Valentine Gold Project: Federal Information Requests

Responses to IR-08 to IR-26

MARATHON GOLD

Marathon Gold Corporation 36 Lombard Street, Suite 600 Toronto, ON M5C 2X3

April 14, 2021

April 2021

Table of Contents

RESPONSE TO IR-08 1
RESPONSE TO IR-09
RESPONSE TO IR-10
RESPONSE TO IR-1112
RESPONSE TO IR-12
RESPONSE TO IR-1325
RESPONSE TO IR-1427
RESPONSE TO IR-15
RESPONSE TO IR-16
RESPONSE TO IR-17
RESPONSE TO IR-1840
RESPONSE TO IR-1948
RESPONSE TO IR-20
RESPONSE TO IR-21
RESPONSE TO IR-2263
RESPONSE TO IR-2365
RESPONSE TO IR-2469
RESPONSE TO IR-2575
RESPONSE TO IR-26

LIST OF APPENDICES

Appendix IR-08.A	IR-08.A Figure and Table
Appendix IR-13.A	IR-13.A Figures and Tables
Appendix IR-18.A	IR-18.A Maps and Cross-Sections
Appendix IR-19.A	IR-19.A ARD/ML Management Plan
Appendix IR-20.A	IR-20.A Time-Series Graphs
Appendix IR-21.A	IR-21.A Kinetic Testing Results
Appendix IR-21.B	IR-21.B ARD Onset and Tables
Appendix IR-25.A	IR-25.A SGS Report

ID:	IR-08					
Expert Department or Group:	NRCan-01					
Guideline Reference:	Section 7.1 Section 7.1.5 Project Setting and Baseline Conditions – Groundwater and Surface Water					
EIS Reference:	Baseline Study Appendices 3, Attachment 3-D, Hydrogeology Baseline Report, Section 4.4					
Context and Rationale:	The EIS Guidelines state that the EIS will present information in sufficient detail to enable the identification of how the project could affect the Valued Components and the analysis of those effects. In particular, Section 7.1.5 require temporal changes in groundwater flow (e.g., seasonal and long term changes in water levels). Adequate groundwater level information, both in terms of spatial and temporal distribution, is required to understand groundwater flow quantity and timing in terms of seepage towards, or loss of flow from, surface water bodies. These changes are a component of the assessment of changes to fish and fish habitat and the aquatic species. A complete seasonal cycle of groundwater elevation change was only monitored in open exploration holes, which may dampen temporal variability. Monitoring from October to March in hydrogeological monitoring wells resulted in 3 m of seasonal variability in the absence of potential summer seasonal lows. Additionally, groundwater level information is spatially limited to the area within, and between the open pits. There is very limited information down gradient of the waste rock storage facilities and tailings management facility (TMF).					
Information Request:	 a. Provide groundwater elevation data from hydrogeological monitoring wells for a complete 12-month period. Incorporate this information into the conceptual model of groundwater flow, and the assessment of impacts from the project. b. Provide information on groundwater elevation down gradient of the waste rock storage facilities, and the Tailings Management Facility. 					
Response:	a. Groundwater monitoring has continued at the mine site at three of the monitoring locations presented in the EIS - MW1 (located north of the site), MW4 (located downstream of the Tailings Management Facility), and MW5 (located in the footprint of the Leprechaun Waste Rock Pile), as presented in Figure IR-08-1 (in Appendix IR-08.A). The year-long water level hydrographs show that groundwater levels were typically lower during the winter months and in the mid- to late-summer, corresponding to periods with relatively lower infiltration rates. The highest groundwater levels were recorded during the spring					

ID:	IR-08
	corresponding to the spring freshet, and during the fall rainy period. Seasonal fluctuations in groundwater levels ranged from 0.6 m in MW1 to 1.12 m in MW5. Although the averages are slightly different than the values used in the model calibration, the calibration statistics from the model are slightly improved, and do not require the conceptual model, model calibration, or effects assessment to be updated.
	 b. Additional groundwater monitoring has been conducted at the mine site that includes the installation of new wells to support ongoing design work for the mine components, as shown on Figure IR-08-1 (in Appendix IR-08.A). The water level data associated with these locations is shown on Table IR-08-1 (in Appendix IR-08.A). The majority of the wells are located inside the footprints of the project components. Additional monitoring wells will be installed downgradient of the waste rock piles and Tailings Management Facility prior to the development of the Project to characterize the water quality and water levels downgradient of the Project.
Appendix:	Appendix IR-08.A

ID:	IR-09
Expert Department or Group:	NRCan-02 MW-48
Guideline Reference:	7.1.5 Project Setting and Baseline Conditions – Groundwater and Surface Water
EIS Reference:	Baseline Study Appendices 3, Attachment 3-D, Hydrogeology Baseline Report, Sections 4.2,4.3, 4.4 Chapter 2, Appendix 2C Prefeasibility Geotechnical Report, Sections 5.6, 7.2, and7.4
Context and Rationale:	The EIS Guidelines require the inclusion of a delineation and characterization of groundwater - surface water interactions. Natural Resources Canada has noted that in the EIS the Valentine Lake Thrust Fault, and other mapped faults fracture and shear zones are not well characterized. However, complimentary data indicates the potential for the fault zone to be a zone of increased hydraulic conductivity (e.g., lower rock quality designation (Section 4.2)), or a structural control on groundwater flow direction (the presence of artesian conditions in bedrock (Section 4.4)). One packer test was completed within the fault zone (Baseline Report Section 4.3) and it indicated that the fault zone has lower rock quality and a higher hydraulic conductivity (Appendix 2C, Prefeasibility Geotechnical Report, Section 5.6). During pit dewatering, faulting that has enhanced hydraulic conductivity may reduce water levels within connected waterbodies impacting fish and fish habitat. Conversely, if there are clay gouge along fault planes, faulting may lower hydraulic conductivity and may direct drawdown related to open pit dewatering much further in one direction relative to another. Both fault types may influence the degree to which open pit dewatering influences groundwater – surface water interactions.
Information Request:	 a. Provide more information on the results of the packer test completed within the fault and the relationship between rock quality and hydraulic conductivity within the context of the conceptual model of groundwater flow. b. Discuss the location and orientation of mapped fault, fracture and shear zones including the potential for these zones to hydraulically connect the open pits to surface water features. c. In the numerical assessment of the fault, provide maps indicating the
Response:	drawdown and seepage flow paths under the various fault scenarios for both the water table and at depth within the bedrock.a. Packer testing of faults has been completed by Gemtec for Terrane
	Geoscience Inc. (Terrane 2020, 2021). The hydraulic conductivity for

ID:	IR-09
	the Valentine Lake thrust fault ranged from 2.5×10 ⁻⁹ m/s to 6.7×10 ⁻⁶ m/s, with a geometric mean of 7.0×10 ⁻⁸ m/s at the Marathon deposit. Similar results were also obtained for the other faults local to the Marathon deposit. A single packer test was completed for the Valentine Lake thrust fault, with a hydraulic conductivity value of 1.4×10 ⁻⁹ m/s; it is noted that this value is approximately one order of magnitude lower than that determined at the Marathon deposit. The geometric mean for the other faults local to the Leprechaun deposit was 4.8×10 ⁻⁸ m/s. Overall, the hydraulic conductivities determined for the Marathon and Leprechaun deposit faults (including the Valentine Lake thrust fault) were within the range of values for the various rock types, and were not found to be hydraulically distinct from the surrounding rock mass. This continues to support the assumption the faults in the proposed open pits are not expected to be substantial preferred pathways for groundwater flow, or constitute problem areas for seepage control.
	 b. Maps showing local and regional faults within the vicinity of the faults were prepared by Terrane, and are presented in Terrane (2021) Figures 9 and 10 (attached). The structural geology information for these faults is presented in Terrane (2021) Tables 13 and 15 (attached). As shown, the regionally extensive Valentine Lake Thrust Fault is sub-vertical, dipping from 80° in the Marathon deposit, to 70.1° in the Leprechaun deposit. The faults are dominantly oriented along a east-northeast direction (strike between 230° to 250°).
	As discussed in the response to part a), the hydraulic conductivities determined for the Marathon and Leprechaun deposit faults (including the Valentine Lake thrust fault) were within the range of values for the various rock types, and were not found to be hydraulically distinct from the surrounding rock mass. This continues to support the assumption the faults in the proposed open pits are not expected to be substantial preferred pathways for groundwater flow, or constitute problem areas for seepage control.
	 Maps showing the drawdown and particle tracks showing potential seepage pathways for the fault scenarios are included in the response to IR-13.
Appendix:	None

MARATHON GOLD

VALENTINE GOLD PROJECT FEASIBILITY GEOTECHNICAL INVESTIGATION

FIGURE 9 - Terrane 2020 Fault Model Marathon Deposit Scale: 1:7000 Date: Jan.07, 2021 Drawn: ACH Checked: AG

Figure 9

LEGEND

Approved: TLG

 Lithology polygons provided by Marathon
 All faults from 2020 Terrane Modelling
 NAD83 UTM Z21N

Fault ID	Strike (°) ^{1.}	Dip (°) ^{2.}	Topo. Lineament ^{3.}	Magnetic Lineament ^{3.}	No. DDH Logged Faults ^{4.}	No. DDH Intercepts RQD < 50% ^{5.}	Televiewer /Orientated Core ^{6.}	Observed in Surface Mapping ^{7.}	Confidence Score	Confidence ⁸
Fault 1	233.6	80	1	1	5	5	3	1	16	High
Fault 2	226.4	77.1	1	1	2	5	3	0	12	High
Fault 3	216.8	79.1	0	1	5	5	4	1	16	High
Fault 4	228.8	75.1	1	1	3	5	3	1	14	High
Fault 5	277.1	66.8	1	0	1	1	2	0	5	Medium
Fault 6	283.9	77.1	0	1	0	3	3	0	7	Medium
Fault 7	265.6	76.5	1	0	0	2	1	0	4	Low
Fault 8	273.6	77.4	0	0	0	1	2	0	3	Low
Fault 9	254.2	41.9	1	0	0	0	1	0	2	Low
Fault 10	232.5	85.7	1	1	0	1	2	0	5	Medium
Fault 11	287.5	69.6	0	1	0	2	2	0	5	Medium
Fault 12	222.6	75.9	0	1	0	5	4	0	10	High
Fault 13	230.6	77.1	0	1	0	5	1	0	7	Medium

Table 13 - Marathon Modelled Fault Summary

Notes: 1. Strike using right-hand rule, reported strike is the mean strike from stereonet analysis of each faults modelled vertices.

2. Dip is the mean dip from stereonet analysis of each faults modelled vertices.

3. Does a topographic or magnetic geophysical lineament exist, yes (1) or no (0).

4. Number of logged structures used to model fault that are coincide with logged fault zone (>0.25 m), lost core zones, and/or conglomerate-quartz eye porphyry contact (Fault 1 – Valentine Lake thrust fault). Score ranges from 0-5, score capped at 5.

5. Number of RQD runs used to model fault that are coincident with modelled fault with RQD<50%. Score ranges from 0-5, score capped at 5.

6. Number of times fault is observed in televiewer and/or oriented core. Score ranges from 0-3, score capped at 3.

7. Observed in surface mapping from S. Kruse, 2020.

8. Low (0-4), Medium (5-9), High (>10).

	Table 10 - Leprechaun Modelleu Fault Gummary									
Fault ID	Strike (°) ^{1.}	Dip (°) ^{2.}	Weak Topo. Lineament ^{3.}	Strong Topo. Lineament ^{3.}	No. DDH Logged Faults ^{4.}	No. DDH Intercepts RQD < 50% ^{5.}	Televiewer /Orientated Core ^{6.}	Observed in Surface Mapping ^{7.}	Confidence Score	Confidence ^{8.}
Fault 1	236.5	70.1	1	1	5	5	2	1	15	High
Fault 2	250.7	56.7	1	1	5	5	3	1	16	High
Fault 3	250	57.1	1	1	3	5	2	1	13	High
Fault 4	275.9	54.5	1	1	5	5	3	1	16	High
Fault 5	299.7	52.6	1	1	5	5	1	1	14	High
Fault 6	274.8	52.4	1	1	4	5	0	1	12	High
Fault 7	269	54.6	1	0	2	5	0	1	9	Medium
Fault 8	294.2	54.3	1	0	1	5	3	0	10	High
Fault 9	248.6	57.8	1	1	0	2	2	0	6	Medium
Fault 10	251	53.3	1	0	0	1	2	0	4	Low
Fault 11	250.2	55	1	1	0	2	0	1	5	Medium
Fault 12	248.1	64.3	0	0	0	0	3	0	3	Low
Fault 13	275.7	55.1	1	1	0	4	2	0	8	Medium

Table 15 - Leprechaun Modelled Fault Summary

Notes: 1. Strike using right-hand rule, reported strike is the mean strike from stereonet analysis of each faults modelled vertices.

2. Dip is the mean dip from stereonet analysis of each faults modelled vertices.

3. Does a topographic lineament exist, if so, is it weak or very well defined, strong, yes (1) or no (0).

4. Number of logged structures used to model fault that are coincide with logged fault zone (>0.25 m), lost core zones, and/or conglomerate-quartz eye porphyry contact (Fault 1 – Valentine Lake thrust fault). Score ranges from 0-5, score capped at 5.

5. Number of RQD runs used to model fault that are coincident with modelled fault with RQD<50%. Score ranges from 0-5, score capped at 5.

6. Number of times fault is observed in televiewer and/or oriented core. Score ranges from 0-3, score capped at 3.

7. Observed in field mapping from S. Kruse, 2020.

8. Low (0-4), Medium (5-9), High (>10).

ID:	IR-10
Expert Department or Group:	NRCan-03
Guideline Reference:	7.1.5 Project Setting and Baseline Conditions – Groundwater and Surface Water
EIS Reference:	Baseline Study Appendices 3, Attachment 3-D, Hydrogeology Baseline Report, Sections 2.3, Chapter 6, Appendix 6A, Sections 2.2.1, 3.3, and 4.1(Table 4-1).
Context and Rationale:	The EIS Guidelines state that the EIS will present information in sufficient detail to enable the identification of how the project could affect the Valued Components and the analysis of those effects. In geological settings such as that of the Project, overburden can be the main unit through which seepage from mine facilities is transported, and is the unit through which groundwater is connected to surface water. The thickness and composition of the overburden is critical in understanding groundwater flow quantities, direction, and timing. No overburden has been described beyond 3m depth. If a higher hydraulic conductivity contact aquifer were present at the bedrock overburden interface this would not be apparent from logging. Additionally, it is stated that sands and gravels are present in the Victoria River Valley (Section 2.3 of BSA 3D). The presence of these materials would increase connectivity between the river and groundwater, and provide a more direct pathway for seepage from the tailings management facility to the river. Section 3.3 of Appendix 6A). It is not clear which assumptions were made in modelling the overburden thickness and composition affects the assessment of changes to groundwater quantity and groundwater – surface water interaction. These changes should be integrated into the assessment of changes to surface water and fish habitat.
Information Request:	a. Provide a map of the simulated overburden thickness, including control points used.
	 Provide information on the simulated maximum and minimum overburden thickness, and any assumptions used in the generation of the overburden thickness map.
	c. Provide information on the potential for increased hydraulic conductivity at the base of the till unit, and its impact on groundwater flow.

ID:	IR-10
	d. Provide a map of the presumed extent of sand and gravel within the Victoria River valley. Provide information on the impacts of this unit on groundwater – surface water interactions, and if necessary update the groundwater model to reflect the presence of this unit. Parameterization as needed.
Response:	 A map of the simulated overburden thickness is provided in Figure IR- 10.1.
	 b. As presented in Section 2.2.1 of Appendix 6A of the EIS, the measured overburden thickness varied from 0.1 to 17.1 m. The simulated thicknesses presented on Figure IR-10.1 range from 0.1 to 20 m.
	The overburden thickness was calculated by creating a bedrock elevation surface from the data locations shown on Figure IR-10.1, and calculating the difference between the ground surface and the bedrock surface. As discussed in Table 4-1 of Appendix 6A of the EIS, the overburden was assigned a minimum thickness of 0.1 m within the model domain.
	c. No evidence of increased hydraulic conductivity at the base of the till unit was observed based on the results of hydraulic testing from eight monitoring wells completed in overburden and shallow bedrock at the site.
	d. The presumed extent of the sand and gravel within the Victoria River is defined by the extent of glaciofluvial deposits presented in the regional surficial geology maps presented in Figure 2-1 of the Appendix 6A of the EIS (attached). The hydraulic conductivity assigned to the overburden in the model is at the high end of the range for a sandy loam till, and falls within the range expected for glaciofluvial materials. Therefore, explicit simulation of the glaciofluvial deposits in the model is not required, and would not alter the groundwater flow patterns at the site.
Appendix:	None

Figure IR-10.1 Simulated Overburden Thickness

ID:	IR-11
Expert Department or	NRCan-05
Group:	
Guideline Reference:	7.1.5 Project Setting and Baseline Conditions – Groundwater and Surface
	Water7.2.2 Changes to Groundwater and Surface Water
EIS Reference:	Chapter 6, Appendix6A, Sections 4.3.3,4.3.4, Tables 5-1, 5-2, and 5-3, and
	Figures 4.1, 5.2 and 5.4
Context and Rationale:	The EIS Guidelines require the delineation and characterization of
	groundwater - surface water interactions. Boundary conditions within the
	groundwater flow model are user specified, and control the degree to which
	groundwater may interact with surface water. In the EIS, the Victoria River
	has been assigned a general head boundary condition. While this condition
	is reasonable for lakes with large catchment areas (such as Valentine Lake
	and the Victoria Lake Reservoir), groundwater drawdown in the vicinity of
	smaller lakes (such as the Middle, East and West Ponds, and Frozen Ear
	Lake), or in the upper reaches of the Victoria River, may result in lowering
	of the surface water levels. As shown on both Figures 5.2 and 5.4 of
	Appendix 6A, the assignment of these boundary conditions limits drawdown
	near these features during both operations and closure. The potential for
	these waterbodies to sustain the simulated flux to groundwater should be
	evaluated. In Section 4.5.4 it is noted that 2nd order or greater streams
	have been assigned a river boundary condition. Unlike a general head
	boundary, groundwater drawdown may occur below these features.
	However, the assumption that there is sufficient surface water flow to
	sustain continued flux to the groundwater remains. This assumption should
	be validated using water balances for these streams. In both cases, it is
	critical that these boundary conditions be applied only in cases where
	sufficient surface water flow is available to counter the loss of surface water
	to groundwater. Dewatering of surface water features and loss of fish
	habitat is possible with pit dewatering, and should be properly represented
	within the groundwater model. Although distant from the mine
	infrastructure, the northwest (abutting the northern reaches of Long Lake)
	and northeast (abutting Red Cross Lake) model boundaries appear to be
	set as no flow boundaries. These boundaries should be specified to reflect
	the lake elevation to ensure regional groundwater flow is represented
Information Request:	a. Update the following information: Figure 4.1 of Appendix 6A so that the
	type, elevation, and location of all boundary conditions (General Head
	River, and Drain) are clearly visible, including those at the boundary of
	the model. Tables 5-1 and 5-2 of Appendix 6A to include the boundary

ID:	IR-11			
	condition type for each surface water feature listed. Include the			
	Victoria River reach that is within the groundwater model.			
	 b. Complete a water balance for all surface water features for which a general head or river boundary has been applied. The water balances must be completed for baseline, operations and closure conditions. Compare the simulated flux to groundwater to available water, and update model boundaries accordingly. 			
Response:	 a. Figure 4.1 has been updated to refine the presentation of boundary conditions and is presented as Figure IR-11.1. Tables 5-1 and 5-2 are updated with flux boundary types and presented as Tables IR-11.1 and IR-11.2, respectively. In the tables, GHB represents a "general head boundary" condition, and RIV represents a "river" boundary condition. As shown in the tables, waterbodies (i.e., lakes and ponds) were represented using GHBs, and more linear watercourses were represented with RIVs. 			
	GHBs and RIVs operate in a similar fashion, in that they allow inflows to or outflows from groundwater, at a rate based on the conductance assigned to the boundary condition, based on the stage of the surrounding aquifer. The main difference between how GHBs and RIVs operate is that RIVs have a maximum rate at which they can add water, defined by the bottom elevation assigned to the river (i.e., RBOT). This is illustrated on Figure IR-11.2.			
	As discussed in Section 5.2.1 of Appendix 6A of the EIS, the general head boundaries and rivers in the vicinity of the pits were switched to drains as they are unlikely to maintain their constant heads or stages given the drop in water table associated with the pit drainage.			
	 b. The fluxes for the GHB, RIV, and drain (DRN) boundary conditions were extracted from the model using the General Head Boundary Observation Package, River Boundary Observation Package, or Drain Boundary Observation Package. These observation packages present the net fluxes only. In all cases, the net groundwater flow is to the streams and lake boundaries. Table IR-11.3 presents Table 5-3 from Appendix 6A of the EIS with the estimated baseline fluxes for the features based on the catchment areas at end of operation. Similarly, Table IR-11.4 presents Table 5-6 from Appendix 6A of the EIS with the estimated based on the catchment areas following post-closure. As shown on the tables, the net flows to the features are from groundwater to surface water. However, the mean annual flow rates in the streams are sufficient to maintain these net flows, should it be required. 			
Appendix:	None			

