH/BTEX	VOC	THM	HAA	PAH	PCB	TC + EC	□ HPC	other: Total at		Hazardous (Y/N)
FMS-HG18-0	02A	Jan 7/20 - 8:33	GW	14	fill filtere	tred sounds		Ø	Z Z	1	, [7	Ø	Ø											V	
FMS-HG18-0	02B	Jan 7/20 - 8:33	GW	14	7.4.7	1		Ø	v v			7	Ø	V											V	_
FMS-HG18-0)3A	Jan 7/20 - 10:17	GW	14					Ø Ø			7	Ø	V											V	
FMS-HG18-0	03B	Jan 7/20 - 10:17	GW	14					v v	_			Ø	Ø									\perp	1	V	
FMS-HG18-0	04A	Jan 10/20 - 11:43	GW	14					v v				Ø	Ø											Ø	_
FMS-HG18-0	04B	Jan 10/20 - 11:43	GW	14					v v					✓											Ø	-
FMS-HG18-0	05A	Jan 10/20 - 10:06	GW	14						_		Z													Ø	
FMS-HG18-0	05B	Jan 10/20 - 10:06	GW	14				Ø	v v	1 -			V												Ø	
FMS-HG18-0	06A	Jan 10/20 - 9:24	GW	14		1		Ø	v v	1 -		7	Ø													
FMS-HG18-0	07A	Jan 10/20 - 8:44	GW	14				1 - 1				7		✓											V	
FMS-HG18-0)7B	Jan 10/20 - 8:44	GW	15					Ø Ø	1] [7	Ø											V	7 0	
FMS-HG18-0	08A	Jan 7/20 - 14:19	GW	14	2	W		Ø	7		F	9	Ø	V											Ø	
Samples Relinquisher	d By (Print Name): +vuy OP2 d By (Sign):	oñ	John J	ans 10/20	Samples Received By (Print			2	26			Date/Ti	tan	10	- 1		Сору		- 1		Pag	ge 1		of 3]
	d By (Sign):		Date/	Time*	Samples Received by (Sign)			- 2				Date/Ti	me 15!	40					AT	Nº:						

Document ID: DIV-133-1502 002

COPPER RDL-1.0 Mg/L, Mercury RDL-0.016Mg/L

Date revised: May 19, 2016

AGAT Lab

Unit 122 • 11 Morris Drive Dartmouth, NS

B3B 1M2

Laboratory Use U	inly	
Arrival Condition:	□Good	\square Poor (see notes)
Arrival Temperature	:	
Hold Time:	_	
AGAT Job Number:	20x 5	562733

J.	同间		_abora	tories webearth.ag	gatlabs.com	n • w	ww.a		BB 1M: bs.com	n	Hold	d Tir	empe ne:							7	2 -	2	_
Chain of Custoo	ly Record			P:	902.468.8°	718	F: 90	2.46	8.892	4			b Nur	nbe	r: S	V)	X	2 6	201		5_)	=
Report Information			Report	Information (Please print):			Rep	ort F	orma	t	No	tes:											
Company: Golder Associate	es		1. Name	Glen Merkley				Single	Sample								_						
Company.				Email: glen_merkley@golder.com per					ge				naround Time Required (TAT)										
201 Paramilar Assume Cutta 20			_ 2. Name	Sheri Burton				Multipl per par	e Sampl		Dod	(ulai	TAT		5 to	7 14/	orki	nød	21/6				
Address: 201 Brownlow Avenue, Suite 26 Dartmouth, NS, B3B 1W2			— 2. Nami Emai	-h-mi human @-aldan aama		-1		Excel F			_			A	5 10	/ VV1	וואוכ	ng u	ays				
-			Liliai	•		=		Include			Rus	h T/	NT		San	ne da	•			-			
Phone: 9024661668	Fax: 9024661	.669	_ •	ory Requirements (Check):				Export							2 da	ıys			3 da	ys			
Client Project #: 1895674				uidelines on Report 🔲 Do not list (Guidelines on Ro	eport					Date	e Re	quired	d: ==									
AGAT Quotation: 204505			□ □ PIRI □ Tie	r 1 □ Res □ Pot	☐ Coars	_																	_
Please Note: If quotation number is r	not provided client will be billed fu	all price for analy	sis. ☐ Tie				Drini	dng W	ater Sa	ampl	e: 🗌] Yes	\square N	lo	Sa	It Wa	iter S	Sam	ple	□ \	'es	□N	0
Invoice To	Same	Yes 🗹 / No	Ga:	s ☐ Fuel ☐ Lube			Reg.	No.:								_		_					
Company:			□ссме	•	0		J							T									
				ustrial NSEQS-Cont Sites	Available		± D0C	Ш	Į,×	3	<u>=</u>							Ψ		MF			
				mmercial HRM 101	Ava	\ <u>``</u>	1		3		□ low level	ion								_ □	nide		
Address:				ioultural Storm Water	2 <u>2</u> 2	+Diss.)	3	\SS	1.8	3		ionat						MPN	onas	z	ő		
			— □ FW		served malysis		4		15		PIRE	Fract	Ĕ						Pseudomonas	MPN	Fre	526	
	Fax:		□ Sed	diment 0ther NSE PSS GW +0SW	/Pres	(Total	1083 H	□ TDS	orus		ă	頁	품					P,A	Pseu		and	H.	N N
PO/Credit Card#:				<10m	d Wal	旦	7		ddso		PH/E	PH/E	WST							Coliform	Total and Free Cyanide	Radium-226) sno
Sample Identification	Date/Time Sampled	Sample Matrix	# Containers	Comments - Site/Sample Info. Sample Containment	Field Filtered/Preserved Standard Water Analysis Metals: 🗆 Total 🕟 Diss	Mercury	<u> </u>	SST ☑	TKN Total Phosphorus TD [<< (M, < <)	Phenols	Tier 1: TPH/BTEX (PIRI)	Tier 2: TPH/BTEX Fractionation	CCME-CWS TPH/BTEX	N H	¥	PAH	PCB	TC + EC	□ нРС	Fecal C	Other:	Other:	Hazard
FMS-HG18-08B	Jan 7/20 - 14:19	GW	14	preserved for a lies				Ø	V	_	Ø												
FMS-HG18-09A	Jan 10/20 - 8:11	GW	14							-	Ø							_			_		
FMS-HG18-09B	Jan 10/20 - 8:11	GW	14				4	Ø	V		Ø			_	_				\perp			Ø	
FMS-HG18-10A	Jan 7/20 - 12:45	GW	14					Ø	Ø								\perp	Ш				V	
FMS-HG18-10B	Jan 7/20 - 12:45	GW	14	1		Ø	/	Ø	Ø	_	Ø			_	_	1	┡	\vdash	1			Ø	_
FMS-HG18-11A	Jan 7/20 - 13:40	GW	14	∭î	Ø Ø	Ø		Ø	Ø	_	Ø			_	+	_	⊢	1	-		_	Ø	
FMS-HG18-11B	Jan 7/20 - 13:40	GW	14			Ø	4	Ø	Ø		Ø			_	_	\perp	\perp		_			☑	_
FMS-HG18-13A	Jan 7/20 - 12:08	GW	14		Ø Ø	0	4	Ø			Ø			-	_	_	┶	_	_			Ø	
FMS-HG18-13B	Jan 7/20 - 12:08	GW	14			Ø	4	Ø	Ø	_	Ø			_		\perp	⊢	-	<u> </u>				
FMS-HG18-15A	Jan 10/20 - 11:06	GW	14			☑ .	1	Ø			V			_	_	\perp	L	\perp	_			Ø	
FMS-HG18-15B	Jan 10/20 - 11:06	GW	15	1,7				Ø		1	V			-	_	-	_	1	_		V	_	
FMS-HG18-16A	Jan 7/20 - 11:21	GW	14		V V	Ø	1	Ø			V					上		\bot				Ø	
Samples Relinquished By (Print Name): OUT NEW OB Samples Relinquished By (Sign):	rie	Date/	Time 0/20	Samples Received By (Brifft Name);	W		/		Te/Time		0	_ Y	Pink Co ellow C White C	ору -	AGAT	No.	_	age 2	2	of	3		_

Document ID: DIV-133-1502,002

Copper RDL- 1.0 Mg/L) Mercury RDL- 0.016 Mg/L

Date revised: May 19, 2016

Unit 122 • 11 Morris Drive Dartmouth, NS

B3B 1M2

webearth.agatlabs.com · www.agatlabs.com

Laboratory Use (Only	
Arrival Condition:	□Good	☐ Poor (see notes)
Arrival Temperature	e:	
Hold Time:	00	
AGAT Job Number:	dex	562733
Notes:		