Figure IR-11.1 Model Domain and Boundary Conditions

Water Feature	Net Flow from Groundwater to Feature (m ³ /d)	Baseline Boundary Types
Linnamod Tributany to Victoria Lako Posonyoir NT1	222.6	GHB - waterbodies
	332.0	RIV – watercourses
Linnamad Tributary to Victoria Laka Pasanyair NT2	61.2	GHB – waterbodies
	01.2	RIV – watercourses
Frazon Far Lako and Tributarios NT3	2874.2	GHB – waterbodies
	2014.2	RIV – watercourses
Linnamad Tributary to Valenting Lake NT4	257.4	GHB – waterbodies
	557.4	RIV – watercourses
Linnamad Tributary to Valentina Laka NT5	408.4	GHB – waterbodies
Official field fibulary to valentine Lake NTS	408.4	RIV – watercourses
Middle and East Bond and Tributarios EB1	010.0	GHB – ponds
	515.5	RIV – watercourses
West Pond and Tributaries WP1	2167.9	GHB – ponds
		RIV – watercourses
Unnamed Tributary to Victoria Lake Reservoir ST1	782.5	GHB – waterbodies
	102.0	RIV – watercourses
Unnamed Tributary to Victoria Lake Reservoir ST2	2872.6	GHB – waterbodies
	2012.0	RIV – watercourses
Unnamed Tributary to Victoria River ST3	1306.4	RIV – watercourses
Unnomed Tributery to Vietoria River ST4	5201 6	GHB – waterbodies
Official River S14	5201.8	RIV – watercourses
Unnamed Tributary to Victoria River VR1	0.002	RIV – watercourses
Unnamed Tributary to Victoria River VR2	0.2	RIV – watercourses
	450.5	GHB – waterbodies
Unnamed Tributary to Victoria River VR3	103.0	RIV – watercourses
Unnamed Tributary to Victoria River VR4	12	RIV – watercourses

Table IR-11.1Baseline Groundwater Baseflow to Surface Water Features
(formerly Appendix 6A, Table 5-1)

Table IR-11.2Estimated Groundwater Discharge to Surface Water Features
under Operation Phase (formerly Appendix 6A, Table 5-3) With Boundary
Condition Types

Water Feature	Net Flow from Groundwater to Feature (m ³ /d)		Operation
	Baseline	Operation	Boundary Types
Unnamed Tributary to Victoria Lake Reservoir NT1	332.6	623.7	DRN – watercourses
Unnamed Tributary to Victoria Lake Reservoir NT2	61.2	768.6	DRN – watercourses
Frozen Ear Lake and Tributaries NT3	2874.2	2349.8	RIV – watercourses
Unnamed Tributary to Valentine Lake NT4	357.4	13	RIV – watercourses
Unnamed Tributary to Valentine Lake NT5	408.4	367.6	DRN – watercourses GHB – waterbodies
Middle and East Pond and Tributaries EP1	919.9	547.4	RIV – watercourses GHB – waterbodies
West Pond and Tributaries WP1	2167.9	751.6	RIV – watercourses
Unnamed Tributary to Victoria Lake Reservoir ST1	782.5	614.9	DRN – watercourses GHB – waterbodies
Unnamed Tributary to Victoria Lake Reservoir ST2	2872.6	2469.3	RIV – watercourses GHB – waterbodies
Unnamed Tributary to Victoria River ST3	1306.4	208.1	DRN – watercourses
Unnamed Tributary to Victoria River ST4	5201.6	3113.4	RIV – watercourses
Unnamed Tributary to Victoria River VR1	0.002	206.4	DRN – watercourses
Unnamed Tributary to Victoria River VR2	0.2	387	DRN – watercourses
Unnamed Tributary to Victoria River VR3	153.5	962.3	DRN – watercourses GHB – waterbodies
Unnamed Tributary to Victoria River VR4	12	1947.4	DRN – watercourses

Table IR-11.3Estimated Groundwater Discharge to Surface Water Features
under Operation Phase (formerly Appendix 6A, Table 5-3) with Mean Annual
Flowrates

Water Feature	Net Flow from Groundwater to Feature (m ³ /d)		Mean Annual Flow
	Baseline	Operation	(m³/d)
Unnamed Tributary to Victoria Lake Reservoir NT1	332.6	623.7	1580.7
Unnamed Tributary to Victoria Lake Reservoir NT2	61.2	768.6	2157.1
Frozen Ear Lake and Tributaries NT3	2874.2	2349.8	8739.5
Unnamed Tributary to Valentine Lake NT4	357.4	13	1077.9
Unnamed Tributary to Valentine Lake NT5	408.4	367.6	1552.9
Middle and East Pond and Tributaries EP1	919.9	547.4	6710.2
West Pond and Tributaries WP1	2167.9	751.6	6633
Unnamed Tributary to Victoria Lake Reservoir ST1	782.5	614.9	3481
Unnamed Tributary to Victoria Lake Reservoir ST2	2872.6	2469.3	5787.1
Unnamed Tributary to Victoria River ST3	1306.4	208.1	3934.4
Unnamed Tributary to Victoria River ST4	5201.6	3113.4	17021.8
Unnamed Tributary to Victoria River VR1	0.002	206.4	837.5
Unnamed Tributary to Victoria River VR2	0.2	387	968.5
Unnamed Tributary to Victoria River VR3	153.5	962.3	2219.5
Unnamed Tributary to Victoria River VR4	12	1947.4	1705.2

Table IR-11.4Estimated Groundwater Discharge to Surface Water Features
under Closure Phase (formerly Appendix 6A, Table 5-6) with Mean Annual
Flowrates

Water Feature		Net Flow from Groundwater to Feature (m ³ /d)		Mean Annual Flow (m³/d)
	Baseline	End of Post- Closure (with ditches)	End of Post- Closure (without ditches)	
Unnamed Tributary to Victoria Lake Reservoir NT1	332.6	625.8	623.8	1580.7
Unnamed Tributary to Victoria Lake Reservoir NT2	61.2	769.5	769.5	2157.1
Frozen Ear Lake and Tributaries NT3	2874.2	2330.4	2481.1	8739.5
Unnamed Tributary to Valentine Lake NT4	357.4	173	327.1	1077.9
Unnamed Tributary to Valentine Lake NT5	408.4	367.7	548.6	1552.9
Middle and East Pond and Tributaries EP1	919.9	560.7	565.8	6710.2
West Pond and Tributaries WP1	2167.9	953.5	1197	6633
Unnamed Tributary to Victoria Lake Reservoir ST1	782.5	616.6	972.5	3481
Unnamed Tributary to Victoria Lake Reservoir ST2	2872.6	2468.7	2525.8	5787.1
Unnamed Tributary to Victoria River ST3	1306.4	139.5	852.6	3934.4
Unnamed Tributary to Victoria River ST4	5201.6	3355	3691.9	17021.8
Unnamed Tributary to Victoria River VR1	0.002	206.2	206.3	837.5
Unnamed Tributary to Victoria River VR2	0.2	348.7	361.4	968.5
Unnamed Tributary to Victoria River VR3	153.5	879.4	627.9	2219.5
Unnamed Tributary to Victoria River VR4	12	2043.1	2050.4	1705.2

ID:	IR-12
Expert Department or	NRCan-06
Group:	
Guideline Reference:	Section 7.1.5
EIS Reference:	Appendix 6A, Section 4.4, Tables 4-2 and 4-3, and Figures 4-3 and 4-4
Context and Rationale:	The EIS Guidelines require the delineation and characterization of
	groundwater - surface water interactions. Without a reasonable calibration
	of the groundwater model, any forecasted changes to groundwater quantity,
	or groundwater-surface interaction are not reliable. These results are then
	transferred to the assessment of surface water flow, and subsequently fish
	and fish habitat. Although it was stated in the EIS that calibration to
	baseflow was conducted, no results have been provided. Simulated
	baseflow may be sensitive to parameters such as river conductance,
	recharge, and the hydraulic conductivity of the overburden. Given that the
	calibrated value of river conductance is a factor of 26 times greater than the
	host overburden (a much higher conductance factor than is typical),
	calibration to baseflow should be presented and justified. Calibration to
	water levels was conducted primarily using data from long open exploration
	holes (96% of data). An open hole can connect several hydrostratigraphic
	units (HSUs) such that groundwater elevations are representative of
	several units. As a result, differentiation of the water levels in the various
	HSUs is difficult. While several methods are available to integrate this type
	of data into a calibration process, the method chosen should be discussed,
	as should its implications on calibration. Calibration to water levels is
	evaluated by comparing simulated to observed groundwater elevation
	values at the various observation points (Shown on Figure 4-3 and
	summarized in Table 4-2). Results show that the modelled groundwater
	levels tend to be higher than observed at low elevations, and lower than
	observed at high elevations. These results indicate that the model may
	underrepresent the observed magnitude of hydraulic gradients. Magnitude
	of error should be discussed in both a spatial and geological sense, and its
	implications on model performance should be discussed. Although
	automated calibration can efficiently generate parameter sets that minimize
	errors, the solution is non-unique, meaning that other possible parameter
	combinations may yield the same result. As such, it is important that results
	are evaluated to ensure that they align with observations and the
	conceptual model. In Section 4.4.3 it is stated that the calibrated hydraulic
	conductivity is generally less than that observed in the single well tests.
	I his result does not seem to be consistent with the accepted observation
	that hydraulic conductivity increases with scale (e.g., Schulze-Makuch et

ID:	IR-12		
	al., 1999). Although it is noted that bedding in the bedrock units follows the		
	near vertical dip of the units, the calibrated anisotropy value results in a		
	higher hydraulic conductivity across the bedding planes. This result is		
	inconsistent with typical conceptualization. As discussed in NRCan-04		
	these results may indicate that the modelled hydrostratigraphy is not		
	aligned with observations. As shown on Figure 4-4, recharge is the most		
	sensitive parameter in the calibration. The calibrated recharge value is		
	validated against an assumed range for all of Newfoundland. However,		
	sufficient water balance data is presented in Baseline Study Appendix 3C		
	Section 4.1 that would allow calibrated recharge to be compared to a local		
	annual water surplus. Given that hydraulic conductivity parameters are		
	outside of the assumed range, calibrated recharge warrants this level of		
	comparison. Reference: Schulze-Makuch, D., Carlson, D. A., Cherkauer, D.		
	S. & Malik, P. Scale Dependency of Hydraulic Conductivity in		
	Heterogeneous Media. Groundwater 37, 904–919 (1999).		
Information Request:	a. Discuss the calibration of the groundwater model to baseflow. Provide a rationale for the river conductance factor derived from the calibration.		
	b. Describe the methodology for specifying the exploration holes as		
	observation wells in the groundwater model. If each hole is assigned to		
	a single HSU, include this unit in Table 4-2, and colour the data by HSU		
	on Figure 4-3. Discuss the number of observation points in each HSU.		
	c. Discuss calibration to water levels in terms of HSU and spatial location.		
	reevaluate the calibration to ensure hydraulic gradients are properly represented.		
	d. Review and update the hydrostratigraphic conceptualization and its		
	effect on calibrated hydraulic conductivity and anisotropy values.		
	e. Provide details on the presentation of two overburden units on Figure 4-		
	4, which are not included in Table 4-3.		
	f. Discuss calibrated recharge relative to site water balance data.		
Response:	a. The calibration of the groundwater flow model to baseflow was		
	conducted for six surface water monitoring locations presented on		
	Table IR-12.1. As shown on the table, a good match of the baseflow in		
	the model to the targets was obtained, ranging from 0.3 to 28%, with an average match of 12%.		
	The river conductance was fit during calibration. The conductance term		
	controls the interaction of the boundary condition to the aquifer, and		
	conceptually simulates a stream or lake bed material. The higher the		
	conductance, the better the connection of the water level in the		
	boundary with the water level in the aguifer cell the boundary condition		

ID:	IR-12
	is located. The flow rates between the aquifer and the boundary conditions tend to vary linearly as the conductance rate increases from low to high but flattens to a peak value that is governed by the flow from the aquifer to the boundary. In this case, the conductance value suggests the boundary condition has a good connection with the aquifer, and the flow rate is governed by the aquifer properties rather than the lakebed or riverbed materials.
	b. The screen intervals for monitoring wells, or open intervals for the bedrock wells were assigned in the model. The water levels for these intervals were calculated in ModelMuse using the Modflow Head Observation (HOB) package (Hill et al. 2000). These multi-layer water level observations were calculated using the average of the transmissivity-weighted water levels in each layer intersected.
	c. The distribution of residual water levels (i.e., simulated - observed) by elevation is shown on Figure IR-12.1. As shown, there is a slight bias to overestimate the water levels in the lower elevations, and to slight bias to underestimate the water levels at higher elevations. However, the majority (i.e., 59%) of the water level residuals are within 2 m of the target, with 29% of the residuals between 2 and 5 m, and 12% of residuals greater than 5 m.
	d. Vertical anisotropy is challenging to measure in the field, and is often applied in groundwater practice with a rule of thumb assumption of vertical hydraulic conductivity an order of magnitude lower than the horizontal. However, this simplifying assumption can vary significantly due to actual hydrogeological conditions. As shown on Table 4-3 of Appendix 6A of the EIS, the vertical anisotropy was allowed to vary within the model between 0.05 and 5. The vertical anisotropy within the bedrock was fit at the low end of this range (0.05), suggesting that vertical flow into the deeper bedrock is limited.
	e. Figure 4-4 presented in Appendix 6A of the EIS referenced an earlier iteration of PEST that discretized the hydraulic conductivity of the overburden into two layers. The results of that PEST run arrived at a uniform hydraulic conductivity for the two layers, and because it was uniform, a single value for hydraulic conductivity for the till overburden was presented in Table 4-3 of Appendix 6A of the EIS. The overall sensitivities presented in Appendix 6A of the EIS are unchanged, with the recharge and overburden hydraulic conductivity remaining the most sensitive parameters.

ID:	IR-12	
	f. The calibrated recharge rate of 381 mm/yr is able to match the overall head distribution within a normalized RMS of water levels of 2.7%, and an average baseflow in stream measurements of 12%.	
	Reference:	
	 Hill, M.C., E.R. Banta, A.W. Harbaugh, and E.R. Anderman. 2000. MODFLOW-2000, the U.S. Geological Survey modular ground-water model User guide to the Observation, Sensitivity, and Parameter-Estimation Processes and three post-processing programs: U.S. Geological Survey Open-File Report 00-184, 210 p.Attachment: https://marathongold.stanport.com/Shared%20Documents/IR-12.docx 	
Appendix:	None	

Surface Water Station	Observed	Simulated	% Difference
HS3_1	700	587	-16%
HS5_1	997	782	-22%
HS1_1	401	515	28%
HS7_1	1737	1805	3.9%
HS9_1	2918	2894	-0.8%
HS8_1	5058	5040	0.3%

 Table IR-12.1
 Baseflow Calibration in Groundwater Flow Model

Figure IR-12.1 Distribution of model residuals (simulated – observed water levels) by observed water level elevation

ID:	IR-13
Expert Department or	NRCan-07
Group:	
Guideline Reference:	Section 7.1.5
EIS Reference:	Appendix 6A, Section 5.2.1.2
Context and Rationale:	The EIS Guidelines require information on groundwater flow patterns and rates. The effect of the Valentine Lake Thrust Fault on groundwater flow was assessed through a sensitivity analysis. The results of this analysis were evaluated in terms of groundwater inflow to the open pit under operational conditions. While this mode of analysis is required for water management purposes, it neglects to account for related changes in groundwater elevations. An increased hydraulic conductivity in the fault zone more than doubles the groundwater inflow to the open pits. As stated in Section 5.2.1.2 of Appendix 6A, the simulated fault plane connects the pits to Victoria Lake. Given this connection, simulations which include the fault are likely to result in changes to groundwater-surface water flux rates for Victoria Lake and the small lakes proximal to the pits. Expanded evaluation of the fault scenarios is required.
Information Request:	 a. Provide groundwater elevation maps for baseline conditions for both fault scenarios. Discuss the effect of the fault scenarios on model calibration and groundwater flow in both overburden and bedrock under baseline conditions. b. Provide groundwater elevation and drawdown maps for both fault scenarios in both operations and closure. Groundwater drawdown information should be provided for both the water table and within the baseline table.
	 c. Provide tables summarizing the changes in baseflow to surface water bodies for both fault scenarios under both operations and closure. d. Complete particle tracking for both fault scenarios under both operations (from the Low Grade Ore Stockpile and Waste Rock Pile)
Response.	and closure (from the Low Grade Ore Stockpile, Waste Rock Pile, and backfilled tailings).
Tresponse.	the hydraulic conductivities determined for the Marathon and Leprechaun deposit faults (including the Valentine Lake thrust fault) were within the range of values for the various rock types, and were not found to be hydraulically distinct from the surrounding rock mass. This continues to support the assumption that the faults in the proposed open pits are not

ID:	IR-13	
	expected to be substantial preferred pathways for groundwater flow, or constitute problem areas for seepage control. Therefore, the baseline values remain valid for the assessment of potential effects.	
	a. Groundwater elevation maps for the baseline conditions are presented for the 10 times higher K fault scenario in Figure IR-13.1, and for the 10 times lower K fault scenario in Figure IR-13.2 (Appendix IR-13.A). The fault scenarios do not significantly alter the groundwater flow rates or calibration results in either case.	
	b. Groundwater elevation and drawdown maps for the water table, which includes the drawdowns associated within the bedrock in the open pits, are presented as outlined below. Groundwater elevation and drawdown maps for the operation conditions for the 10 times higher K fault scenarios are presented in Figures IR-13.3 and IR-13.4 (Appendix IR-13.A), respectively. Groundwater elevation and drawdown maps for the operation conditions for the 10 times lower K fault scenarios are presented in Figures IR-13.6 (Appendix IR-13.A), respectively. Groundwater elevation and drawdown maps for the post-closure conditions for the 10 times higher K fault scenarios are presented in Figures IR-13.7 and IR-13.8 (Appendix IR-13.A), respectively. Groundwater elevation and drawdown maps for the post-closure conditions for the 10 times lower K fault scenarios are presented in Figures IR-13.7 and IR-13.8 (Appendix IR-13.A), respectively. Groundwater elevation and drawdown maps for the post-closure conditions for the 10 times lower K fault scenarios are presented in Figures IR-13.7 and IR-13.8 (Appendix IR-13.A), respectively. Groundwater elevation and drawdown maps for the post-closure conditions for the 10 times lower K fault scenarios are presented in Figures IR-13.9 and IR-13.10 (Appendix IR-13.A), respectively.	
	 c. Tables summarizing the baseflow to surface water bodies for both fault scenarios are presented in Table IR-13.1 for operations and Table IR- 13.2 for post-closure (Appendix IR-13.A). 	
	d. Particle tracking results for the fault scenarios are presented for operations in Figures IR-13.11 and IR-13.12 and for post-closure in Figures IR-13.13 and IR-13.14 (Appendix IR-13.A). Note that the low- grade ore stockpile will not be present during post-closure as it will be processed at the end of operations. Therefore, post-closure figures do not include particle tracks from the low-grade ore stockpiles.	
Appendix:	Appendix IR-13.A	

ID:	IR-14
Expert Department or	NRCan-08
Group:	
Guideline Reference:	Section 7.1.5
EIS Reference:	Appendix 6A, Sections 5.2.2 and 5.3.2, Tables 5-3 and 5-6. And Figures 5-2
	and 5-4
Context and Rationale:	The EIS Guidelines require the delineation and characterization of
	groundwater - surface water interactions. Baseflow, or groundwater
	discharge to surface water, can be the main sustaining flow for surface
	water bodies during periods of low precipitation. This flow can be critical to
	fish, fish habitat and other aquatic species. Changes to baseflow, or
	changes to the flux between groundwater and a surface water body is one
	of the key outputs from the groundwater model, and feeds the assessment
	of effects to other Valued Components. To assess model results,
	groundwater drawdown can be compared to simulated changes in
	groundwater discharge to surface water. Maps on Figures 5-2 and 5-4 of
	Appendix 6A of the EIS show simulated groundwater drawdown under
	operations and closure conditions. However, it does not appear that all of
	the waterbodies listed in Tables 5-3 and 5-6 of Appendix 6A of the EIS are
	shown on the map (e.g., VR4). It is also apparent that not all of the water
	bodies in the model have been included in Tables 5-3 and 5-6 of Appendix
	6A of the EIS. Specifically, the reach of the Victoria River that falls within
	the model domain is not reported. Results in Table 5-3 and 5-6 of Appendix
	6A of the EIS both indicate that waterbodies NT1 and NT2 receive more
	groundwater discharge in operations and closure relative to baseline
	conditions. This table appears to be inconsistent with the drawdown shown
	on Figures 5-2 and 5-4 of Appendix 6A of the EIS, as well as the discussion
	within the text. Additionally, waterbody ST3 appears to lose between 500
	and 1000 m3/day of groundwater discharge in operations and closure. This
	water body is outside of the zone of influence of the pits, and within an area
	of increased groundwater elevations due to the presence of the tailings
	management facility. These results should be evaluated against expected
	outcomes.
Information Request:	a. Update maps provided in Table 5-3 and 5-6 of Appendix 6A of the EIS
	to ensure that all waterbodies are clearly labelled.
	b. Where the results shown in Table 5-3 and 5-6 of Appendix 6A of the
	FIS appear to be inconsistent with the water table drawdown or
	expected results, correct values that are reported, and discuss any
	rationale for the discrepancy.
	······································

ID:	IR-14
	Provide simulated changes to groundwater-surface water exchange rates for the reach of the Victoria River that is within the model domain under both operations and closure conditions. Discuss these results in comparison to a water balance for this reach of the river, and ensure sufficient surface flow is available to maintain any flux to groundwater.
Response:	a. The waterbodies presented on Table 5-3 and 5-6 of Appendix 6A of the EIS are presented with labels on Figures 4-2a, 4-2b, 4-2c, and 5-1 to 5-5 of Appendix 6A of the EIS. The waterbodies are presented with labels on Figure IR-14.1.
	b. The results presented in Tables 5-3 and 5-6 of Appendix 6A of the EIS are consistent with the results from the groundwater modelling. The following responses are provided to explain the context of the perceived discrepancies.
	Although the groundwater modelling indicates that the water table is lowered during operations and post-closure compared to baseline conditions, the net groundwater flow to waterbodies NT1 and NT2 are predicted to increase for both these scenarios. This appears to be related to changing the boundary condition types for NT1 and NT2 from RIV to DRN (see IR-11). The net flows at NT1 and NT2 under baseline conditions appears to have had some of the cells simulating flow in the opposite direction (i.e., from surface water to groundwater) rather than from groundwater to surface water during operations. However, this does not affect the interpretations of effects on these features.
	Waterbody ST3 appears to lose between 500 and 1000 m ³ /d of groundwater discharge in operations and closure due to the operation of the seepage collection ditch at the base of the Tailings Management Facility, which intercepts groundwater flow to this feature during baseline conditions.
	c. The groundwater-surface water exchange rates for the reach of the Victoria River within the model domain is 19,748.8 m³/d for operation, and 19,882.9 m³/d for post-closure conditions. Victoria River is a natural groundwater discharge zone, and these rates represent net contributions to surface water from groundwater. Therefore, no surface flow is required to maintain the fluxes to groundwater.
Appendix:	None

April 2021

Figure IR-14.1 Water Features Included in the Groundwater Modelling

ID:	IR-15
Expert Department or	NRCan-09
Group:	
Guideline Reference:	Section 7.2.2
EIS Reference:	Appendix 6A, Sections5.2.1.3 and 5.3.1.2, Tables 5-4, 5-6, and 5-7.
Context and Rationale:	The EIS guidelines require information on surface and seepage water
	quality from the waste rock dumps, tailings/waste rock impoundment
	facility, stockpiles and other infrastructure during operation and post-
	closure. The quantity of groundwater seepage that originates from waste
	rock storage facilities and discharges to surface water bodies is used to
	assess water quality within these waterbodies. Implementation of these
	facilities and their seepage collection infrastructure within the groundwater
	model has implications on these assessment results. As reported in Section
	5.2.1.3 of the EIS, during operations, recharge was applied to the waste
	rock pile at a rate of 82% of precipitation (indicating that the remaining 18%
	does not infiltrate the pile and runs off). However, results in Table 5-4 are
	presented as percentage of total infiltration, and sum to 82%. These results
	appear to suggest that 18% of the applied recharge is not accounted for
	within the table. During closure, as reported in Section 5.3.1.2 of the EIS,
	recharge rates for the facilities were changed to a post-closure value, which
	is meant to reflect changes in grading and vegetation. This value is not
	provided. In review of the results in Table 5-7, again presented as a
	percentage of total inflitration, the total for the Leprechaun facility appears
	to be 50%, while the total for the Marathon facility appears to be 82%.
	I hese discrepancies should be clarified such that all applied recharge to
	the facilities is accounted for, and that the value of recharge applied is clear
	within the report. Results presented in Tables 5-4 and 5-7 of the EIS
	indicated that the majority of the seepage from the waste rock facilities is
	factures limit the amount of economic received by the network and seepage collection ponds. These
	As stated in section 5.2.1.2 of the EIS ditabas were enseified as 25m wide
	As stated in section 5.2.1.5 of the EIS ditches were specified as 2511 wide,
	these ditches appear to capture a large quantity of groundwater. The
	setting of 25m wide ditches may over-represent the zone of influence of the
	seepage collection system, and model results may underestimate the
	quantity of droundwater seepade that hypasses these systems. The timing
	of the arrival of seepage at the various aroundwater discharge points has
	implications for the ability to monitor and mitigate the effects of this
	seepage. Results from the model should include travel time from the
	facilities to the discharge points.

ID:	IR-15	
Information Request:	 Provide the recharge value applied to the waste rock facilities in both operations and closure, and the method used to derive this value. Present the results in a table (like Tables 5-4 and 5-7 of the EIS), either as percent of recharge or flux value. Discuss any discrepancies between recharge applied and total seepage that was accounted for. 	
	 Include the results for the closure scenario without ditches in the assessment of the seepage of the waste rock facility. 	
	c. Include an assessment of the travel time for seepage from the facilities to the discharge points. Include a discussion of the parameterization of this assessment.	
Response:	a. The recharge rate applied to the waste rock piles (WRPs) in the groundwater flow model for both operation and closure scenarios is 243 mm/yr, and is derived as presented in Appendix 7A. The operation and closure values remain unchanged as the sloping and regrading of the waste rock materials is assumed to have negligible effects on the infiltration to the WRPs. The results presented in Table 5-4 of the EIS are presented relative to total precipitation on the WRPs, and not total infiltration.	
	 b. The assessment of seepage from the WRPs without ditches was not conducted for the post-closure period because the seepage water quality from the WRPs collected in the seepage collection ditches would naturally seep from the toe of the WRPs and would travel overland. It is assumed that some natural channel would remain post-closure to direct the seepage from the WRPs to watercourses. Therefore, drainage ditches, rather than seepage collection ditches, will remain at the WRPs post-closure. c. The travel time for seepage from the facilities to the discharge points. 	
	c. The travel time for seepage from the facilities to the discharge points are shown on Table IR-15.1 for operations, and Table IR-15.2 for post- closure conditions. This is based on the porosity of the geological units presented in Table IR-16.1.	
Appendix:	None	

April 2021

Receptor	Waste Rock Pile	Low-Grade Ore Stockpile
	(min mean max)	(min mean max)
Leprechaun Complex		
Leprechaun Pit	49646 608634 1627083	-
LP-SP-01A	-	<1 19 98
LP-SP-01B	<1 9 47	75 120 227
LP-SP-02A	<1 39 333	201 239 321
LP-SP-02B	1 52 509	-
LP-SP-03A	<1 21 162	-
LP-SP-03B	<1 37 350	-
Victoria Lake Reservoir	1 63721 1950393	-
Marathon Complex		
Marathon Pit	1 3705636 19086552	2713 1458938 6075249
MA-SP-01A	-	10 55 191
MA-SP-01B	-	27 120 319
MA-SP-01C	<1 11 133	-
MA-SP-02	<1 125 81018	-
MA-SP-03	<1 157 55775	-
MA-SP-04	<1 15 249	-
Frozen Ear Lake and Tributaries NT3	2 184 435	11 200 2322
Unnamed Tributary to Valentine Lake NT5	1 282 35537	-
Unnamed Tributary to Victoria River ST4	7 5049 118300	-
Unnamed Tributary to Victoria River VR4	-	106 296 7019

Table IR-15.1 Groundwater Travel Times (Years) from Waste Rock Piles and LGO Stockpiles - Operation Phase

April 2021

Pacantor	Waste Rock Pile (min mean max)				
Keceptor					
Leprechaun Complex					
Leprechaun Pit	193988062 195735923 197483784				
LP-SP-01A	-				
LP-SP-01B	<1 <1 1				
LP-SP-02A	<1 39 400				
LP-SP-03A	<1 22 198				
LP-SP-03B	<1 25 134				
Marathon Complex					
Marathon Pit	1 561661302 49962837189				
MA-SP-01A	-				
MA-SP-01B	-				
MA-SP-01C	<1 19 133				
MA-SP-02	<1 29 10215				
MA-SP-03	<1 26 2357				
MA-SP-04	<1 331 108708				
Frozen Ear Lake and Tributaries NT3	<1 7816958 8795320387				
Unnamed Tributary to Valentine Lake NT5	<1 123 26145				
Unnamed Tributary to Victoria River ST4	1 6884312 518355893				

Table IR-15.2 Groundwater Travel Times (Waste Rock Piles and LGO Stockpiles) – Post-Closure Phase

ID:	IR-16
Expert Department or	NRCan-10
Group:	
Guideline Reference:	Section 7.2.2
EIS Reference:	Appendix 6A, Sections5.2.1.4 and 5.3.1.2
Context and Rationale:	The EIS guidelines require information on surface and seepage water
	quality from the waste rock dumps, tailings/waste rock impoundment
	facility, stockpiles and other infrastructure during operation and post-
	closure. Similar to seepage from waste rock facilities, the quantity of
	groundwater seepage that originates from the Tailings Management Facility
	(TMF) and discharges to surface waterbodies is important to the
	assessment of water quality, as it affects the assessment of fish and fish
	habitat. As discussed in Appendix 6A of the EIS, a contaminant transport
	approach using MT3D was implemented to generate an attenuation factor
	for seepage from the TMF prior to discharge to the Victoria River. To review
	the assessment of TMF seepage, the details of the parameterization of the
	MT3D model should be provided. Results of the model including the
	quantity of seepage, point of discharge (i.e., Victoria River or its tributaries)
	and travel time should be provided.
Information Request:	Provide details of the MT3D model set-up, including parameterization.
	Discuss the results of the MI 3D model in terms of seepage quantity,
	seepage discharge points, and travel time.
Response:	I ne simulation considers the transport of a conservative solute from the
	seepage water from the Tallings Management Facility (TMF) with a source
	over time. The solute is considered to be conservative because it is
	assumed to have the diffusion coefficient of chloride, a conservative tracer
	Solute transport was conducted for a period of 500 years. The solute
	transport model was set up using the transport parameters shown on Table
	IR-16.1 Porosity for each geologic material is based on the mid-range of
	expected values from the literature. Dispersivity is assumed based on the
	spatial scale of solute transport
	Source terms for the seepage water quality from the IMF were assumed to
	be the same as the tailings pore water quality, as presented in Appendix /A
	of the EIS. The source terms are multiplied by the relative concentrations
	concentrations of aroundwater discharging to surface water recenters
	Groundwater seepage from the base of the TMF that is not collected in the
	TMF seepage collection ditches is projected to discharge to Victoria River,
ID:	IR-16
-----------	--
	and tributary VR-3. The rate of discharge to the watercourse at the maximum extent of the groundwater plume, and associated travel time statistics (minimum, mean, and maximum) are presented on Table IR-16.2.
	As discussed in Section 5.3.2 of Appendix 6A of the EIS, the attenuation ratio of seepage from the base of the TMF discharging to Victoria River was calculated following 100 years of post-closure conditions. This attenuation ratio is conservative in nature, as it assumes a constant, non-depleting source concentration at the TMF, with no chemical reactions in the groundwater flow system. As shown on Table IR-16-2, some additional mass will continue to be added to the plume, however, the rate that the concentrations at these locations will increase is predicted to stabilize, and will not change the attenuation ratio substantively, based on the conservative nature of the calculation of the attenuation ratio.
Appendix:	None

April 2021

Parameter	Assigned Value				
Porosity					
Overburden Units	0.25				
Weathered Bedrock	0.1				
Competent Bedrock	0.05				
Tailings	0.25				
Dispersivity (All Geological Units)					
Longitudinal (m)	10				
Transverse and Vertical (m)	1				
Solute Species					
Diffusion Coefficient (m²/s)	1.4×10 ⁻⁹				

Table IR-16.1 Assigned and calibrated solute transport model parameter values

Table IR-16.2 Seepage Rates and Travel Times from TMF to Surface Water Receivers

Receiver	Groundwater	Travel Times (Years)		
	Seepage Rate (m³/d)	Minimum	Mean	Maximum
Victoria River	5355	45	171	415
Unnamed Tributary to Victoria River (VR3)	467	7	104	251

ID:	IR-17				
Expert Department or	NRCan-11				
Group:					
Guideline Reference:	Section 7.2.2				
EIS Reference:	EIS Chapter 2, Section 2.6.3.3, Appendix 6A, Figure 5-4				
Context and Rationale:	The EIS guidelines require information on surface and seepage water				
	quality from the waste rock dumps, tailings/waste rock impoundment				
	facility, stockpiles and other infrastructure during operation and post-				
	closure. The EIS states that following the exhaustion of the Leprechaun Pit				
	in year 9, tailings will be backfilled within the pit. These tailings represent a				
	potential source of mining impacted groundwater seepage, which may				
	affect fish and fish habitat should hydraulic containment within the open pit				
	be lost upon pit flooding. While Figure 5-4 of the EIS demonstrates that				
	some degree of water table drawdown around the open pit is maintained				
	to assess bydraulic containment. As such the potential effect of backfilled				
	tailings within the open pit is missing				
Information Request:	a Complete particle tracking for the backfilled tailings within the				
mormation request.	Lenrechaun open pit, and report on any discharge points for seepage				
	Integrate this volume of groundwater seepage into the assessment of				
	the potential effects on fish and fish habitat down gradient of the open				
	pit.				
	b. Assess the sensitivity of the model results to the post-closure pit				
Response:	a. Post-closure particle tracking for tailings located at the base of the				
	Leprechaun open pit are presented on Figure IR-17.1. As shown on the				
	figure, some of the particles within the Leprechaun pit are simulated to				
	be discharged to Victoria Lake Reservoir (both south of tributary WP1				
	and north of NT2), while others remain within the open pit. The travel				
	times associated with the particles that travel to the north are in excess				
	of 2.3 million years, and the particles that travel to the south are in				
	excess of 4.4 million years. Therefore, the discharge of these seepage				
	rates is not anticipated to adversely affect the water quality in the				
	receptors.				
	b. The ultimate stage of the pit lake presented in the EIS represents the				
	overflow depth; therefore, water levels are not anticipated to vary				
	substantively around this level post-closure. As a result, a sensitivity				

ID:	IR-17			
	analysis of the post-closure modelling results was not warranted to evaluate this effect.			
	c. The sensitivity of the particle tracks originating at the in-pit tailings was conducted. As shown by comparing Figures IR-13.13 and IR-13.14 to Figure IR-17.1, the ultimate destination of the particle tracks originating at the Leprechaun open pit are not altered by the presence of the fault, and do not indicate flow along the fault. The predicted travel times remain in excess of two million years.			
Appendix:	None			

April 2021

Figure IR-17.1 Post-closure particle tracking for tailings located at the base of the Leprechaun open pit

ID:	IR-18				
Expert Department or	NRCan-13				
Group:					
Guideline Reference:	Section 7.1.2				
EIS Reference:	Baseline Study Appendix 5 Attachment 5-B Section 3.1.1, 4.1.1, and 4.3.1 and Appendix A				
Context and Rationale:	The EIS Guidelines require the proponent to complete a geochemical characterization of waste rock, ore, low grade ore, and overburden in order to predict metal leaching and acid rock drainage. It also refers the proponent to the MEND (2009). Geochemical samples collected from ore, low grade ore, and waste rock were presented on two plan views (ESI - Appendix A Figures A.4 and A.7) and four cross sections (EIS - Appendix A Figures A.5, A.6, A.8, A.9). These figures do not meet the guidance provided in MEND (2009), and do not adequately present the spatial distribution of all ore, low grade ore, and waste rock samples collected as part of this study. The mine rock sample interval length ranged from 1.0-1.5 m, which is shorter than that recommended in the MEND (2009) guidance document. Additionally, short sample intervals can be skewed by potential mineralogical heterogeneity across a geological unit and thus may not be representative of the overall composition of the geological unit. MEND (2009) provides a recommended minimum sampling frequency per waste rock lithology, where the final sample number must be determined based on site- specific conditions, study objectives, and the overall tonnage of each lithology to be mined. Tonnage estimates by waste rock lithology were not provided in baseline study appendix (BSA)-5 to demonstrate that the number of samples collected per lithology are sufficient for each of the main waste rock lithologies to be mined. The approximate proportions of some waste rock lithologies are stated in BSA-5; however, this does not reflect the overall tonnage of material.				
Information Request:	 Provide images (e.g., cross sections or block model images) that show the location of all ore, low grade ore, and waste rock samples from both Leprechaun and Marathon deposits. Also, provide maps of overburden sample locations from both deposits. 				
	b. Describe sample heterogeneity with respect to mineralogy and sample observations in the field to justify the short sample interval utilized in this study. Include an evaluation of exploration assay data to support this discussion.				
	c. Provide tonnage estimates for each waste rock, low grade ore, and ore lithology from both the Leprechaun and Marathon deposits, and				

ID:	IR-18				
	quantitative justification for the number of samples collected to date. Include a plan to address data gaps.				
Response:	 Based on recent consultation with NRCan, it is understood that NRCan is requesting all samples be shown on cross-sections. In response, updated maps and cross-sections showing all samples are provided in Appendix IR-18.A. As well, overburden sample locations are provided on Figure IR-18.1. 				
	 b. The approach taken in Marathon's geochemical characterization program is based on the geological interpretation and understanding of the gold mineralization and distribution / association of sulphide minerals specific to the deposits. Based on the mineralization characteristics at the Valentine Gold Project, the one-meter sample interval is considered appropriate for evaluating the variability in geochemistry and mineralogy of materials and capturing appropriately the natural variability in distribution of Acid Rock Drainage/Metal Leaching (ARD/ML) properties of the mine rock. An example of the selection table for drill hole MA-18-281 is shown in Table IR-18.1. The gold content is different in the sampled intervals (i.e., 84-85, 142-143, 203-204, 286-287, 362-363) as compared to the adjacent 1 m; this indicates variability in mineralization of the deposit. Longer sample intervals or compositing samples will mask the variability in material properties as indicated on page 8-9 of Mine Environment Neutral Drainage (MEND) Manual (2009). 				
	c. The tonnage estimates and number of samples tested are provided in Tables IR-18.2 and IR-18.3 for each lithology identified within the geologic block model. Some lithologies, such as mafic dykes and varieties of quartz porphyry are narrow and are therefore not represented in the block model based on the block sizes; these have been lumped in with larger geologic units containing these lithologies in models for both deposits.				
	Additional sampling and testing of units with low mineralization is required, such as the gabbro and metasediments, which were not as well covered by exploration drill programs targeting gold anomalies. Overall, gold mineralization correlates with sulphide content indicating that undersampled lithological units are likely to have lower ARD/ML potential. Therefore, additional sampling and testing of these units is expected to result in an increase in the estimated tonnage of non- potentially acid generating rock. The additional sampling and testing targets, according to MEND (2009) are presented in Tables IR-18.2 and IR-18.3.				

ID:	IR-18
	Reference:
	Mine Environment Neutral Drainage Program (MEND). 2009. Prediction Manual for Drainage Chemistry from Sulphidic Geologic Materials, MEND Report 1.20.1, p. 1-579.
Appendix:	Appendix IR-18.A

Figure IR-18.1Overburden Sample Locations

7//

Hole_ID	From_m	To_m	Au g/t	Lithology
MA-18-281	2.89	4		Conglomerate
MA-18-281	6	7		Conglomerate
MA-18-281	7	9	0.005	Mafic Dike
MA-18-281	9	11	0.005	Qtz-eye Porphyry
MA-18-281	11	13	0.009	Qtz-eye Porphyry
MA-18-281	13	15	0.015	Qtz-eye Porphyry
MA-18-281	15	17	0.005	Qtz-eye Porphyry
MA-18-281	17	19	0.022	Qtz-eye Porphyry
MA-18-281	19	21	0.060	Qtz-eye Porphyry
MA-18-281	21	23	0.011	Mafic Dike
MA-18-281	25	27	0.005	Aphanitic Qtz Porphyry
MA-18-281	27	29	0.005	Aphanitic Qtz Porphyry
MA-18-281	29	30	0.023	Aphanitic Qtz Porphyry
MA-18-281	30	31		Aphanitic Qtz Porphyry
MA-18-281	31	33	0.005	Qtz-eve Porphyry
MA-18-281	49	50	0.010	QZ - Qtz-eve Porphyry + QTP
MA-18-281	52	53	0.005	Qtz-eve Porphyry
MA-18-281	53	54	0.005	Qtz-eve Porphyry
MA-18-281	54	56	0.005	Qtz-eve Porphyry
MA-18-281	56	58	1.027	Qtz-eve Porphyry
MA-18-281	58	60	0.023	Qtz-eve Porphyry
MA-18-281	60	61	0.005	Qtz-eve Porphyry
MA-18-281	61	62	0.005	Qtz-eve Porphyry
MA-18-281	62	64	0.005	Qtz-eye Porphyry
MA-18-281	64	66	1 141	Aphanitic Otz Porphyry
MA-18-281	68	70	0.005	Otz-eve Porphyry
MA-18-281	82	83	0.000	OZ = OTZ =
MA-18-281	83	84	0.005	QZ - Qtz-eve Porphyry + Minor QTP
MA-18-281	84	85	0.000	QZ - Qtz-eve Porphyry + Minor QTP
MA-18-281	85	86	0.341	QZ - Qtz-eve Porphyry + Minor QTP
MA-18-281	86	87	0.005	QZ - Qtz-eve Porphyry + Minor QTP
MA-18-281	87	88	0.005	QZ - Qtz-eve Porphyry + Minor QTP
MA-18-281	88	89	0 135	QZ - Qtz-eve Porphyry + Minor QTP
MA-18-281	89	90	0.083	QZ - Qtz-eve Porphyry + Minor QTP
MA-18-281	90	91	0.005	QZ - Qtz-eve Porphyry + Minor QTP
MA-18-281	91	92	0.005	Otz-eve Porphyry
MA-18-281	94	96	0.005	Aphanitic Qtz Porphyry
MA-18-281	102	104	0.005	Otz-eve Porphyry
MA-18-281	122	124	0.005	Anhanitic Otz Pornhyry
MA-18-281	134	136	0.000	Otz-eve Porphyry
MA-18-281	136	138	0.012	Otz-eve Pornhvrv
MΔ_18_281	138	130	0.000	Otz-eve Pornhyry
MΔ_18_281	130	140	1 001	Otz-eye Pornhyry
MΔ_18_281	1/0	1/11	0.526	Otz-eve Pornhyry
MΔ_18_281	1/1	1/12	2 028	Otz-eve Pornhyry
MA-18-281	142	143	0.504	Otz-eve Pornhvrv
MA-18-281	142	145	0.304	Otz-eve Porphyry
ΜΔ_18_281	1/5	1/7	0.724	Anhanitic Otz Pornhyry
MΔ_18_281	155	157	0.015	Atz-eve Pornhvrv
MA 12 201	170	170	0.005	Anhanitic Atz Pornhyry
10-201	170	1/2	0.005	Aphannuc Qiz Fulphyry

Table IR-18.1 Logs and Assays of MA-18-281 Drill Hole used for Sample Selection.