Chain of Custo	dv Record				P:	902	.468	.871	8 - F	: 90	2.46	8.892	4	AGAT	Job	Nur	nbei	: 5	عالج	X	26)d	1	2	_
Report Information	•		Report I	nformation (Pl	ease print):				F			orma	t	Note	es:										
Company: Golder Associa	tes		- 1. Name	glen_merkley@	golder.com				- [ingle : er pag	Sample (e	li	Turn	arni	ınd	Tim	ne R	ean	lire		 ΔΤ\			
Contact:	Avenue Suite 26			Sheri Burton					- ₋		lultipi er pag	e Samp	les						-						
Address: 201 Brownlow 2	Avenue, Suite 26		2. Name Email	L 1 L	golder.com				-11	P		ormat	Ш	Regular TAT ✓ 5 to 7 working days											
2024651662		1.660	- -						= [[]		clude			Rush TAT ☐ Same day ☐ 1 day											
Phone: 9024661668	Fax: 9024661	1669		ory Requireme				_	11.5	E	xport							2 da	ays			3 day	/S		
Client Project #: 1895674			— □ List Gu □ PIRI	idelines on Repor	t 🔲 Do not list	Guide	lines o	n Repo	rt				- 11	Date	Requ	uired	l: 🚐								
AGAT Quotation: 204505 Please Note: If quotation number is	not provided client will be billed for	ull price for analys	□ Tier	1 □ Res	☐ Pot	[□ Coa	arse	F		_									_	_	_	_		
Fiease Note. II quotation number is			🗆 Tie	2	. □ N/Pot	[□ Fin	е	- 11		_	ater S	ampl	e: 🗌	Yes	□N	0	Sa	It Wa	ater S	3am	ple	☐ Ye	es [] No
Invoice To	Same	Yes 🗹 / No	☐ ☐ Gas	; □ Fuel □ L	ube [_	_	_		Reg. N	10.:		_		_	-	-	_	-	=	=	=	_	_	_
Company:			CCME	☑ CD¹	WQ EQS-Cont Sites			<u>e</u>	ر ا			V	3							1					
Contact:			Ind	amaralal				□ Available				2		evel						1	□ MF		Ψ	g g	
			— □ Res	. ⊔HR	M 101 torm Water				5/2				1	□ low level	ation				1			ا _ي		yanı	
·				icultural ⊓w	/aste Water	ped	sis	8 4	. ઉ	3	SSV 🗆	خ ا	}		ctio				1		MPN	mona	MPN	8 .	
Phone:	Fax:		FW	liment 🗸 Oth	er NSE PSS	resen	Anal	SiQ 🖸	TOTAL COURSE		ıı	T ST	-	<u>≅</u>	X Fa		1				¥	Pseudomonas		nd Fr	<u> </u>
PO/Credit Card#:				EN	to SW <10m	Filtered/Preserved	Nater	gg 1	2 5		D TDS	Photo London		4/BTE	YBT S								form	Total and Free Cyanide	(X) SI
Sample Identification	Date/Time Sampled	Sample Matrix	# Containers	Comments - Si Sample Co	ite/Sample Info. ontainment	Field Filte	Standard Water Analysis	Metals: □ Total □ Di	888	됩	□ TSS □	TKN Total Phosphorus	Phenols	Tier 1: TPH/BTEX (PIRI)	Tier 2: TPH/BTEX Fractionation	come-cws irriyalex	THM	¥	PAH	PCB	TC + EC	□ HPC	Fecal Coliform	Other: To	Hazardous (Y/N)
FMS-HG18-16B	Jan 7/20 - 11:21	GW	14	Field filt	erred for all			Ø G			Ø	V		Ø										Ū	
DUP-A	Jan 7/20 - 8:33	GW	14	pres	l sample			Ø G			Ø	✓		Ø								Ш		V	
DUP-B	Jan 7/20 - 8:33	GW	14					Ø.		1_	Ø	V		Ø				1				\sqcup		Ū	
DUP-C	Jan 10/20 - 9:24	GW	14				Ø			1_	Ø	Ø			4	4	4	+		-	1	\sqcup	\vdash	G	2
							\vdash	-	_	-	Н		\vdash		-	4	-	+	+	+	┼	\vdash	\dashv	-	+
					I.	\vdash		-	+	-			\vdash	\vdash	-	+	+	+	+	+	+	Н	\dashv	+	+
			-		†	Н		+	+	-	Н	-	+		+	+	+	+	+	-	+	H	\vdash	+	+-
		.				┢		+	╁	+	H		+	Н	+	+	+	+	╁	+	+	Н	\Box	+	+
		1			1			+	+				\dagger	П		\dashv	1	\top							
									P					П		T				Т	Т				
				9			П																		
Samples Rollinquished By (Print Name):	OBrier	Date	15:40	Samples Received By (Pfint	Namel	1		1	7		5	te/Time) (0				lient AGAT		Pε	age [3	of	3]
Samples Relinquished By (Sign):	~	Date/	Time	Samples Received by (Sign)		é					Da	le/Time	14	(0)					No	:					