Note: Intervals highlighted in grey were selected for ARD/ML Testing Program

Table IR-18.1 Logs and Assa	/s of MA-18-281 Drill Hole	used for Sample Selection.

Hole_ID	From_m	To_m	Au g/t	Lithology
MA-18-281	172	173	0.005	Aphanitic Qtz Porphyry
MA-18-281	173	174	0.005	Aphanitic Qtz Porphyry
MA-18-281	174	176	0.005	Aphanitic Qtz Porphyry
MA-18-281	176	177	0.005	Aphanitic Qtz Porphyry
MA-18-281	177	178	0.005	Aphanitic Qtz Porphyry
MA-18-281	178	179	0.005	Qtz-eye Porphyry
MA-18-281	191	193	0.005	Aphanitic Qtz Porphyry
MA-18-281	197	199	0.005	Qtz-eye Porphyry
MA-18-281	200	201	0.005	QZ - Qtz-eye Porphyry + Minor QTP
MA-18-281	201	202	0.005	QZ - Qtz-eye Porphyry + Minor QTP
MA-18-281	202	203	0.005	QZ - Qtz-eye Porphyry + Minor QTP
MA-18-281	203	204	0.019	QZ - Qtz-eye Porphyry + Minor QTP
MA-18-281	204	205	0.014	QZ - Qtz-eye Porphyry + Minor QTP
MA-18-281	205	206	0.019	QZ - Qtz-eye Porphyry + Minor QTP
MA-18-281	206	207	0.039	QZ - Qtz-eye Porphyry + Minor QTP
MA-18-281	207	208	0.005	QZ - Qtz-eye Porphyry + Minor QTP
MA-18-281	208	209	0.005	QZ - Qtz-eye Porphyry + Minor QTP
MA-18-281	209	210	0.005	QZ - Qtz-eye Porphyry + Minor QTP
MA-18-281	210	211	0.005	QZ - Qtz-eye Porphyry + Minor QTP
MA-18-281	211	212	0.005	QZ - Qtz-eye Porphyry + Minor QTP
MA-18-281	212	213	0.005	Qtz-eye Porphyry
MA-18-281	218	220	0.005	Aphanitic Qtz Porphyry
MA-18-281	228	230	0.011	Qtz-eye Porphyry
MA-18-281	230	232	0.005	Qtz-eye Porphyry
MA-18-281	232	233	0.005	Qtz-eye Porphyry
MA-18-281	233	235		Qtz-eye Porphyry
MA-18-281	234	236	0.005	Qtz-eye Porphyry
MA-18-281	236	238	0.005	Qtz-eye Porphyry
MA-18-281	238	240	0.005	Qtz-eye Porphyry
MA-18-281	240	242	0.005	Qtz-eye Porphyry
MA-18-281	242	244	0.005	Qtz-eye Porphyry
MA-18-281	244	246	0.016	Qtz-eye Porphyry
MA-18-281	246	248	0.005	Qtz-eye Porphyry
MA-18-281	248	250	0.012	Qtz-eye Porphyry
MA-18-281	250	252	0.005	Qtz-eye Porphyry
MA-18-281	252	254	0.005	Qtz-eye Porphyry
MA-18-281	254	256	0.005	Qtz-eye Porphyry
MA-18-281	256	258	0.005	Aphanitic Qtz Porphyry
MA-18-281	262	264	0.005	Qtz-eye Porphyry
MA-18-281	282	284	0.005	Mafic Dike
MA-18-281	284	286	0.005	Mafic Dike
MA-18-281	286	287	0.012	Mafic Dike
MA-18-281	287	288	0.012	Mafic Dike
MA-18-281	288	290	0.005	Mafic Dike
MA-18-281	290	292	0.005	Mafic Dike
MA-18-281	292	294	0.005	Matic Dike
MA-18-281	294	296	0.005	Matic Dike
MA-18-281	296	298	0.005	Matic Dike
MA-18-281	298	300	0.005	Matic Dike
MA-18-281	300	302	0.005	Matic Dike
MA-18-281	302	304	0.005	Matic Dike
MA-18-281	304	306	0.005	Aphanitic Qtz Porphyry

Note: Intervals highlighted in grey were selected for ARD/ML Testing Program

April	2021
-------	------

Hole_ID	From_m	To_m	Au g/t	Lithology
MA-18-281	318	320	0.005	Qtz-eye Porphyry
MA-18-281	324	326	0.005	Mafic Dike
MA-18-281	342	344	0.007	Qtz-eye Porphyry
MA-18-281	344	346	0.007	Qtz-eye Porphyry
MA-18-281	346	348	0.008	Qtz-eye Porphyry
MA-18-281	348	350	0.007	Qtz-eye Porphyry
MA-18-281	350	352	0.026	Qtz-eye Porphyry
MA-18-281	352	354	0.050	Qtz-eye Porphyry
MA-18-281	354	356	0.009	Qtz-eye Porphyry
MA-18-281	356	357	0.005	Qtz-eye Porphyry
MA-18-281	357	358	0.005	Qtz-eye Porphyry
MA-18-281	358	359	0.060	Qtz-eye Porphyry
MA-18-281	359	360	0.005	Qtz-eye Porphyry
MA-18-281	360	361	0.005	Qtz-eye Porphyry
MA-18-281	361	362	0.006	Qtz-eye Porphyry
MA-18-281	362	363	0.014	Qtz-eye Porphyry
MA-18-281	363	364	0.019	Qtz-eye Porphyry
MA-18-281	364	365	0.007	Qtz-eye Porphyry
MA-18-281	365	367	0.005	Qtz-eye Porphyry
MA-18-281	367	369	0.005	Qtz-eye Porphyry
MA-18-281	369	371	0.005	Qtz-eye Porphyry
MA-18-281	371	373	0.005	Qtz-eye Porphyry
MA-18-281	373	375	0.007	Qtz-eye Porphyry
MA-18-281	375	377	0.005	Qtz-eye Porphyry
MA-18-281	377	379	0.005	Qtz-eye Porphyry
MA-18-281	379	381	0.005	Qtz-eye Porphyry
MA-18-281	381	383	0.005	Qtz-eye Porphyry
MA-18-281	383	385	0.005	Qtz-eye Porphyry
MA-18-281	385	387	1.229	Qtz-eye Porphyry
MA-18-281	387	388	0.038	QZ - Qtz-eye Porphyry + QTP
MA-18-281	395	396	0.309	Qtz-eye Porphyry
MA-18-281	402	403	0.088	QZ - Qtz-eye Porphyry + QTP
MA-18-281	408	409	1.200	QZ - Qtz-eye Porphyry + Minor QTP
MA-18-281	409	410	0.026	QZ - Qtz-eye Porphyry + Minor QTP
MA-18-281	410	411	5.069	QZ - Qtz-eye Porphyry + Minor QTP
MA-18-281	411	412	0.007	QZ - Qtz-eye Porphyry + Minor QTP
MA-18-281	412	413	0.219	QZ - Qtz-eye Porphyry + QTP
MA-18-281	413	414	0.107	QZ - Qtz-eye Porphyry + QTP
MA-18-281	414	415	0.251	QZ - Qtz-eye Porphyry + QTP
MA-18-281	415	416	0.196	QZ - Qtz-eye Porphyry + QTP
MA-18-281	416	417	2.454	QZ - Qtz-eye Porphyry + QTP
MA-18-281	417	418	0.584	QZ - Qtz-eye Porphyry + QTP
MA-18-281	418	419	0.114	QZ - Qtz-eye Porphyry + QTP
MA-18-278	10.51	12	0.005	Qtz-eye Porphyry

Table IR-18.1 Logs and Assays of MA-18-281 Drill Hole used for Sample Selection.

Note: Intervals highlighted in grey were selected for ARD/ML Testing Program

Table IR-18.2 Tonnages of lithological units from geological block model and numbers of samples per unit for the Marathon Deposit

Block Model Lithology	Material type	Tonnage, Mt	# of samples tested to date	Suggested initial frequency per Table 8- 2, MEND 2009	# of additional of samples to be tested per Table 8-2 MEND 2009
Metasediments	Waste Rock	30.3	9	80	71
Gabbro	Waste Rock	8.0	4	26	22
QEPOR	Waste Rock	106.7	125	80	0
High Grade Ore	Ore	14.6	28	80	52
Low Grade Ore	Ore	11.1	15	80	65
Overburden	Waste	7.5	14	26	12

Table IR-18.3 Tonnages of lithological units from geological block model and numbers of samples per unit for the Leprechaun Deposit

Block Model Lithology	Material type	Tonnage, Mt	# of samples tested to date	Suggested initial frequency per Table 8- 2, MEND 2009	# of additional of samples to be tested per Table 8-2 MEND 2009
Metasediments	Waste Rock	33	21	80	59
Trondhjemite	Waste Rock	105	93	80	0
High Grade Ore	Ore	8.6	24	26	2
Low Grade Ore	Ore	6.7	13	26	13
Overburden	Waste	3.8	6	26	20

ID:	IR-19
Expert Department or	NRCan-14 MFN-08 ECCC-24
Group:	
Guideline Reference:	Section 7.2.2
EIS Reference:	Baseline Study Appendix 5 Attachment 5-A and 5- B
Context and Rationale:	The EIS Guidelines require the proponent to complete a geochemical
	characterization of potential construction material in order to predict acid
	rock drainage and metal leaching (ARD/ML). A geochemical
	characterization study must be completed for all construction materials to
	evaluate their suitability related to ARD/ML. The potential use of waste
	rock, overburden, and/or quarry material was not discussed in BSA-5, nor
	was the suitability of waste rock and overburden materials for construction
	use. Section 6.3.5.3 of the EIS states that the overburden at the
	Leprechaun and Marathon pits has the potential to leach a number of
	parameters including aluminum, arsenic, cadmium, copper, fluoride, iron,
	manganese, lead, selenium and zinc. It goes on to state that the waste rock
	pile will be covered by growth medium / overburden during rehabilitation,
	further reducing the risk of acid rock drainage and metals leaching. Table
	6.4 in Section 6.4 of the EIS states that progressive rehabilitation will be
	implemented involving placement of a soil cover and vegetation. However,
	It is not explained how this will improve conditions at the site if overburden
	which is leaching metals is used. Section 6.3.5.4 of the EIS states that
	groundwater mass loadings were calculated based on the geochemical
	source terms for the ore stockpiles, waste rock piles, and tailings
	nanagement facility seepage, nowever, groundwater mass loadings were
	investigations of acid rock drainage and motels leachets will continue and
	will include field and laboratory kinetic testing and additional sampling to
	develop an ARD model. Section 6.0 of BSA 5A states that "Tailings from
	Lenrechaun denosits, are expected to be non-PAG and have excess of NP
	This excess of NP can be used to offset ARD potential of tailings from
	Marathon if ores from Marathon and Leprechaun deposit are processed at
	the same time and mixed. Therefore, the mixed tailings are not expected to
	show ARD potential, unless Marathon ore is processed separately from
	Leprechaun ore and resulting solids are left exposed after the closure.
	Section 5.2.2 of BSA 5A states that "approximately 14% of the waste rock
	from the Marathon pit is conservatively estimated to be PAG. Blending PAG
	and non-PAG rock with excess of neutralization potential and/or
	encapsulation of PAG waste by non-PAG rock is recommended to
	neutralize acidity potentially generated in PAG pockets."

ID:	IR	IR-19		
Information Request:	a.	Provide a geochemical characterization of the ARD/ML potential of all materials planned to be used for construction purposes. Include quarries, if applicable.		
	b.	Explain how covering the waste rock pile with overburden that is leaching up to ten metals parameters would result in a reduction of metals leaching when covering waste rock.		
	c.	Clarify if overburden which is metals leaching will be used for the soil cover. Update the effects analysis and mitigation measures, as appropriate, if overburden leaching metals is proposed to be used on site.		
	d.	Given that multiple metals parameters have the potential to leach from overburden, provide a groundwater mass loading for overburden stockpiles or provide a rationale why the overburden was excluded from this analysis.		
	e.	Update the analysis of the acid rock drainage and metals leachate investigations if more recent data is available.		
	f.	With regard to plans to manage ARD for this project, confirm that mitigation measures (e.g., blending to maintain Neutralization Potential Ratios) to avoid ARD generation will be employed when waste rock is used in onsite infrastructure (e.g., road beds).		
Response:	a.	It is currently planned that nearly all earthworks construction will utilize waste rock developed from the open pits. All bulk earthworks, including roads, building and stockpile pads, embankments for ditching and water management ponds and dams for the Tailings Management Facility (TMF) will be constructed using waste rock. It is also planned to crush and screen non-potentially acid generating (PAG) waste rock for more detailed earthworks. The waste rock has been characterized as described in Section 5.2 of Valentine Gold Project: Acid Rock Drainage/Metal Leaching (ARD/ML) Assessment Report (BSA-5 in the EIS). This report provided the basis for distinguishing between PAG and non-PAG rock, and further testing will be completed as described in Appendix IR-19.A. Additional testing will be completed during excavation of waste rock materials from the open pits for use in construction, as required to ensure that only non-PAG rock is used. It is expected that a relatively small amount of quarried rock will be required to commence construction, prior to waste rock being available from the open pits, to develop temporary access roads and construction lavdown areas. As part of the advancing engineering for the Project		
		Marathon will be investigating several potential quarry sites that exist within the footprints of future mine infrastructure (e.g., the Leprechuan		

ID:	IR-19
	waste rock pile area) in order to minimize environmental impacts overall. Any potential quarry sources will be sampled and geochemical testing completed as part of this investigation and prior to use in earthworks.
	Additionally, some overburden (glacial till) materials will be used in small amounts for embankment construction for water management infrastructure. The geochemical characterization of these materials is addressed in part b), below.
	The only construction material not sourced to date is sand for concrete. The current plan is to source sand from local suppliers who have existing sand quarries; alternatively, non-PAG waste rock will be crushed and screened to provide the sand required.
	 b/c. The overburden is glacial till, which originates from distant locations (based on the glacial history of the site) and was not generated from weathering of Project ore deposits. Covering of the waste rock pile with overburden will reduce advective transport of oxygen to the internal portion of the pile resulting in less sulphide oxidation and metal leaching from the waste rock. The current water quality model includes metal leaching from the overburden cover (Appendix 7A and 7B of the EIS). As a result, the assessment of the effects of metal leaching from overburden has already been considered in the EIS.
	d. Natural groundwater is already in "dynamic" equilibrium with metals leaching from the vadose zone of overburden with the baseline groundwater chemistry reflecting natural metal leaching from unsaturated overburden into groundwater. This statement is supported by baseline groundwater samples from the overburden showing exceedances of Aluminum, Arsenic, Cadmium, Iron, Manganese, and Zinc, which is similar to the list of metal exceedances observed in Shake Flask Extraction testing of overburden samples (Table C-3 of Appendix 7B and Table B-18 of BSA-5 in the EIS). Based on the concurrence of these observations, the assumption that groundwater quality under overburden will stay similar to baseline conditions is reasonable. Therefore, addition of mass loading from exposed overburden to groundwater is not required.
	e. Marathon recognizes that further ARD/ML work is required and further assessment and associated refinement of Project mitigation as design of the Project proceeds (refer to Appendix IR-19.A for further information). Specifically, Marathon is committed to completing additional work to address testing gaps identified in the program completed to date, and as noted by NRCan, within the next 6 to 8

ID:	IR-19		
	months and prior to construction. This information is required for final design and permitting under the NL <i>Mines Act</i> (NL Department of Industry, Energy, and Technology), and will be shared with NRCan as it becomes available:		
	Specifically, Marathon is committed to completing the following additional work within the indicated timeframes:		
	 Continue collection of results from on-going laboratory and field tests in 2021. This work was started in 2020 and will continue until concentrations stabilize. It is expected that updated analysis will be conducted in Q4 of 2021. 		
	2. Additional static testing of samples in Q2 and Q3 of 2021		
	 Initiate additional kinetic testing of PAG materials (waste rock, ore and low-grade ore) from major lithologies of the Marathon pit and composite sample of gabbro in Q2 of 2021. 		
	f. As described in the response to part a), above, only non-PAG rock will be used in earthworks construction for the Project.		
Appendix:	Appendix IR-19.A		

ID:	IR-20
Expert Department or	NRCan-15
Group:	
Guideline Reference:	Section 7.1.2
EIS Reference:	Baseline Study Appendix 5 Attachment 5-B Appendix B and C
Context and Rationale:	The EIS Guidelines require the proponent to complete a geochemical characterization of the expected mine materials in order to predict acid rock drainage and metal leaching (ARD/ML). As indicated in the EIS Guidelines, the MEND (2009) guidance document recommends presenting geochemical test results in tabulates with descriptive statistics, as well as in scatter plots and time series graphs. A complete set of tabulated static test results grouped by lithology and including sample descriptions was not provided for all samples tested. Further, statistics provided in Appendix B Tables of the EIS present results that do not follow basic principles. For example, the Appendix B Tables provide average concentrations that are outside of the minimum and maximum range. Without a complete set of tabulated data, it is not possible to complete the ARD/ML review in terms of evaluating the variability in sample chemistry across each lithology, nor to confirm the validity of the statistical distribution of results. Additionally, a complete set of tabulated kinetic test results for each humidity cell, subaqueous column, and ageing test was not provided in Appendix B, and time series graphs were only provided for select parameters in Appendix C. As such, the long-term evolution and change in leachate quality cannot be evaluated for all parameters.
Information Request:	 a. Present updated versions of Appendix Table B-5 and B-17 with the correct statistical calculations recommended in the MEND guidance. b. Provide a complete set of tables for each static test completed for waste rock, low grade ore, and ore by rock type. c. Provide updated statistics in Appendix Tables B-6, B-7, B-18 and B-19 that provide corrected average concentrations and enable the confirmation of the validity of the statistical distribution of results. d. Provide tables and time series graphs for each humidity cell, subaqueous column, and ageing tests for all tested parameters.
Response:	 Tables B-5, B-17, B-6, B-7, B-18 and B-19 have been reviewed to confirm that the statistical calculations are correct. Average Neutralization Potential Ratio (NPR) values are sometimes outside of the minimum and maximum NPR range for some lithologies because

ID:	IR-20
	the value of NPR reported as "average" was calculated as the ratio of average Neutralization Potential (NP) and average acid potential (AP), not as the average of individual NPRs. Averaging of ratios would provide misleading results generally showing higher NPR values in this Project.
	 An Excel file containing all static tests, which are classified by material (such as rock, ore) and/or lithology, will be provided directly to NRCan. Tables in pdf format containing all static test results for all samples were initially provided in analytical reports compiled in Appendix D of Attachment 5-B of the EIS.
	c. Please refer to (a) above.
	d. It is acknowledged that only parameters having an applicable regulatory threshold (<i>Metal and Diamond Mining Effluent Regulations</i> limit or/and Canadian Water Quality Guideline for Protection of Freshwater Aquatic Life) were selected for assessment and plotting in Appendix C of Attachment 5-B of the EIS. Sulphate, as an indicator of sulphide oxidation, was also plotted and presented. Time-series graphs are provided in Appendix IR-20.A for constituents with concentrations greater than the detection limit. A complete kinetic database will be provided directly to NRCan in the form of an Excel file for evaluation of leachate quality for all parameters.
Appendix:	Appendix IR-20,A

ID:	IR-21
Expert Department or	NRCan-16
Group:	
Guideline Reference:	Section 7.2.2
EIS Reference:	Baseline Study Appendix 5 Attachment 5-B Section 3.1.2, 3.2.2,3.2.3, 4.0,
	5.0Chapter 7 Appendix 7A and 7B
Context and Rationale:	The EIS Guidelines require the proponent to evaluate the longer term rates
	of acid generation and metal leaching, estimates of the potential time to
	onset of acid rock drainage or metal leaching (ARD/ML), and the quantity
	and quality of leachate from samples of tailings, waste rock, and ore. These
	leachate compositions are then used in the water quality model to evaluate
	the quality of effluent to be released from the site into receiving waters. The
	EIS Guidelines refer to the MEND (2009) guidance document. The
	guidance document indicates that samples selected for kinetic testing must
	be conservatively representative of the lithology they represent, taking into
	consideration mineralogy, ARD potential, metal/metalloid content, and
	leaching potential, and documented in the MEND (2009) guidance
	document. Composite samples were developed to represent low-grade ore,
	waste rock, and tailings, and were subjected to laboratory static tests,
	mineralogy, and humidity cell tests to evaluate long-term ARD/ML potential
	and timing to onset of ARD. A detailed quantitative rationale was not
	provided to demonstrate that the composite samples are conservatively
	representative of the overall chemical composition of their respective waste
	rock lithologies for ARD/ML parameters of concern. Therefore, it is not
	possible to determine whether the humidity cell test results are a
	conservative representation of weathering rates for the tested material, and
	thus appropriately conservative for use as source terms for the water
	quality models to evaluate the potential future effluent quality related to
	ARD /ML and neutral mine drainage (NMD). This information is important
	for decision making regarding management of waste rock, low grade ore,
	and exposed pit walls, as well as water management and treatment. All
	composite samples are non-acid generating based on neutralization
	potential ratio (NPR) values less than 2 (Table 5-2 and Appendix Table B-
	8), despite approximately 14% of waste rock at Marathon having been
	classified as potentially acid generating (PAG) based on samples tested
	and reported to date. This does not meet the MEND (2009) guidance to
	design a kinetic test program that includes material that will produce
	problematic drainage chemistry in terms of ARD/ML, even if this material is
	a lower anticipated waste volume than other units. Further, the timing to

ID:	IR-21
	onset of acidic conditions was estimated based on mineral depletion
	calculations using sulphate and alkalinity production rates associated with
	the dissolution of soluble secondary salts rather than sulphate production
	from sulphide mineral oxidation. Due to the absence of any evidence of
	active sulphide mineral oxidation in the tests completed to date, these time
	estimates are not considered reasonable to support assumptions in the
	water quality model related to the timing of ARD for low grade ore and
	waste rock, nor decisions related to waste rock management. Lastly, the
	metal leaching potential under acidic conditions has not been captured in
	the humidity cell tests completed on non-acid generating samples to date,
	which has implications for the source terms and assumptions that were
	made in the water quality models (Chapter 7 Appendix 7A and 7B) to
	represent acidic drainage quality from the pit walls and waste rock piles.
	Therefore, it is not possible to confirm that humidity cell test leachate on
	potentially acid generating samples would maintain leachate concentrations
	below MDMER limits. A complete understanding of the risk and extent of
	ARD and metal loading is required to appropriately manage PAG waste and
	exposed PAG rock in the pit walls, as well as water management and
	treatment planning. Therefore, the potential development of ARD in pockets
	of the waste rock pile or the pit walls has not been sufficiently evaluated to
	support the assumptions made in the water quality model related to the
	maintenance of neutral contact water in the ponds below the waste rock
	and low grade ore stockpiles and captured pit wall runoff.
Information Request:	a. Provide a quantitative rationale for the targeted chemistry of each
	composite sample used for kinetic testing with respect to the lithology
	that they represent and percentile rankings for all parameters of interest
	WITH RESPECT TO ARD-NMD/ML.
	b. Provide a detailed plan to test potentially acid generating samples from
	those lithologies identified as containing potentially acid generating
	material, including static, mineralogy, and kinetic tests.
	c. Provide rationale for the methods used to determine the lag time to
	acidic conditions, and a discussion around the sensitivity of the water
	quality model to the assumptions related to this assumed lag time.
	d Dravida rationals for accumptions in the water quality model related to
	u. Provide rationale for assumptions in the water quality model related to
	analysis related to the assumed metal load for potentially acid
	denerating material including but not limited to the ore low grade ore
	and waste rock piles, and the pit walls
	e. Discuss the sensitivity of water quality model predictions in relation to
	the conservatism of the source terms.

ID:	IR-21
Response:	a. Composite samples of major lithologies were used for kinetic testing. The composite samples were prepared for each lithology using crushed residual material from individual samples used in the second phase of the Acid Rock Drainage/Metal Leaching (ARD/ML) program. The residual materials were mixed in approximately the same proportions to produce a composite sample representative of the average composition of each lithology. Tables IR-21.1 to IR-21.4 provide a quantitative comparison of parameters measured in the composite to select statistics (average, median and 25th percentile) determined from results of individual samples of the same lithology. The summary tables demonstrate that the majority of parameters of potential concern in composite samples (Table 5-1 of Attachment 5-B of the EIS) have an equal or greater value than the average or/and median reported for the lithology. Therefore, the composite samples generated for kinetic tests are considered representative of each lithology.
	b. Kinetic testing of potentially acid generating (PAG) samples are anticipated to take years before the neutralization potential (NP) is depleted and acidic leachate is generated. To reduce the testing time, humidity cells were started on a carbonate-depleted tailings from Marathon ore (Sample CND-1) and on low grade ore (sample MLGO- Met) from Marathon in August of 2020. Carbonate depletion transforms material into PAG, prior to testing. The results of these tests are presented in the Appendix IR-21.A and were used for development of the water quality model as discussed in part d) of this response (below).
	Additional kinetic testing of PAG materials (waste rock, ore and low- grade ore) from major lithologies of the Marathon pit and a composite sample of gabbro material will be started in Q2 of 2021. These samples will be submitted for static tests including net acid generating (NAG) tests, mineralogy and particle size distribution similar to the characterization of composite samples described in Attachment 5-B of the EIS. The results of this test work will be included in the ARD/ML Management Plan (see Appendix IR-19.A) which will be provided to NRCan, for review and comment.
	c. The discussion on rationale for the methods used to determine the lag time to acidic conditions and estimate on the possible ranges of ARD onset lag time for exposed PAG materials is provided in the Appendix IR-21.B.
	d. In the Marathon water quality model, the leaching rates for acidic conditions were considered as stated in the last paragraph of Section 5.3.1.1 in Appendix 7B of the EIS. "All leaching rates are obtained from

ID:	IR-21
	neutral drainage because none of the geochemical tests have developed acidic leachate. However, samples of some lithologies are expected to generate acidic drainage resulting in an increase in metal leaching in localized zones of PAG materials. In order to account for this increase, neutral leaching rates are inflated by factors of 11.9 for Zinc, 7.5 for Nickel, 3.5 for Iron, 1.8 for Cadmium, 1.6 for Lead 1.2 for Copper, 1.1 for sulphate in PAG rock mass at ARD onset time. These inflation factors were estimated as a ratio of first-month leaching from carbonate depleted humidity cell containing Marathon LGO to the same rates from the initial (non-depleted) sample for LGO." The range of acidic rates was accounted for in the GoldSim water quality model through probabilistic inputs of ARD onset time and variability of neutral leaching rate. An example of the resulting probability distribution for acidic term for copper is shown on Figure IR-21.1. Sensitivity analyses related to the effect of ARD onset to metal load for potentially acid generating material for low grade ore and waste rock piles, and the pit walls is presented in Appendix IR-21.B.
	e. The source terms, such as leaching rates, ARD onset times, scaling factors and concentrations in solutions were treated as probabilistic inputs in the water quality model (Section 5.3.1 in Appendix 7B of the EIS). These inputs included very conservative values, such as maximum laboratory leaching rate and shortest ARD onset time. Probabilistic combinations of conservative inputs produced conservative results for water quality as presented in the EIS. Additional discussion on the sensitivity of source terms is provided in Appendix IR-21.B.
	Reference:
	Mine Environment Neutral Drainage Program (MEND). 2009. Prediction Manual for Drainage Chemistry from Sulphidic Geologic Materials, MEND Report 1.20.1, p. 1-579.
Appendix:	Appendix IR-21.A and IR-21.B

April 2021

Parameter	STOTAL	SSULPHATE	SSULPHIDE	Carb. NP	AP	NNP	Carb. NPR					
Units	wt.%			kg CaCO₃/t								
1. Trondhjemite	and Granodi	orite (TRJ), 54	l samples									
25th, %ile	0.020	0.010	0.01	28.7	0.3	54	96					
Median	0.035	0.010	0.02	36.6	0.6	61	59					
Average	0.06	0.013	0.05	42.4	1.5	65	29					
L TRJ	0.08	0.050	0.03	48.3	0.9	47	51					
2. QZ - Trondhje	emite + QTP a	nd QZ - Gran	odiorite + QT	P (QZ-TQTP),	33 samples							
25th, %ile	0.056	0.005	0.04	27.7	1.3	54	21					
Median	0.110	0.010	0.09	36.1	2.8	65	13					
Average	0.15	0.017	0.13	45.2	4.1	69	11					
L QZ-QTP	0.11	0.050	0.06	44.7	1.9	43	24					
3. Conglomerate and Sediments (CG and SED), 17 samples												
25th, %ile	0.003	0.010	0.01	5.0	0.3	13	17					
Median	0.010	0.010	0.01	12.5	0.3	21	42					
Average	0.01	0.015	0.01	15.0	0.4	28	38					
L SED	< 0.005	< 0.02	< 0.02	9.2	0.6	8.6	15					
5. Mafic Dike (M	D), 19 sample	es										
25th, %ile	0.076	0.025	0.05	72.1	1.4	113	51					
Median	0.120	0.040	0.06	125.7	1.9	171	66					
Average	0.19	0.039	0.15	116.3	4.8	159	24					
LMD	0.13	0.060	0.07	97.3	2.2	95	44					
7. QZ-QTP, 3 sa	mples											
25th, %ile	0.049	0.020	0.02	54.1	0.8	53	69					
Median	0.068	0.030	0.03	69.8	0.9	69	74					
Average	0.06	0.027	0.03	69.7	1.2	90	60					
L QZ-QTP	0.05	0.030	0.02	51.6	0.62	51	83					
8. Low-Grade O	re, 10 sample	S										
25th, %ile	0.096	0.010	0.08	15.4	2.5	27	6.1					
Median	0.213	0.015	0.15	34.1	4.5	52	8					
Average	0.25	0.039	0.22	45.4	6.8	67	7					
L LGO	0.16	0.060	0.10	37.9	3.1	35	12					
LLGO-Met	0.27	0.040	0.23	61.3	7.2	54	9					
Notes:	·	·	·	·			·					

Table IR-21.1 Comparison of ABA statistics for individual samples to composite samples (ID is in bold).

S_{TOTAL} - Total Sulphur; S_{SULPHIDE} - Sulphide Sulphur; S_{SULPHIDE}=S_{TOTAL}-S_{SULPHATE}; S_{SULPHATE} - Sulphate Sulphate Sulphate

Carb. NP - Carbonate Neutralization Potential; Carb; NP=TIC*M(CaCO₃)/M(C)*10(kg/t from % diff.);

AP - Acid Potential; AP=S_{SULPHIDE}(%) x 31.25; NNP - Net Neutralization Potential; NPR - Neutralization Potential Ratio;

TIC - Total Inorganic Carbon. Respective samples from Phase I and II are combined.

Values in cells highlighted yellow exceed either median or average value for the material;

Values in cells highlighted green are between the 25th percentile and average value for the material.

Table IR-21.2 Comparison of trace element statistics for individual samples to composite samples (ID is in bold).

	Ag	AI	As	Be	Cd	Co	Cr	Cu	Fe	Hg	Mn	Мо	Ni	Р	Pb	Se	TI	U	v	Zn
ACUCx10	530	407639	48	21	0.90	173	920	280	320415	0.5	774.5	11	470	654.3	170	0.9	9	27	970	670
Units	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g
1. Trondhjemit	e and Gran	odiorite (TF	RJ), 54 sa	mples																
25th, %ile	0.050	6205	0.5	0.50	0.050	1.3	44	3.5	833	0.025	403	0.20	1.4	12	10.5	0.50	0.250	0.100	6.0	24
Median	0.050	6420	1.0	0.50	0.050	1.9	50	4.8	1025	0.025	465	0.30	1.7	14	12	0.50	0.25	0.20	9.0	32
Average	0.044	6323	1.4	0.59	0.044	3.5	53	8.3	2721	0.025	486	0.35	3.0	23	12	0.48	0.21	0.20	21	33
L TRJ	< 0.01	5600	0.8	0.12	0.030	3.3	54	6.9	12000	< 0.05	430	2.7	3.2	280	3.4	< 0.7	0.02	0.12	8.0	27
2. QZ - Trondhjemite + QTP and QZ - Granodiorite + QTP (QZ-TQTP), 33 samples																				
25th, %ile	0.050	6120	0.5	0.50	0.050	1.3	50	4.3	780	0.025	389	0.20	1.4	11.5	6.0	0.50	0.250	0.20	8.0	23
Median	0.050	6710	1.0	0.50	0.050	3.1	54	8.8	1180	0.025	446	0.30	1.7	18	8.7	0.50	0.25	0.30	10	33
Average	0.043	6674	1.1	0.69	0.049	3.8	55	14.1	3913	0.025	496	1.48	2.6	27	8.9	0.47	0.21	0.31	25	32
L QZ-TQTP	0.01	6300	0.8	0.13	0.030	4.0	59	10.0	13000	< 0.05	490	3.0	3.4	260	2.5	< 0.7	< 0.02	0.16	12.0	35
3. Conglomerate and Sediments (CG and SED), 17 samples																				
25th, %ile	0.005	6870	3.4	0.15	0.040	13.7	55	1.2	3690	0.025	773	0.05	20	67	1.1	0.35	0.010	0.53	41	65
Median	0.050	7250	5.0	0.50	0.050	15.2	68	3.9	4120	0.025	<u>877</u>	0.20	26	73	13	0.50	0.25	1.3	95	70
Average	0.037	9268	4.7	0.57	0.053	15.1	64	14.0	11032	0.025	<u>938</u>	0.74	24	75	10	0.46	0.18	1.1	81	69
L SED	< 0.01	14000	3.2	0.16	0.030	14.0	50	2.5	31000	< 0.05	750	0.8	24.0	<u>810</u>	1.2	< 0.7	0.02	0.47	46.0	61
5. Mafic Dike (5. Mafic Dike (MD), 19 samples																			
25th, %ile	0.050	7000	4.0	0.50	0.050	29.5	46	51.8	6580	0.025	<u>1060</u>	0.35	19.8	83	3.9	0.50	0.250	0.15	197	75
Median	0.050	7520	10	0.50	0.050	36.3	81	58.0	7570	0.025	<u>1400</u>	0.60	28	91	6.6	0.50	0.25	0.40	250	83
Average	0.041	11038	11	0.65	0.101	31.7	77	56.9	17397	0.025	<u>1264</u>	0.83	24	88	6.3	0.47	0.20	0.34	225	78
LMD	0.01	22000	2.2	0.17	0.070	29.0	70	50.0	59000	< 0.05	<u>1100</u>	1.1	22.0	610	2.0	< 0.7	< 0.02	0.12	170.0	70
7. QZ-QTP, 3 s	amples																			
25th, %ile	0.005	5100	1.4	0.13	0.010	3.6	55	5.6	5660	0.025	495	0.20	2.8	52	1.6	0.35	0.010	0.20	8.5	35
Median	0.005	6000	2.0	0.13	0.010	4.8	59	8.0	9900	0.025	530	0.20	3.5	52	1.7	0.35	0.01	0.20	12	36
Average	0.020	5403	1.9	0.42	0.023	4.2	60	16.7	9773	0.025	527	0.63	3.2	52	3.9	0.40	0.09	0.22	20	39
L QZ-QTP	< 0.01	5900	0.5	0.14	0.020	4.6	38	10.0	15000	< 0.05	460	1.9	3.2	440	1.6	< 0.7	< 0.02	0.17	11.0	42
8. Low-Grade C	Ore, 10 sam	ples					-						-	-		-	-		-	
25th, %ile	0.050	4780	1.10	0.16	0.043	3.8	61	8.0	1260	0.025	337	0.13	2.8	25	4.2	0.35	0.010	0.20	9.5	17
Median	0.050	6515	1.8	0.50	0.050	5.0	69	11.1	5975	0.025	414	0.40	4.3	39	6.4	0.50	0.25	0.22	23	33
Average	0.115	6547	2.2	0.45	0.048	10.5	81	42.1	10457	0.040	512	0.83	12	47	9.9	0.44	0.15	0.51	56	41
L LGO	0.03	4100	2.0	0.10	0.070	4.1	70	20.0	13000	< 0.05	340	1.7	5.3	390	1.8	< 0.7	< 0.02	0.15	8.0	26
LLGO-Met	0.04	5300	1.3	0.12	0.030	5.5	29	8.1	14000	0	430	0.8	3.8	=	7.3	< 0.7	< 0.02	0.80	8.0	33
Notes: Respective sampl ACUC - Average For the values les	les from Phas Concentratior is than Repor	e I and II are n in the Upper table Detectio	combined. r Crust of th on Limit (RE	ne Earth bas DLs) values,	ed on Rudn 1/2 of RDLs	ick and Gad s are used t	o (2004); Va o calculate	alues excee statistical p	eding 10x the arameters.	Average C	oncentratior	n in the Upp	er Crust are	e double und	lerlined and	l bold;				

Values in cells highlighted yellow exceed either median or average value for the material. Values in cells highlighted green are between the 25th percentile and average value for the material.

Parameter	Paste pH	STOTAL	SSULPHATE	SSULPHIDE	IDE Carb. NP AP		NNP	Carb. NPR				
Units	pH Units	wt.%			kg Ca	CO₃/t						
1. Qtz-eye Por	phyry and Q	tz-Porphyry	/ Breccia (Q	E-POR and	QE-POR-BX)	, 66 sample	S					
25th, %ile	9.39	0.018	0.010	0.01	23.2	0.6	24	37				
Median	9.52	0.100	0.020	0.07	36.8	2.0	48	18				
Average	9.47	0.17	0.051	0.12	48.4	3.9	61	13				
M QE-POR	8.74	0.08	0.030	0.05	62.5	1.6	61	40				
2. Aphanitic C	tz Porphyry	(AQPOR), 1	9 samples									
25th, %ile	9.45	0.037	0.010	0.03	13.0	0.8	9	17				
Median	9.69	0.076	0.030	0.05	18.5	1.6	22	12				
Average	9.60	0.27	0.062	0.22	31.5	6.9	30	5				
M AQPOR	9.48	0.33	0.090	0.24	48.6	7.5	41	6				
3. Conglomerate (CG), 9 samples												
25th, %ile	9.36	0.003	0.010	0.01	75.2	0.3	75	251				
Median	9.56	0.003	0.010	0.01	84.2	0.6	99	136				
Average	9.50	0.01	0.009	0.01	101.1	0.5	116	212				
MCG	9.53	< 0.005	< 0.02	< 0.02	87.3	0.6	87	141				
5. Mafic Dike (MD), 19 samples												
25th, %ile	8.82	0.030	0.010	0.01	44.9	0.6	77	72				
Median	9.03	0.090	0.030	0.04	93.3	1.3	105	72				
Average	9.05	0.12	0.051	0.08	96.4	2.5	118	38				
M MD	8.96	0.27	0.080	0.19	88.7	5.9	82.7	15				
6. QZ - Qtz-ey	e Porphyry +	Minor QTP	(QZ-QE-PO	R-QTP-MIN)	, 10 samples	i						
25th, %ile	9.61	0.041	0.015	0.03	17.3	1.0	13	17				
Median	9.64	0.157	0.045	0.11	26.3	3.3	20	8				
Average	9.67	0.25	0.056	0.20	32.9	6.2	27	5				
M QZ-QE- POR-QTP- MIN	9.71	0.38	0.100	0.28	22.7	8.8	14	2.6				
7. QZ - Qtz-ey	e Porphyry +	QTP (QZ-Q	E-POR-QTP), 11 sample	s		-					
25th, %ile	9.45	0.161	0.010	0.14	16.2	4.2	24	4				
Median	9.59	0.310	0.010	0.30	18.3	9.4	33	2.0				
Average	9.57	0.33	0.028	0.30	30.8	9.6	35	3.2				
8. Low-Grade	Ore, 8 samp	les										
25th, %ile	9.35	0.433	0.009	0.36	17.4	11.1	4	1.6				
Median	9.48	0.506	0.050	0.42	24.1	13.2	27	1.8				
Average	9.50	0.55	0.066	0.49	26.2	15.3	21	1.7				
M LGO	9.48	0.28	0.090	0.19	49.2	5.9	43	8				
MLGO-Met	9.16	0.59	< 0.02	0.60	28.9	18.8	10	1.5				
Notes:	•		•									
S _{TOTAL} - Total Su	Jphur; S _{SULPHAT}	E - Sulphate S	Sulphur; AP - A	cid Potential;	AP=S _{SULPHIDE} (%	b) x 31.25.						