Document ID: DIV-133-1502.002

COPPER RDL-1.0Mg/L, Mercury RDL-0.016Mg/L

Date revised; May 19, 2016

143-111 Research Drive, Saskatoon, SK Canada S7N 3R2

T: 306-933-6932 F: 306-933-7922 Toll-free: 1-800-240-8808 E: analytical@src.sk.ca

www.src.sk.ca/analytical

SRC Group # 2020-475

Jan 21, 2020

AGAT Laboratories 122-11 Morris Drive Dartmouth, NS B3B 1M2 Attn: Mohammed Hasanat

Date Samples Received: Jan-14-2020 Client P.O.: 152994

All results have been reviewed and approved by a Qualified Person in accordance with the Saskatchewan Environmental Code, Corrective Action Plan Chapter, for the purposes of certifying a laboratory analysis

Results from Lab Section 4 authorized by Vicky Snook, Supervisor

- * Test methods and data are validated by the laboratory's Quality Assurance Program.
- * Routine methods follow recognized procedures from sources such as
 - * Standard Methods for the Examination of Water and Wastewater APHA AWWA WEF
 - * Environment Canada
 - * US EPA
 - * CANMET
- * The results reported relate only to the test samples as provided by the client.
- * Samples will be kept for 30 days after the final report is sent. Please contact the lab if you have any special requirements.
- * Additional information is available upon request.
- * Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

This is a final report.

143-111 Research Drive, Saskatoon, SK Canada S7N 3R2

T: 306-933-6932 F: 306-933-7922 Toll-free: 1-800-240-8808 E: analytical@src.sk.ca

www.src.sk.ca/analytical

SRC Group # 2020-475

Jan 21, 2020

AGAT Laboratories

122-11 Morris Drive Dartmouth, NS B3B 1M2 Attn: Mohammed Hasanat

Date Samples Received: Jan-14-2020 Client P.O.: 152994

3491	20X562733 - 856220 - FMS-HG18-02A *WATER*
3492	20X562733 - 856250 - FMS-HG18-02B *WATER*
3493	20X562733 - 856251 - FMS-HG18-03A *WATER*

Analyte	Units	3491	3492	3493	
Lab Section 4					
Radium-226	Bq/L	<0.005	0.008	<0.005	

Symbol of "<" means "less than". This indicates that it was not detected at level stated above.

143-111 Research Drive, Saskatoon, SK Canada S7N 3R2

< 0.005

0.006

T: 306-933-6932 F: 306-933-7922 Toll-free: 1-800-240-8808 E: analytical@src.sk.ca

www.src.sk.ca/analytical

SRC Group # 2020-475

0.006

Jan 21, 2020

AGAT Laboratories

Radium-226

3494 3495 3496	20X562733 - 856252 - FMS-HG18-03B *WATER* 20X562733 - 856253 - FMS-HG18-04A *WATER* 20X562733 - 856254 - FMS-HG18-04B *WATER*				
Analyte	Units	3494	3495	3496	
Lab Section	ı 4				

Symbol of "<" means "less than". This indicates that it was not detected at level stated above.

Bq/L

143-111 Research Drive, Saskatoon, SK Canada S7N 3R2

T: 306-933-6932 F: 306-933-7922 Toll-free: 1-800-240-8808 E: analytical@src.sk.ca

www.src.sk.ca/analytical

SRC Group # 2020-475

Jan 21, 2020

AGAT Laboratories

3497	20X562733 - 856255 - FMS-HG18-05A *WATER*
3498	20X562733 - 856256 - FMS-HG18-05B *WATER*
3499	20X562733 - 856257 - FMS-HG18-06A *WATER*

Analyte	Units	3497	3498	3499
Lab Section 4				
Radium-226	Ba/L	<0.005	0.01	0.02

Symbol of "<" means "less than". This indicates that it was not detected at level stated above.