Table IR-21.3 Comparison of ABA statistics for individual samples to composite samples (ID is in bold).

NNP - Net Neutralization Potential; NPR - Neutralization Potential Ratio;

TIC - Total Inorganic Carbon; Overburden AP is calculated using $S_{\mbox{\scriptsize TOTAL}} \ x \ 31.25.$

Respective samples from Phase I and II are combined.

Table IR-21.4 Comparison of trace element statistics for individual samples to composite samples (ID is in bold).

r	1	1 1			r	· · · · · ·				r						r					
	Ag	AI	As	В	Be	Cd	Co	Cr	Cu	Fe	Hg	Mn	Мо	Ni	Р	Pb	Se	TI	U	V	Zn
ACUCx10	530	407639	48	-	21	0.90	173	920	280	320415	0.5	774.5	11	470	654	170	0.9	9	27	970	670
Units	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g
1. Qtz-eye Porphyry and	d Qtz-Porph	nyry Breccia	(QE-POR	and QE-PO	R-BX), 66 s	amples															
25th, %ile	0.006	5785	0.50	-	0.050	0.010	2.7	46.5	2.5	2860	0.025	320	0.53	1.9	19	0.37	0.35	0.010	0.085	7.0	8
Median	0.025	6345	0.60	-	0.070	0.010	4.5	73	4.7	13000	0.025	418	0.90	2.4	25	0.86	0.35	0.01	0.13	17.0	16
Average	0.029	9000	0.87	-	0.25	0.027	7.0	75	11.3	16551	0.025	537	1.4	6.0	28	1.5	0.42	0.10	0.21	38	21
M QE-POR	0.02	11000	< 0.5	-	0.06	< 0.02	6.3	100	14.0	25000	< 0.05	580	2.2	13.0	190	0.9	< 0.7	< 0.02	0.09	31.0	17
2. Aphanitic Qtz Porphy	ry (AQPOR	l), 19 sample	es																		
25th, %ile	0.005	6800	0.38	-	0.045	0.010	3.1	48.0	2.1	17500	0.025	295	1.05	1.55	21	0.22	0.35	0.010	0.093	5.5	15
Median	0.010	8700	0.60	-	0.060	0.010	4.7	82	4.3	23000	0.025	400	1.80	2.2	25	0.60	0.35	0.01	0.12	10.0	22
Average	0.029	11093	0.80	-	0.14	0.023	7.2	76	12.0	22955	0.025	494	1.8	7.7	23	0.93	0.49	0.05	0.15	18	28
M AQPOR	0.05	14000	0.7	-	0.10	< 0.02	8.4	110	15.0	33000	< 0.05	680	3.5	22.0	380	0.7	< 0.7	< 0.02	0.10	28.0	42
3. Conglomerate (CG), 9 samples																					
25th, %ile	0.050	5400	1.2	-	0.18	0.050	10.0	23	9.4	4420	0.025	<u>881</u>	0.30	16	56	2.1	0.35	0.010	0.400	30.0	40
Median	0.050	6470	1.6	-	0.23	0.050	11.0	66	22.0	22000	0.025	<u>918</u>	0.30	20	61	3.0	0.35	0.02	0.67	36.0	48
Average	0.058	7119	2.0	-	0.49	0.069	14.2	53	30.6	15193	0.025	962	0.43	20	59	4.9	0.42	0.12	0.75	69	49
MCG	0.05	6500	1.3	-	0.16	0.070	11.0	53	30.0	24000	< 0.05	<u>1100</u>	1.1	18.0	400	2.3	< 0.7	0.03	0.50	27.0	46
5. Mafic Dike (MD), 19 samples																					
25th, %ile	0.020	7540	0.50	-	0.060	0.030	18.7	30	11.3	7305	0.025	1300	0.20	4.5	22	0.49	0.35	0.010	0.032	146.0	52
Median	0.040	27000	0.80	-	0.090	0.050	32.0	56	55.1	65000	0.025	1650	0.30	7.1	25	0.84	0.35	0.01	0.06	250.0	81
Average	0.036	22793	1.2	-	0.26	0.040	27.4	109	67.3	47647	0.025	1507	0.44	26	28	1.9	0.41	0.11	0.15	223	67
M MD	0.03	35000	1.4	-	0.18	0.040	36.0	120	69.0	84000	< 0.05	1800	0.9	38.0	200	0.7	< 0.7	< 0.02	0.10	280.0	90
6. QZ - Qtz-eye Porphyr	y + Minor C	TP (QZ-QE-	POR-QTP-	MIN), 10 sa	mples																
25th, %ile	0.005	4425	0.25	-	0.040	0.010	1.3	3.2	2.9	10050	0.025	248	1.03	0.60	-	0.27	0.35	0.010	0.072	3.5	6
Median	0.010	5200	0.38	-	0.045	0.010	2.1	93	4.7	17500	0.025	270	1.4	2.5	-	0.39	0.35	0.01	0.11	7.0	8
Average	0.015	5520	0.45	-	0.053	0.010	2.7	67	4.6	15480	0.025	322	1.6	1.8	-	0.63	0.35	0.01	0.11	8	8
M QZ-QE-POR-QTP- MIN	0.02	8100	0.5	-	0.07	< 0.02	3.5	95	13.0	20000	< 0.05	310	5.4	4.1	120	0.3	< 0.7	< 0.02	0.11	12.0	12
8. Low-Grade Ore, 8 sa	mples																				
25th, %ile	0.028	5360	0.50	-	0.058	0.010	2.1	74	8.1	1503	0.025	245	1.33	1.7	4.5	0.81	0.35	0.010	0.100	3.5	7
Median	0.050	6020	0.50	-	0.11	0.040	3.5	89	11.3	14500	0.025	455	2.1	2.4	5.0	1.4	0.35	0.01	0.14	5.5	14
Average	0.121	6533	1.1	-	0.24	0.15	3.1	83	26.6	11976	0.025	401	3.7	2.5	7.7	2.6	0.41	0.10	0.22	5	12
M LGO	0.02	15000	3.0	-	0.09	0.030	9.9	98	11.0	33000	< 0.05	<u>900</u>	<u>15.0</u>	11.0	190	1.9	< 0.7	< 0.02	0.13	70.0	42
MLGO-Met	0.23	6800	2.6	-	0.08	0.100	4.0	57	19.0	21000	< 0.05	430	2.1	5.0	=	5.3	< 0.7	< 0.02	0.52	10.0	21
Notes:						·				-											
Respective samples from Ph	nase I and II a	re combined.																			
ACUC - Average Concentra	tion in the Up	per Crust of th	e Earth base	d on Rudnick	and Gao (20	04); Values e	xceeding 10	the Average	e Concentrati	on in the Upp	er Crust are d	ouble underli	ned and bold								
For the values less than Rep	portable Deter	ction Limit (RD	Ls) values, 1	/2 of RDLs a	re used to ca	Iculate statisti	cal paramete	rs.	n the OF the me	مرابعته والاستعاد		fou the superstant									

Values in cells highlighted yellow exceed either median or average value for the material. Values in cells highlighted green are between the 25th percentile and average value for the material.

April 2021

Acidic Cu rate in PAG waste

Figure IR-21.1 Probability of acidic Cu rate applied to mass of PAG waste rock

7//

ID:	IR-22
Expert Department or	NRCan-17 MW-45
Group:	
Guideline Reference:	Section 7.2.2
EIS Reference:	Baseline Study Appendix 5 Attachment 5-A and 5- B
Context and Rationale:	The EIS Guidelines require the proponent to evaluate the effects of imperfect segregation of waste rock. The proponent proposes the development of an ARD block model to identify the location of discrete acid generating pockets of waste rock material and the sequence in which it will be mined. The objective of this is to support the management of potentially acid generating (PAG) waste rock through blending or encapsulation. The success of this approach is dependent in part on the effectiveness of locating and segregating this material. A detailed summary of the ARD block model evaluation was not provided, including an approach to PAG
	rock segregation.
Information Request:	 Provide a detailed approach to locate and segregate waste rock for the management of acid generating rock. This can be in the form of an ARD/ML Management Plan.
	b. Provide a detailed summary of the ARD block model evaluation.
	c. Provide images presenting the distribution of acid generating waste rock.
Response:	a. The future Acid Rock Drainage (ARD) block model for Marathon pit will provide production schedules for ARD classes of rock and ore and will to help to map potentially acid generating (PAG) materials on pit walls. The model will be verified by operational sampling and managed using the following procedures, which are subject to further refinement as the Acid Rock Drainage/Metal Leaching (ARD/ML) Management Plan is developed:
	 Samples of drill cuttings from blast holes representing each mine block will be collected.
	• The samples will be tested for total carbon and sulphur using LECO furnace or similar method. Average neutralization potential (NP) will be calculated from total carbon and average Acid Potential (AP) will be calculated from total sulphur using standard conversions per the Mine Environment Neutral Drainage (MEND) guidelines. If NP/AP ratios indicate the mine block rock is below 2, the block will be classified as PAG.

ID:	IR-22
	• PAG rock will be marked after the blast, excavated, and dispatched to the waste rock stockpile. PAG rock would only be deposited within a specified distance (to be defined) of the final stockpile shell and preferably next to a non-PAG truck load. Piled PAG rock will be marked and the geospatial coordinates recorded.
	 A portion of PAG and non-PAG rock loads will be mixed during grading each lift of the stockpile.
	• This mixture will be encapsulated with non-PAG rock deposited within a specified distance (to be defined) from the lift face and forming the topmost lift(s) on the final of the stockpile. Non-PAG rock will reduce oxygen flux into interior of the pile and provide alkalinity to infiltrating water. This approach has been successfully applied for waste rock piles in other mine sites as referenced in Sections 6.6.3.5 and 6.6.3.6 of Global ARD management guide (http://www.gardguide.com/index.php/Chapter) and would be applicable to ARD/ML management at the Valentine Gold Project.
	Additional details describing the location and management of acid generating rock will be presented in the ARD/ML Management Plan, however, the approach is expected to be much the same as described above. The ARD/ML Management Plan will be prepared using additional ARD/ML test results as described in Appendix IR-19.A.
	b./c. The ARD block model for Marathon pit has not yet been developed and will be completed as part of additional ARD/ML work described in Appendix IR-19.A. A summary of the ARD block model evaluation and images presenting the distribution of acid generating waste rock in the pit will be provided to regulators, including NRCan, for review and comment through the proposed ARD/ML Management Plan.
Appendix:	None

ID:	IR-23
Expert Department or	NRCan-18
Group:	
Guideline Reference:	Section 7.2.2
EIS Reference:	Baseline Study Appendix 5 Attachment 5-A and 5- B Section 2.0 Project Description Chapter 7 Appendix 7A and 7B
Context and Rationale:	The EIS Guidelines require the proponent to evaluate the pit water chemistry during operation and post-closure, and pit closure management measures (e.g., flooding). This will include geochemical modelling of pit water quality in the post-closure period. In the geochemical baseline study, four samples were collected and tested from the gabbro unit at the Marathon Pit, suggesting it is a nominal unit in terms of overall tonnage. However, it appears to constitute a portion of the exposed pit wall based on cross-sections provided in Appendix A, and Figure 2.7-a of the Project Description, and is considered to represent 12% of the pit rubble and walls in the water quality model. This sample count is not considered sufficient to capture the potential variability of this unit with respect to ARD/ML, particularly considering that one of the four samples was classified as potentially acid generating (PAG). Additionally, a composite sample was not generated and tested for this unit, so the long-term ARD/ML potential is not known. NRCan considers this to be a significant data gap with respect to evaluating the quality of pit water discharge during operations and long- term pit lake water quality. Further, the low grade ore and ore at the Marathon Pit are assigned 5% of the area of the pit rubble and walls in the water quality model. Based on the same cross sections, this value appears to underrepresent the likely exposed surface area of these units. In total, 50% and 67% of samples of low grade ore and ore, respectively, have been classified as PAG. PAG samples of low grade ore and ore were not subjected to kinetic testing, and as such the long-term ARD/ML potential of these units is not known, nor their potential impacts to pit water quality during operations and long-term closure. The potential for Marathon Pit water to be acidic with an elevated metal load has not been sufficiently evaluated for operations, closure, and post-closure phases of the Project.
Information Request:	a. Provide a detailed plan to address the data gap in the program on how to allow for the conservative evaluation of the ARD/ML potential of the gabbro waste rock unit, low grade ore, and ore, including plans for additional sample collection, static and kinetic tests.

ID:	IR-23
	b. Provide proportions of exposed gabbro, low grade ore, and ore for each year of operation, and the final pit shell.
	c. Complete an evaluation of the pit water chemistry during operations, pit filling, and post-closure, and the potential for the development of acidic drainage. This must include timing to onset of ARD and acidic loading rates from new humidity cell tests on PAG material from the gabbro, low grade ore, and ore as well as the exposed pit shell proportions during the life of the mine.
Response:	a. Marathon recognizes that further Acid Rock Drainage/Metal Leaching (ARD/ML) work is required and further assessment and associated refinement of Project mitigation as design of the Project proceeds (refer to Appendix IR-19.A for further information). Specifically, Marathon is committed to completing additional work to address testing gaps identified in the program completed to date, and as noted by NRCan, within the next 6 to 8 months and prior to construction. This information is required for final design and permitting under the NL <i>Mines Act</i> (NL Department of Industry, Energy, and Technology), and will be shared with NRCan as it becomes available:
	 Continuation of laboratory tests include two humidity cells containing carbonate depleted low-grade ore (LGO) and tailings from the Marathon deposit. Continuation of field bin tests of composite materials include nine composite samples representing major waste rock lithologies and low-grade ores from both deposits. In 2021, a subaqueous column, an aging test and a humidity cell has started on samples generated from on-going metallurgical work. Additional kinetic testing of PAG materials (waste rock, ore and low-grade ore) from major lithologies of the Marathon pit including a composite sample of gabbro. These samples will also be submitted for static tests including net acid generating (NAG) tests, mineralogy and particle size distribution similar to characterization of composite samples described in the EIS.
	2. Additional static testing:
	• To address spatial distribution and sampling requirements per lithology (refer to Tables IR-18.2 and IR-18.3)
	 To provide the data inputs required for ARD block models for Marathon pit
	 To better define the location and volumes of non-potentially acid generating (non-PAG) rock, which is required for construction, in Leprechaun and Marathon starter pits

ID:	IR-23
	 b. Proportions of non-exposed PAG and PAG materials on pit walls including gabbro, low-grade ore, and ore are provided in Table IR-23.1. c. Predicted pit water chemistry presented in the EIS is considered to be conservative based on the discussion and additional sensitivity analysis provided in response to IR-21d and e. Pit water chemistry will be revaluated if additional kinetic testing of gabbro, ore and low-grade ore indicate that leaching rates for parameters of concern are higher than and/or ARD onset time is shorter than currently applied as model inpute
Appendix:	None
Аррениіх.	

Marathon												
Cumulative Pit Wall Exposure (m ²)												
Year	-1	1	2	3	4	5	6	7	8	9		
Gabbro Waste	0	0	15,600	83,400	85,700	93,500	98,600	98,800	98,800	98,800		
Low Grade Ore	28,700	31,700	34,300	37,600	31,800	32,400	31,500	32,400	34,000	29,700		
High Grade Ore	4,300	15,200	16,000	26,100	27,800	27,600	27,100	23,800	21,700	18,000		
Total Pit Walls	298,800	490,300	579,000	877,000	927,000	966,100	983,700	1,029,700	1,067,900	1,105,900		
Leprechaun												
Cumulative Pit Wall Exposure (m²)												
Year	-1	1	2	3	4	5	6	7	8	9		
Low Grade Ore	13,900	18,900	19,300	23,200	22,300	22,700	29,100	22,000	24,800	24,700		
High Grade Ore	11,200	18,100	25,300	28,700	24,200	32,800	35,300	35,400	32,900	30,500		
Total Pit Walls	224,400	280,700	470,500	662,000	700,200	749,000	789,500	821,500	841,000	854,100		
Reference:			·									
Gabbro Lithology Solids fro	m JTBoyd, Jan	uary 2020 (VLN	/IA_GAB.dxf)									
Pit Shells and End of Period	d timing from 20	020 PFS Engine	eering (M613 S	URF CLP.msr,	L623 SURF	CLIP.msr, a	nd mine sch	edule scd10b))			
Mineralized Ore measued b 'VLLP_January_2020_Dil.c	oy any block wit sv'). Low grade	h definition abo ore dfined with	ove 0.33 g/t (Au i grades betwee	in model from en 0.33 and 0.8	JT Boyd, 'VL 0 g/t.	MA_January	/_2020_Hyb	rid_Diluted.cs	v',			

Table IR-23.1 Marathon - Pit Shell Lithology Exposure - B632 (Post PFS)

Areas in m², measured on the surface orientation

ID:	IR-24
Expert Department or	NRCan-19 MFN-16
Group:	
Guideline Reference:	Section 7.2.2
EIS Reference:	Baseline Study Appendix 5 Attachment 5-A and 5- Band Project Description
	and Chapter 7 Appendix 7A and 7B
Context and Rationale:	The EIS Guidelines require the proponent to evaluate the longer term rates of acid generation and metal leaching, and estimates of the potential time to onset of acid rock drainage or metal leaching. Of the low grade ore,
	Pit have been classified as potentially acid generating. Per NRCan-16, all tested composite samples, including low grade ore, are non-potentially acid
	generating. As such, the long-term ARD potential of problematic low grade ore and ore cannot be evaluated, nor the associated metal load. The Proponent has assumed that the Low Grade Ore stockpile will not be acidic
	during the tie in which it is stockpiled. This is not a reasonably conservative assumption for the sake of assessing potential for ARD/ML (and
	downstream impacts to fish and fish habitat/water quality) Low grade ore will be stockpiled adjacent to both pits for blending with higher grade ore or processing towards the end of mine life. At the Marathon Pit, the lag time to
	generation of ARD is considered to be within the expected residency time of material in the low grade ore stockpile. The timing to onset of acidic
	NRCan-16 and NRCan does not consider this a reasonably conservative estimate of timing to ARD/ML production in the low grade ore stockpile.
	Further, the reactivity of the material in the stockpile depends in part on the sequence in which material is mined.
Information Request:	 Provide an evaluation of the sequencing of low grade ore from the Marathon Pit and the ARD/ML potential of material during the life of the mine.
	b. Evaluate the sensitivity of the water quality model predictions to the sequencing of low grade ore in the stockpile at the Marathon Pit during the life of the mine.
	c. Provide mitigation options for the management and treatment of ARD/ML generated from the low grade ore stockpiles. Describe the preventative measures that would be taken to reduce ARD/ML from the low grade ore stockpile, the monitoring plan and if the stockpile and

ID:	IR-24
	effluent will be hydrologically segregated to ensure the effluent can be monitored and treated prior to ARD/ML onset.
Response:	a. The sequencing of potentially acid generating (PAG) and non-PAG low grade ore from the Marathon pit will be provided in the Acid Rock Drainage/Metal Leaching (ARD/ML) Management Plan, which will be developed and submitted during the permitting stage of the Project (refer to Appendix IR-19.A for further information). ARD potential will be identified and managed during the mine life as discussed in part c) of the response to this IR (IR-24).
	b. The sensitivity of the water quality model to the variability and sequencing of PAG and non-PAG low grade ore from the Marathon pit in the stockpile was assessed by assigning a triangular probability distribution function to the percentage of PAG ore in the stockpile with the following parameters: minimum 0% of PAG, most likely 50% of PAG and maximum 100% of PAG. The results of sensitivity runs are provided in Tables IR-24.1 to IR-24.3 including: 1) original results from the EIS model; 2) new results from the sensitivity model, and 3) ratios of new results to the original results, respectively. The results indicate that 95% probability concentrations may increase up to 4.8x for Ni, up to 1.9x for Fe, up to 1.6x for Cd, and up to 1.4x for Pb compared to the original results. These concentrations are below <i>Metal and Diamond Mining Effluent Regulations</i> (MDMER) limits. Therefore, treatment of discharge from low grade ore is not warranted, which is consistent with the conclusion presented in the EIS.
	 c. All PAG materials including low grade ore will be identified and tracked as discussed in the response to IR-22, part a). To limit exposure of PAG low grade ore in the Marathon low-grade ore (LGO) stockpile, this material will be preferentially directed to the mill feed, while non-PAG ores will be allocated to the stockpiles, as long as the grade requirement for the mill feed is met. The preliminary target is to maintain over 15% of non-PAG ore on annual basis to produce enough alkalinity for neutralization of PAG ore as discussed in Appendix IR-21.B. This target will be reviewed and updated (as required) as ARD/ML testing and mine planning proceed. Seepage from the LGO stockpiles will be monitored separately from the final discharge points identified in the EIS. If the seepage water quality approaches MDMER limits, water management of LGO stockpile
	to maintain water quality at the stockpile, likely in the form of specific water treatment. The plan is that all low grade ore will be milled,
ID:	IR-24
-----------	---
	however, if factors arise whereby the ore is not milled, any remaining low grade ore will be relocated to the open pit and flooded to avoid the need for water treatment after mine closure. Additional details related to water management of drainage from the low grade ore are discussed in Section 7.4.1.1 of the EIS.
Appendix:	None

Parameter	Linita		CWQG	CWQG	Base	eline	Const	ruction	Oper	ation
Statistics	Units	WDWER	Short-term	Long-term	mean	95 %ile	mean	95 %ile	mean	95 %ile
Aluminum	µg/L	-	-	100	16	22	86	100	600	600
Antimony	µg/L	-	-	-	0.5	0.5	0.97	1.10	20	25
Arsenic	µg/L	100	-	5	0.5	0.5	0.8	0.9	13	15
Barium	µg/L	-	-	-	2.3	3	3.7	4.1	62	73
Boron	µg/L	-	29000	1500	25	25	30	31	220	270
Cadmium	µg/L	-	0.13	0.04	0.01	0.01	0.009	0.011	<u>0.18</u>	<u>0.21</u>
Calcium	µg/L	-	-	-	2800	2900	6300	7200	150000	180000
Chromium	µg/L	-	-	1	<u>1.1</u>	<u>1.9</u>	1.2	1.8	3.3	4.0
Copper	µg/L	100	-	2	0.6	0.9	0.86	0.97	13	15
Iron	µg/L	-	-	300	25	25	28	29	180	270
Lead	µg/L	80	-	1	0.25	0.25	0.27	0.27	0.92	1.10
Magnesium	µg/L	-	-	-	340	350	720	800	16000	19000
Manganese	µg/L	-	596	210	5.5	6.8	19	23	<u>610</u>	<u>740</u>
Mercury	µg/L	-	-	0.026	0.007	0.007	0.010	0.010	0.15	0.19
Molybdenum	µg/L	-	-	73	1.0	1.0	3.7	4.5	110	140
Nickel	µg/L	250	-	25	1.0	1.0	1.2	1.2	7.9	10
Phosphorus	µg/L	-	-	4	<u>50</u>	<u>50</u>	50	50	50	50
Potassium	µg/L	-	-	-	95	130	570	700	20000	24000
Selenium	µg/L	-	-	1	0.25	0.25	0.39	0.44	6.1	7.4
Silver	µg/L	-	-	0.25	0.05	0.05	0.066	0.070	0.69	0.83
Sodium	µg/L	-	-	-	1400	1500	3600	4300	91000	110000
Thallium	µg/L	-	-	0.8	0.05	0.05	0.056	0.059	0.31	0.40
Uranium	µg/L	-	33	15	0.05	0.05	0.86	1.20	31	<u>42</u>
Zinc	µg/L	400	11.3	2.2	<u>2.5</u>	<u>2.5</u>	3.1	3.3	<u>88</u>	<u>250</u>
Chloride	µg/L	-	640000	120000	2400	2600	2400	2600	2400	2600
Nitrate + Nitrite (as Nitrogen)	µg/L	-	-	-	38	53	4800	12000	12000	15000
Nitrite (as Nitrogen)	µg/L	-	-	60	9.9	14	120	280	270	350
Nitrate (as Nitrogen)	µg/L	-	550000	13000	25	25	4600	12000	11000	15000
Total Ammonia (as Nitrogen)	µg/L	-	-	689	25	25	610	1500	1500	1900
Un-ionized Ammonia (as Nitrogen)	µg/L	500	-	19	0.064	0.097	<u>23.0</u>	<u>57</u>	<u>57</u>	<u>72</u>
Cyanide, Total	µg/L	500	-	-	10	10	10	10	10	10
Cyanide, WAD	µg/L	-	-	5	1.0	1.0	1.0	1.0	1.0	1.0
Sulphate	µg/L	-	-	-	1000	1000	5400	6800	180000	220000
Fluoride	µg/L	-	-	120	60	60	85	93	1100	1300
Radium-226	Bq/L	0.37	-	-	0.005	0.005	0.0067	0.0071	0.074	0.088
Temperature	°C	-	-	-	12.0	17.0	9	17	9	18
Total Alkalinity (as CaCO ₃)	mg/L	-	-	-	8.8	9.7	12000	15000	510000	610000
pH (mean or 5 %ile)	pH Unit	6.0-9.5	-	6.5-9.0	7.0	6.9	8.0	8.0	8.0	8.0
Hardness (as CaCO ₃)	mg/L	-	-	-	8.4	8.7	19	21	440	530
Dissolved Organic Carbon	mg/L	-	-	-	1.0	1.0	1.3	1.4	15	18

Table IR-24.1: The highest value of the monthly mean and 95th %-ile for each project phase in seepage from the low grade ore stockpile in the EIS model

Notes:

MDMER - Metal and Diamond Mining Effluent Regulations (Canada), Table 1 of Schedule 4, Maximum Authorized Monthly Mean Concentrations (SOR/2002-222 2020).

CWQG - Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life, short-term and long-term (CWQG-FAL referred to as CWQG) by Canadian Council of Ministers of the Environment (CCME 2020).

Concentrations exceeding MDMER are highlighted gray, CWQG short-term are double underlined, and CWQG long-term are bold. For further details on the parameters and guidelines see Table C-1 notes in Appendix 7B of the EIS.

Parameter	Linite		CWQG	CWQG	Base	eline	Const	ruction	Oper	ation
Statistics	Units	WDWER	Short-term	Long-term	mean	95 %ile	mean	95 %ile	mean	95 %ile
Aluminum	µg/L	-	-	100	16	22	86	100	600	600
Antimony	µg/L	-	-	-	0.5	0.5	0.97	1.10	20	25
Arsenic	µg/L	100	-	5	0.5	0.5	0.8	0.9	13	15
Barium	µg/L	-	-	-	2.3	3	3.7	4.1	62	73
Boron	µg/L	-	29000	1500	25	25	30	31	220	270
Cadmium	µg/L	-	0.13	0.04	0.01	0.01	0.009	0.011	<u>0.26</u>	<u>0.33</u>
Calcium	µg/L	-	-	-	2800	2900	6300	7200	150000	180000
Chromium	µg/L	-	-	1	<u>1.1</u>	<u>1.9</u>	1.2	1.8	3.3	4.0
Copper	µg/L	100	-	2	0.6	0.9	0.86	0.97	14	17
Iron	µg/L	-	-	300	25	25	28	29	340	500
Lead	µg/L	80	-	1	0.25	0.25	0.27	0.27	1.10	1.50
Magnesium	µg/L	-	-	-	340	350	720	800	16000	19000
Manganese	µg/L	-	596	210	5.5	6.8	19	23	<u>610</u>	<u>740</u>
Mercury	µg/L	-	-	0.026	0.007	0.007	0.010	0.010	0.15	0.19
Molybdenum	µg/L	-	-	73	1.0	1.0	3.7	4.5	110	140
Nickel	µg/L	250	-	25	1.0	1.0	1.2	1.2	29.0	48
Phosphorus	µg/L	-	-	4	<u>50</u>	<u>50</u>	50	50	50	50
Potassium	µg/L	-	-	-	95	130	570	700	20000	24000
Selenium	µg/L	-	-	1	0.25	0.25	0.39	0.44	6.1	7.4
Silver	µg/L	-	-	0.25	0.05	0.05	0.066	0.070	0.69	0.83
Sodium	µg/L	-	-	-	1400	1500	3600	4300	91000	110000
Thallium	µg/L	-	-	0.8	0.05	0.05	0.056	0.059	0.31	0.40
Uranium	µg/L	-	33	15	0.05	0.05	0.86	1.20	31	<u>42</u>
Zinc	µg/L	400	11.3	2.2	<u>2.5</u>	<u>2.5</u>	3.1	3.3	<u>180</u>	<u>280</u>
Chloride	µg/L	-	640000	120000	2400	2600	2400	2600	2400	2600
Nitrate + Nitrite (as Nitrogen)	µg/L	-	-	-	38	53	4800	12000	12000	15000
Nitrite (as Nitrogen)	µg/L	-	-	60	9.9	14	120	280	270	350
Nitrate (as Nitrogen)	µg/L	-	550000	13000	25	25	4600	12000	11000	15000
Total Ammonia (as Nitrogen)	µg/L	-	-	689	25	25	610	1500	1500	1900
Un-ionized Ammonia (as Nitrogen)	µg/L	500	-	19	0.064	0.097	<u>23.0</u>	<u>57</u>	<u>57</u>	<u>72</u>
Cyanide, Total	µg/L	500	-	-	10	10	10	10	10	10
Cyanide, WAD	µg/L	-	-	5	1.0	1.0	1.0	1.0	1.0	1.0
Sulphate	µg/L	-	-	-	1000	1000	5400	6800	200000	240000
Fluoride	µg/L	-	-	120	60	60	85	93	1100	1300
Radium-226	Bq/L	0.37	-	-	0.005	0.005	0.0067	0.0071	0.074	0.088
Temperature	°C	-	-	-	12.0	17.0	9	17	9	18
Total Alkalinity (as CaCO ₃)	mg/L	-	-	-	8.8	9.7	12000	15000	510000	610000
pH (mean or 5 %ile)	pH Unit	6.0-9.5	-	6.5-9.0	7.0	6.9	8.0	8.1	8.0	8.1
Hardness (as CaCO ₃)	mg/L	-	-	-	8.4	8.7	19	21	440	530
Dissolved Organic Carbon	mg/L	-	-	-	1.0	1.0	1.3	1.4	15	18

Table IR-24.2: The highest value of the monthly mean and 95th %-ile for each project phase in seepage from the low grade ore stockpile in the sensitivity model

Notes:

MDMER - Metal and Diamond Mining Effluent Regulations (Canada), Table 1 of Schedule 4, Maximum Authorized Monthly Mean Concentrations (SOR/2002-222 2020).

CWQG - Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life, short-term and long-term (CWQG-FAL referred to as CWQG) by Canadian Council of Ministers of the Environment (CCME 2020).

Concentrations exceeding MDMER are highlighted gray, CWQG short-term are double underlined, and CWQG long-term are bold. For further details on the parameters and guidelines see Table C-1 notes in Appendix 7B of the EIS.

Parameter	Const	ruction	Oper	ation
Statistics	mean	95 %ile	mean	95 %ile
Aluminum	1.0	1.0	1.0	1.0
Antimony	1.0	1.0	1.0	1.0
Arsenic	1.0	1.0	1.0	1.0
Barium	1.0	1.0	1.0	1.0
Boron	1.0	1.0	1.0	1.0
Cadmium	1.0	1.0	1.4	1.6
Calcium	1.0	1.0	1.0	1.0
Chromium	1.0	1.0	1.0	1.0
Copper	1.0	1.0	1.1	1.1
Iron	1.0	1.0	1.9	1.9
Lead	1.0	1.0	1.2	1.4
Magnesium	1.0	1.0	1.0	1.0
Manganese	1.0	1.0	1.0	1.0
Mercury	1.0	1.0	1.0	1.0
Molybdenum	1.0	1.0	1.0	1.0
Nickel	1.0	1.0	3.7	4.8
Phosphorus	1.0	1.0	1.0	1.0
Potassium	1.0	1.0	1.0	1.0
Selenium	1.0	1.0	1.0	1.0
Silver	1.0	1.0	1.0	1.0
Sodium	1.0	1.0	1.0	1.0
Thallium	1.0	1.0	1.0	1.0
Uranium	1.0	1.0	1.0	1.0
Zinc	1.0	1.0	2.0	1.1
Chloride	1.0	1.0	1.0	1.0
Nitrate + Nitrite (as Nitrogen)	1.0	1.0	1.0	1.0
Nitrite (as Nitrogen)	1.0	1.0	1.0	1.0
Nitrate (as Nitrogen)	1.0	1.0	1.0	1.0
Total Ammonia (as Nitrogen)	1.0	1.0	1.0	1.0
Un-ionized Ammonia (as Nitrogen)	1.0	1.0	1.0	1.0
Cyanide, Total	1.0	1.0	1.0	1.0
Cyanide, WAD	1.0	1.0	1.0	1.0
Sulphate	1.0	1.0	1.1	1.1
Fluoride	1.0	1.0	1.0	1.0
Radium-226	1.0	1.0	1.0	1.0
Temperature	1.0	1.0	1.0	1.0
Total Alkalinity (as CaCO ₃)	1.0	1.0	1.0	1.0
pH (mean or 5 %ile)	1.0	1.0	1.0	1.0
Hardness (as CaCO ₃)	1.0	1.0	1.0	1.0
Dissolved Organic Carbon	1.0	1.0	1.0	1.0

Table IR-24.3: Concentration ratios between the sensitivity and EIS models for the low grade ore stockpile

Note: Ratios above 1.2 are bold and highlighted gray.

April 2021

RESPONSE TO IR-25

ID:	IR-25
Expert Department or	NRCan-20
Group:	
Guideline Reference:	Section 7.2.2
EIS Reference:	Baseline Study Appendix 5 Attachment 5-A and 5- Band Chapter 7
	Appendix 7A and 7B
Context and Rationale:	Section 7.2.2 of the EIS Guidelines require the proponent to complete a geochemical characterization of tailings in order to predict metal leaching and acid rock drainage (ARD/ML). Insufficient information was provided on the origin of the tailings samples analyzed to understand whether they are representative of the anticipated thickened tailings composition to be managed on the property. Previous testing of tailings demonstrate that it could be potentially acid generating. Any deviation from the head ore composition or methods used to generate these samples could result in a different ARD potential and concentrations of cyanide species and associated nitrogen by-products from cyanide degradation, which has implications for tailings runoff, seepage guality and water treatment design
Information Request:	 a. Provide additional information on the source of the contaminated neutral drainage tailings samples, including the head ore composition used to generate these samples relative to the anticipated average ore feed to the plant, and the metallurgical process and cyanide destruction method used to generate these samples relative to the anticipated process to be used during mine operations. b. Complete an analysis of the sensitivity of the water quality model to the generation of ARD/ML from the low grade ore stockpiles.
Response:	a. Figure IR-25.1 shows the average annual grade of ore feed for the plant. Tailings samples CND1 and CND2 were generated from head samples having the composition shown in Table IR-25.1. Tables IR-25.2 and IR-25.3 show the composition of additional head samples prepared to address lateral and vertical variability of ore.
	The sample preparatory work and cyanide destruction work are detailed in Section 3 of the SGS report entitled "GOLD RECOVERY FROM VALENTINE LAKE PROJECT ORES" prepared for Marathon Gold Project 16863-01 – Report 2 of 3 - Milling" and dated April 15, 2020 (excerpt provided in Appendix IR-25.A). This work can be summarized as follows. The feed sample for each CND test was generated by leaching flotation tailings via mixing the tailings with cyanide-bearing flotation concentrate tailings. The CND product slurries from the gravity-

ID:	IR-25
	flotation-leach circuit were evaluated for the extent of cyanide destruction by sulfur dioxide-air - sometimes referred to as the INCO process. The CN destruction target was 1 mg/L of Weak Acid Dissociable (WAD) CN. The plan is to use the same method and targets for cyanide destruction during Project operation. Additional geochemical testing is being conducted on materials from the gravity- leach circuit and the same method for cyanide destruction. Static testing shows that newly generated tailings are non-PAG with NPR values ranging between 4.0 and 5.9. The kinetic testing includes two subaqueous columns, an aging test and a humidity cell and provide additional results on water quality of the TMF pond and seepage. The results will be considered and reported in the ARD/ML Management Plan.
	 b. The sensitivity of the water quality model to the generation of ARD/ML from the low grade ore stockpile is discussed in responses to IR-21, parts c), d), e) and to IR-24, part b).
Appendix:	Appendix IR-25.A

Figure IR-25.1 Annual Mill Feed Tons and Au Grade

			LGO Co	mposites							Milling Co	omposite	S			
	Marath	on (MLG	O-Met)	Leprec	haun (LLC	GO-Met)	Ма	rathon C	omps (tai	lings CNI	D-1)	Lep	rechaun (Comps (ta	ailings CN	ND-2)
Element																
	Α	В	С	D	E	F	MZA	MZB	MZC	MZD	MZE	LZA	LZB	LZC	LZD	LZE
% composite sample	33.3	33.3	33.3	33.3	33.3	33.3	15.7	21.8	21.6	23.6	17.3	27.9	17.3	14.5	20.4	19.9
Quantitative A	nalyses															
¹ Au, g/t	0.49	0.73	0.90	0.35	0.50	0.76	2.89	4.08	3.25	1.98	3.94	2.69	2.61	5.19	3.82	2.75
Cu, %	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
As, %	<0.001	0.003	<0.001	<0.001	<0.001	0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Hg g/t	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
S, %	0.44	0.45	0.66	0.19	0.21	0.31	0.68	0.68	0.79	0.70	0.51	0.30	0.28	0.43	0.34	0.36
S [⁼] , %	0.30	0.42	0.59	0.15	0.20	0.30	0.68	0.60	0.74	0.64	0.47	0.28	0.25	0.37	0.34	0.33
C(t), %	0.39	0.41	0.22	0.69	0.75	0.85	0.48	0.41	0.38	0.33	0.38	0.80	0.64	1.40	0.93	0.84
C(g), %	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
TOC Leco, %	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.06	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
CO ₂ , %	1.7	1.8	1.1	2.5	2.7	3.0	1.81	1.52	1.46	1.24	1.49	2.98	2.44	5.12	3.47	3.09
MAP	13.8	14.1	20.6	5.9	6.6	9.7	21.3	21.3	24.7	21.9	15.9	9.4	8.8	13.4	10.6	11.3
NP carb	32.5	34.2	18.3	57.5	62.5	70.8	40.0	34.2	31.7	27.5	31.7	66.7	53.3	116.7	77.1	70.0
Carb NPR	2.4	2.4	0.9	9.7	9.5	7.3	1.9	1.6	1.3	1.3	2.0	7.1	6.1	8.7	7.3	6.2
Spec. Grav	2.71	2.71	2.70	2.72	2.71	2.73			2.71		2.71		2.71		2.74	

IR-25.1 Head Analysis, Quantitative and Semi-quantitative Analysis, Marathon and Leprechaun Zones

Table 25-2: Head Assays

Sample	ID	Hole	Au	S	SO4 ²⁻	S ²⁻	С	TOC	Cg	Те	ND	NP AP NNP		NDD
Method		depth	FAAS	LECO	GRAV	GRAV	LECO	LECO	LECO	ICP	INF	Ar	ININF	NE N
Units		m	g/t	%	%	%	%	%	%	ppm		kg CaCO ₃ /i	t	unit less
	MAA	-	1.61	0.69	0.45	0.24	0.49	0.02	<0.01	25	32.9	7.41	25.5	4
	MAB	-	1.86	0.81	0.20	0.61	0.29	0.01	<0.01	22	19.2	19.0	0.2	1.0
	MAC	-	2.18	0.73	0.04	0.70	0.32	<0.01	<0.01	22	21.5	21.8	-0.3	1.0
sdu	MAD	-	1.31	0.57	0.05	0.53	0.29	<0.01	<0.01	32	19.1	16.4	2.7	1.2
Con	MAE	-	1.99	0.72	0.05	0.67	0.34	<0.01	<0.01	23	22.6	20.8	1.8	1.1
Je (LPA	-	2.15	0.38	0.02	0.35	0.65	0.03	0.01	24	43.2	11.1	32.1	4
ZOI	LPB	-	3.19	0.37	0.01	0.35	0.87	0.02	<0.01	22	57.9	11.1	46.8	5
	LPC	-	1.74	0.49	0.02	0.47	0.87	<0.01	0.01	26	58.1	14.7	43.4	4
	LPD	-	1.69	0.35	0.23	0.12	0.85	<0.01	0.01	25	56.8	3.91	52.9	15
	LPE	-	1.72	0.33	0.02	0.31	1.02	<0.01	0.01	21	68.0	9.71	58.3	7
ster nps	MAMC	-	4.01	0.74	0.06	0.68	0.33	<0.01	0.01	20	21.8	21.2	0.6	1.0
Ma Coi	LPMC	-	2.18	0.61	0.01	0.60	0.50	0.01	<0.01	21	33.4	18.6	14.8	1.8
S	MG1	-	0.55	0.53	0.04	0.49	0.33	0.01	<0.01	19	21.9	15.3	6.6	1.4
Bin	MG2	-	2.10	0.60	0.03	0.57	0.34	<0.01	<0.01	23	22.5	17.8	4.8	1.3
de	MG3	-	1.96	0.64	0.28	0.36	0.22	<0.01	<0.01	28	14.5	11.3	3.2	1.3
Gra	MG4	-	2.11	0.47	0.03	0.44	0.28	<0.01	<0.01	25	18.5	13.7	4.8	1.3
Ча	MG5	-	1.87	0.73	0.05	0.68	0.36	<0.01	0.01	20	24.3	21.3	2.9	1.1
	MG6	-	3.63	0.81	0.07	0.74	0.40	<0.01	0.01	38	26.5	23.2	3.3	1.1
ins	MD1	<50	1.70	0.74	0.04	0.71	0.34	<0.01	<0.01	22	22.3	22.0	0.3	1.0
h B	MD2	50-120	1.68	0.51	0.08	0.43	0.41	0.01	<0.01	22	27.0	13.6	13.4	2.0
ept	MD3	120-190	2.17	0.77	0.03	0.73	0.32	0.01	<0.01	20	21.5	22.9	-1.4	0.9
a D	MD4	190-260	2.45	0.80	0.05	0.75	0.28	0.01	<0.01	24	18.9	23.5	-4.6	0.8
Σ	MD5	>260	2.16	0.32	0.07	0.26	0.83	<0.01	<0.01	25	55.3	8.03	47.3	7
bs	LG1	-	1.27	0.39	0.01	0.38	0.98	<0.01	<0.01	21	65.3	11.7	53.6	6
шо	LG2	-	2.02	0.19	0.01	0.18	0.84	<0.01	<0.01	24	55.9	5.57	50.3	10
e C	LG3	-	3.03	0.25	<.01	0.25	0.75	0.01	<0.01	28	49.9	7.82	42.0	6
rad	LG4	-	4.85	0.30	0.05	0.25	0.75	<0.01	<0.01	29	49.7	7.90	41.8	6
рG	LG5	-	3.28	0.24	<.01	0.26	1.06	<0.01	<0.01	29	70.7	8.22	62.5	9
	LG6	-	4.35	0.24	0.01	0.23	0.66	<0.01	<0.01	30	43.7	7.09	36.6	6
ins	LD1	<50	2.25	0.23	0.01	0.23	0.90	<0.01	<0.01	24	59.8	7.11	52.7	8
h B	LD2	50-120	1.59	0.24	0.02	0.22	0.76	<0.01	<0.01	31	50.3	6.88	43.5	7
ept	LD3	120-190	2.57	0.42	0.02	0.40	0.96	<0.01	<0.01	26	63.7	12.4	51.2	5
D D	LD4	190-260	1.20	0.50	0.05	0.45	1.03	<0.01	0.01	26	68.7	14.0	54.7	5
	LD5	>260	3.06	0.25	0.01	0.23	0.75	<0.01	<0.01	27	50.1	7.31	42.8	7
Ma	Comp A	-	1.33	0.87	0.04	0.83	0.29	0.01	0.01	-	19.1	25.9	-6.8	0.7
Ma (Comp C	-	1.35	0.94	0.03	0.91	0.39	0.03	0.01	-	25.9	28.3	-2.4	0.9