143-111 Research Drive, Saskatoon, SK Canada S7N 3R2

T: 306-933-6932 F: 306-933-7922 Toll-free: 1-800-240-8808 E: analytical@src.sk.ca

www.src.sk.ca/analytical

SRC Group # 2020-475

Jan 21, 2020

AGAT Laboratories

3500	20X562733 - 856258 - FMS-HG18-07A *WATER*
3501	20X562733 - 856259 - FMS-HG18-07B *WATER*
3502	20X562733 - 856260 - FMS-HG18-08A *WATER*

Analyte	Units	3500	3501	3502	
Lab Section 4					
Radium-226	Bq/L	0.02	0.03	<0.005	

Symbol of "<" means "less than". This indicates that it was not detected at level stated above.

143-111 Research Drive, Saskatoon, SK Canada S7N 3R2

T: 306-933-6932 F: 306-933-7922 Toll-free: 1-800-240-8808 E: analytical@src.sk.ca

www.src.sk.ca/analytical

SRC Group # 2020-475

Jan 21, 2020

AGAT Laboratories

3503	20X562733 - 856261 - FMS-HG18-08B	*WATER*
3504	20X562733 - 856262 - FMS-HG18-09A	*WATER*
3505	20X562733 - 856263 - FMS-HG18-09B	*WATER*

Analyte	Units	3503	3504	3505
Lab Section 4				
Radium-226	Bq/L	0.007	0.03	0.006

143-111 Research Drive, Saskatoon, SK Canada S7N 3R2

T: 306-933-6932 F: 306-933-7922 Toll-free: 1-800-240-8808 E: analytical@src.sk.ca

www.src.sk.ca/analytical

SRC Group # 2020-475

Jan 21, 2020

AGAT Laboratories

3506	20X562733 - 856264 - FMS-HG18-010A *WATER*
3507	20X562733 - 856265 - FMS-HG18-010B *WATER*
3508	20X562733 - 856266 - FMS-HG18-011A *WATER*

0000	20/002700 000200 111101101	OTTA WATER			
Analyte	Units	3506	3507	3508	
Lab Section	4				
Radium-226	Ba/l	<0.005	<0.005	<0.005	

Symbol of "<" means "less than". This indicates that it was not detected at level stated above.

143-111 Research Drive, Saskatoon, SK Canada S7N 3R2

0.006

< 0.005

T: 306-933-6932 F: 306-933-7922 Toll-free: 1-800-240-8808 E: analytical@src.sk.ca

www.src.sk.ca/analytical

SRC Group # 2020-475

< 0.005

Jan 21, 2020

AGAT Laboratories

Radium-226

Analyte Units 3509 3510 3511	3511 ———————————————————————————————————	20X562733 - 856269 - FMS-HG18-013B *WATER*	3500	3510	3511
------------------------------	---	--	------	------	------

Symbol of "<" means "less than". This indicates that it was not detected at level stated above.

Bq/L

143-111 Research Drive, Saskatoon, SK Canada S7N 3R2

T: 306-933-6932 F: 306-933-7922 Toll-free: 1-800-240-8808 E: analytical@src.sk.ca

www.src.sk.ca/analytical

SRC Group # 2020-475

Jan 21, 2020

AGAT Laboratories

3512 3513 3514	20X562733 - 856270 - FMS-HG18-015A *WATER* 20X562733 - 856271 - FMS-HG18-015B *WATER* 20X562733 - 856272 - FMS-HG18-016A *WATER*			
Analyte	Units	3512	3513	3514
Lab Section	ı 4			
Radium-226	Bg/L	0.01	<0.005	0.01

Symbol of "<" means "less than". This indicates that it was not detected at level stated above.

143-111 Research Drive, Saskatoon, SK Canada S7N 3R2

T: 306-933-6932 F: 306-933-7922 Toll-free: 1-800-240-8808 E: analytical@src.sk.ca

www.src.sk.ca/analytical

SRC Group # 2020-475

Jan 21, 2020

AGAT Laboratories

3515 3516 3517	20X562733 - 856273 - FMS-HG18-016B *WATER* 20X562733 - 856274 - DUP-A *WATER* 20X562733 - 856275 - DUP-B *WATER*				
Analyte	Units	3515	3516	3517	
Lab Section	n 4				
Radium-226	6 Bq/L	<0.005	0.005	<0.005	

Symbol of "<" means "less than". This indicates that it was not detected at level stated above.

143-111 Research Drive, Saskatoon, SK Canada S7N 3R2

T: 306-933-6932 F: 306-933-7922 Toll-free: 1-800-240-8808 E: analytical@src.sk.ca

www.src.sk.ca/analytical

SRC Group # 2020-475

Jan 21, 2020

AGAT Laboratories

3518 20X562733 - 856276 - DUP-C *WATER*

Analyte	Units	3518
Lab Section 4		
Radium-226	Bq/L	0.02