Table 25-3: Elemental

Analyte Symbol	Hg	Co ₃ O ₄	CuO	NiO	SiO ₂	Al_2O_3	Fe ₂ O _{3(T)}	MnO	MgO	CaO	Na ₂ O	K ₂ O	TiO ₂	P_2O_5	Cr ₂ O ₃	V_2O_5	LOI	Total	AI	As	В	Ba	Be	Bi
Unit Symbol	ppb	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm	ppm
Detection Limit	5	0.005	0.005	0.003	0.01	0.01	0.01	0.001	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.003	-	0.01	0.01	5	10	3	3	2
Analysis Method	1G	FUS- XRF	FUS- XRF	FUS- XRF	FUS- XRF	FUS- XRF	FUS- XRF	FUS- XRF	FUS- XRF	FUS- XRF	FUS- XRF	FUS- XRF	FUS- XRF	FUS- XRF	FUS- XRF	FUS- XRF	GRAV	FUS- XRF	FUS- Na ₂ O ₂	FUS-MS- Na ₂ O ₂	FUS-MS- Na ₂ O ₂	FUS-MS Na ₂ O ₂	FUS-MS- Na ₂ O ₂	FUS-MS Na ₂ O ₂
MAA Hd	23	< 0.005	< 0.005	< 0.003	73.6	12.24	2.99	0.053	0.87	2.43	4.53	0.49	0.21	0.04	0.02	0.004	2.55	100	6.5	5	630	202	< 3	< 2
MAB Hd	145	< 0.005	0.007	< 0.003	76.3	11.52	2.7	0.039	0.44	1.54	4.3	0.6	0.15	0.03	0.01	< 0.003	1.77	99.41	6.32	21	330	186	< 3	< 2
MAC Hd	9	< 0.005	0.005	< 0.003	74.18	12.47	2.87	0.048	0.53	1.55	5.13	0.56	0.15	0.02	0.01	< 0.003	1.83	99.35	6.63	10	360	172	< 3	< 2
MAD Hd	19	< 0.005	< 0.005	< 0.003	76.03	11.91	2.12	0.043	0.4	1.43	5.19	0.41	0.13	0.02	0.01	0.004	1.54	99.25	6.4	6	430	144	< 3	< 2
MAE Hd	6	< 0.005	< 0.005	< 0.003	74.86	11.84	2.49	0.054	0.55	1.72	4.92	0.44	0.15	0.02	0.01	< 0.003	1.82	98.88	6.32	< 5	410	148	< 3	< 2
LPA Hd	15	< 0.005	< 0.005	< 0.003	69.47	14.9	2.03	0.058	0.81	2.91	5.58	1.26	0.21	0.08	0.01	0.007	2.85	100.2	7.95	< 5	290	1110	< 3	< 2
LPB Hd	10	< 0.005	< 0.005	< 0.003	65.7	14.54	2.75	0.061	1.02	3.44	5.45	1.15	0.36	0.09	0.01	0.009	3.45	98.04	7.94	< 5	400	794	< 3	< 2
LPC Hd	13	< 0.005	< 0.005	< 0.003	65.51	15.32	2.96	0.06	1.07	3.68	6.17	0.9	0.44	0.11	0.01	0.008	3.46	99.7	8.47	< 5	320	622	< 3	< 2
LPD Hd	8	< 0.005	< 0.005	0.003	64.18	15.65	2.73	0.057	1.27	3.95	6.02	0.93	0.32	0.11	0.01	0.008	3.59	98.84	8.46	< 5	530	641	< 3	< 2
LPE Hd	11	< 0.005	< 0.005	0.004	63.64	15.31	3.67	0.079	1.38	4.5	5.09	1.12	0.54	0.12	0.01	0.009	4.23	99.71	8.33	< 5	250	635	< 3	< 2
MAMC Hd	88	< 0.005	< 0.005	< 0.003	74.94	11.85	2.73	0.048	0.53	1.76	4.78	0.52	0.16	0.02	0.02	< 0.003	2.11	99.46	6.35	8	420	168	< 3	< 2
LPMC Hd	7	< 0.005	< 0.005	< 0.003	65.28	15.22	2.8	0.062	1.1	3.7	5.65	1.07	0.35	0.1	0.01	0.007	3.46	98.81	8.21	< 5	370	784	< 3	< 2
MG1 Hd	10	< 0.005	0.006	< 0.003	72.94	11.79	3.35	0.067	0.96	2.42	4.33	0.46	0.22	0.04	0.01	0.007	2.43	99.04	6.31	< 5	440	168	< 3	< 2
MG2 Hd	12	< 0.005	< 0.005	< 0.003	75.06	11.79	2.27	0.046	0.49	1.7	4.82	0.49	0.16	0.02	0.01	< 0.003	1.71	98.57	6.51	< 5	330	183	< 3	< 2
MG3 Hd	7	< 0.005	< 0.005	< 0.003	74.85	11.93	2.75	0.051	0.64	1.77	4.94	0.42	0.16	0.02	0.01	0.003	1.88	99.43	6.46	< 5	400	145	< 3	< 2
MG4 Hd	29	< 0.005	< 0.005	< 0.003	76.25	11.85	2.51	0.036	0.36	1.28	4.79	0.63	0.13	0.02	0.01	< 0.003	1.54	99.42	6.4	7	400	202	< 3	< 2
MG5 Hd	50	< 0.005	< 0.005	< 0.003	76.93	11.19	2.32	0.045	0.47	1.56	4.49	0.48	0.14	0.02	0.01	< 0.003	1.66	99.32	6	21	400	155	< 3	< 2
MG6 Hd	25	< 0.005	< 0.005	< 0.003	71.97	13.26	2.24	0.039	0.44	1.78	5.97	0.42	0.14	0.02	0.01	0.003	1.79	98.06	7.34	7	630	176	< 3	5
MD1 Hd	9	< 0.005	< 0.005	< 0.003	71.07	13.38	3.83	0.06	0.8	2.04	5.57	0.45	0.23	0.04	0.01	0.006	2.2	99.7	7.16	< 5	420	167	< 3	< 2
MD2 Hd	33	< 0.005	< 0.005	< 0.003	75.7	11.68	2.49	0.049	0.46	1.69	4.81	0.5	0.15	0.02	0.02	0.003	1.8	99.39	6.33	< 5	450	166	< 3	< 2
MD3 Hd	28	< 0.005	0.005	< 0.003	74.71	11.67	2.53	0.049	0.72	2.02	4.55	0.47	0.17	0.02	0.01	< 0.003	2.05	98.98	6.26	9	370	138	< 3	< 2
MD4 Hd	9	< 0.005	< 0.005	< 0.003	75.94	11.67	2.37	0.041	0.46	1.68	4.77	0.47	0.16	0.03	0.01	< 0.003	1.74	99.33	6.17	17	430	201	< 3	< 2
MD5 Hd	9	< 0.005	< 0.005	0.008	75.19	11.8	2.77	0.045	0.53	1.65	4.79	0.54	0.15	0.02	0.03	0.004	1.76	99.31	6.44	< 5	380	188	< 3	< 2
LG1 Hd	< 5	< 0.005	< 0.005	< 0.003	63.76	15.15	3.01	0.067	1.13	3.93	5.72	1.01	0.43	0.1	< 0.01	0.01	3.7	98.02	8.22	< 5	320	718	< 3	< 2
LG2 Hd	< 5	< 0.005	< 0.005	< 0.003	63.91	15.68	3.21	0.07	1.17	3.93	5.65	1.13	0.43	0.12	0.01	0.011	3.68	98.99	8.45	< 5	420	676	< 3	< 2
LG3 Hd	< 5	< 0.005	< 0.005	< 0.003	67.29	15	2.47	0.057	0.98	3.26	5.51	1.17	0.28	0.08	0.01	0.007	3.04	99.14	7.97	< 5	320	947	< 3	< 2
LG4 Hd	6	< 0.005	< 0.005	< 0.003	66.84	15.07	2.2	0.054	0.88	3.19	6.02	0.99	0.26	0.08	0.01	0.006	2.88	98.5	8.24	< 5	310	777	< 3	< 2
LG5 Hd	< 5	< 0.005	< 0.005	0.006	63.55	14.67	3.45	0.078	2.45	4.11	4.92	0.95	0.37	0.08	0.02	0.011	4.71	99.37	7.78	< 5	560	675	< 3	< 2
LG6 Hd	< 5	< 0.005	< 0.005	0.007	68.61	14.62	2.11	0.043	0.75	3.13	5.59	1.07	0.25	0.09	0.01	0.005	2.69	98.98	7.91	< 5	330	625	< 3	< 2
LD1 Hd	< 5	< 0.005	< 0.005	< 0.003	65.23	15.47	3.07	0.067	1.36	3.68	5.47	1.11	0.37	0.1	0.01	0.009	3.74	99.7	8.1	< 5	340	798	< 3	< 2
LD2 Hd	< 5	< 0.005	< 0.005	< 0.003	66.12	15.55	2.25	0.054	0.86	3.55	5.62	1.16	0.28	0.1	0.01	0.006	3.14	98.71	8.36	< 5	380	716	< 3	< 2
LD3 Hd	< 5	< 0.005	< 0.005	< 0.003	65.37	14.99	2.84	0.063	1.06	3.9	5.78	1.04	0.41	0.1	< 0.01	0.008	3.63	99.2	8.11	< 5	330	731	< 3	< 2
LD4 Hd	< 5	< 0.005	< 0.005	< 0.003	62.6	15.44	3.39	0.072	1.28	4.13	6.08	0.99	0.51	0.11	0.01	0.011	3.93	98.55	8.15	< 5	300	607	< 3	< 2
LD5 Hd	< 5	< 0.005	< 0.005	0.013	67.94	14.86	2.43	0.05	0.99	3.19	5.69	1.03	0.3	0.08	0.02	0.007	2.97	99.58	7.97	< 5	390	792	< 3	< 2

Table 25-3: Elemental

Analyte Symbol	Са	Cd	Ce	Со	Cr	Cs	Cu	Dy	Er	Eu	Fe	Ga	Gd	Ge	Но	Hf	In	K	La	Li	Mg	Mn	Мо
Unit Symbol	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm
Detection Limit	0.01	2	0.8	0.2	30	0.1	2	0.3	0.1	0.1	0.05	0.2	0.1	0.7	0.2	10	0.2	0.1	0.4	3	0.01	3	1
Analysis Method	FUS-MS- Na ₂ O ₂	FUS-MS Na ₂ O ₂	- FUS-MS Na ₂ O ₂	- FUS-MS Na ₂ O ₂	FUS-MS Na ₂ O ₂	FUS-MS- Na ₂ O ₂	FUS- Na ₂ O ₂	FUS-MS Na ₂ O ₂	FUS-MS Na ₂ O ₂	FUS-MS Na ₂ O ₂	FUS-MS- Na ₂ O ₂	FUS-MS- Na ₂ O ₂	FUS-MS- Na ₂ O ₂	FUS- Na ₂ O ₂	FUS-MS- Na ₂ O ₂	FUS-MS- Na ₂ O ₂	FUS- Na ₂ O ₂	FUS-MS- Na ₂ O ₂	FUS-MS- Na ₂ O ₂				
MAA Hd	1.67	< 2	10.2	5.9	110	0.1	24	5	4.3	0.8	2.17	13.3	4.8	2.4	1.3	< 10	< 0.2	0.5	3.6	19	0.46	460	3
MAB Hd	1.06	< 2	10.9	2.4	110	0.4	55	5.6	4.5	0.5	2.07	12.8	4.6	2	1.5	< 10	0.3	0.6	4.6	14	0.23	350	5
MAC Hd	1.06	< 2	13.4	3.9	100	0.3	39	6.8	5.4	0.8	2.15	11.1	5.6	1.9	1.7	< 10	< 0.2	0.5	4.2	14	0.29	379	< 1
MAD Hd	1.01	< 2	12.7	3.3	110	0.6	42	5.9	4.4	1	1.59	11.8	4	1.8	1.5	< 10	< 0.2	0.4	4.9	16	0.21	330	< 1
MAE Hd	1.19	< 2	12.9	2.4	100	1.9	35	6.6	5.2	0.6	1.9	9.9	4.5	1.8	1.5	< 10	0.3	0.4	5.5	13	0.3	430	3
LPA Hd	2.03	< 2	22.5	3.6	80	0.9	22	0.8	0.4	0.8	1.47	17.2	1.2	1.5	< 0.2	< 10	< 0.2	1.1	11.1	13	0.44	456	< 1
LPB Hd	2.5	< 2	26	6.6	90	0.4	30	1.2	0.7	0.6	2.04	17.9	1.9	1.4	0.3	< 10	< 0.2	1	12.7	12	0.59	488	< 1
LPC Hd	2.67	< 2	30.3	5.3	70	0.8	27	1.1	0.6	0.9	2.22	15.8	2.1	1.5	< 0.2	< 10	< 0.2	0.8	15.3	12	0.61	474	< 1
LPD Hd	2.87	< 2	33.6	5.7	90	0.5	20	0.8	0.4	1	1.97	16.7	2.1	1.3	0.2	< 10	< 0.2	0.8	17.9	17	0.73	476	< 1
LPE Hd	3.19	< 2	33.4	6.5	80	0.7	27	1.5	0.8	0.9	2.59	18.5	1.5	1.4	0.3	< 10	< 0.2	1	15.6	14	0.79	591	2
MAMC Hd	1.11	< 2	13.2	4.6	170	0.3	74	6.1	4.9	0.9	2.32	13.9	4.4	1.7	1.5	< 10	< 0.2	0.5	4.7	17	0.3	435	3
LPMC Hd	2.65	< 2	28.9	7.5	100	0.8	41	0.9	0.7	1.1	2.06	15.6	2	1.4	< 0.2	< 10	< 0.2	0.9	13.6	34	0.63	523	1
MG1 Hd	1.71	< 2	10.7	4.1	110	0.2	87	5.4	3.8	1	2.62	14.6	3.7	2.2	1.2	< 10	< 0.2	0.4	3.7	20	0.53	511	2
MG2 Hd	1.2	< 2	12.3	2.3	110	< 0.1	37	6.3	5.1	0.7	1.83	11.9	5	1.8	1.7	20	0.2	0.5	4.4	9	0.26	372	< 1
MG3 Hd	1.25	< 2	12.9	3.5	140	< 0.1	29	6.2	4.5	0.7	2.28	11.2	4.2	1.8	1.6	< 10	< 0.2	0.4	4.7	9	0.35	424	2
MG4 Hd	0.86	< 2	11.9	2.5	130	< 0.1	33	5.7	5.2	0.6	1.88	10	4.2	1.8	1.2	< 10	< 0.2	0.6	5.2	8	0.19	290	2
MG5 Hd	1.04	< 2	11.5	1.8	210	0.5	30	5.7	4.6	0.6	1.87	11.8	3.8	2	1.4	< 10	< 0.2	0.5	5	7	0.24	378	10
MG6 Hd	1.3	< 2	13.1	2.5	470	0.3	17	7.4	5.7	0.9	1.74	13.2	5.3	1.8	1.7	< 10	< 0.2	0.4	4.9	7	0.23	364	< 1
MD1 Hd	1.41	< 2	12.3	6.2	100	0.4	29	5.5	3.7	0.8	3.07	12.7	5.1	1.8	1.3	< 10	< 0.2	0.4	4.3	7	0.45	501	2
MD2 Hd	1.03	< 2	11.7	3	390	0.4	23	5.7	4.8	0.5	1.89	12.2	4.2	1.4	1.2	< 10	< 0.2	0.4	4.2	6	0.24	346	3
MD3 Hd	1.38	< 2	10.2	3.5	120	0.2	45	5.6	4	0.7	1.92	12.8	3.1	2.2	1.4	< 10	< 0.2	0.4	4.2	9	0.4	413	4
MD4 Hd	1.11	< 2	11.4	3	150	0.1	28	6.4	4.4	0.6	1.9	9.9	4.5	1.8	1.5	< 10	0.3	0.5	4.8	13	0.23	351	3
MD5 Hd	1.06	< 2	13.4	1.9	100	0.3	30	7.1	4.6	0.7	2.12	10.9	4.5	1.7	1.5	< 10	< 0.2	0.5	5.2	8	0.28	379	2
LG1 Hd	2.65	< 2	26.1	7.6	90	0.6	20	1.2	0.7	0.9	2.15	15.8	2.1	1	0.2	< 10	< 0.2	0.9	14.3	7	0.63	511	< 1
LG2 Hd	2.65	< 2	30	7.2	100	0.5	25	1.6	0.6	0.8	2.47	17.7	1.8	1.1	0.3	< 10	< 0.2	1	14.5	9	0.65	555	2
LG3 Hd	2.2	< 2	25.1	6.4	140	0.5	21	0.9	0.3	0.7	1.9	18.1	1.5	1.4	0.2	< 10	< 0.2	1	12.5	8	0.51	465	< 1
LG4 Hd	2.14	< 2	25.4	3.9	110	0.6	18	0.7	0.5	0.7	1.81	15.9	1.8	1	< 0.2	< 10	< 0.2	0.9	13.4	6	0.46	438	1
LG5 Hd	2.82	< 2	23.6	11.4	180	0.9	24	1.3	0.8	0.9	2.45	18.8	1.9	1.7	0.3	< 10	< 0.2	0.8	10.4	9	1.38	576	< 1
LG6 Hd	2.18	< 2	25.9	4.7	110	0.4	19	0.6	0.3	0.8	1.66	14.5	1.6	1.3	< 0.2	< 10	< 0.2	0.9	14.5	6	0.4	385	2
LD1 Hd	2.47	< 2	27.1	7.6	120	0.5	20	1.3	1	0.8	2.35	16.9	1.3	1.2	< 0.2	< 10	< 0.2	0.9	14.8	8	0.76	533	< 1
LD2 Hd	2.48	< 2	28.2	3.6	100	0.5	21	0.9	0.5	1.2	1.76	18.6	1.7	1.1	< 0.2	< 10	< 0.2	1	14.4	6	0.47	464	< 1
LD3 Hd	2.79	< 2	27.1	4.5	100	0.7	24	1.1	0.6	0.9	2.05	15	2.2	1.1	0.3	< 10	< 0.2	0.9	15.6	7	0.6	520	< 1
LD4 Hd	2.87	< 2	26.5	7.5	100	0.6	24	1.6	1	0.9	2.58	16.4	1.8	1.6	0.3	< 10	< 0.2	0.9	14.3	7	0.72	592	2
LD5 Hd	2.22	< 2	23.7	7.2	110	0.8	30	1	0.7	0.7	1.87	15.7	1.4	1.6	< 0.2	< 10	< 0.2	0.9	12	7	0.53	458	1

Table 25-3: Elemental

Analyte Symbol	Nb	Nd	Ni	Pb	Pr	Rb	S	Sb	Se	Si	Sm	Sn	Sr	Та	Tb	Те	Th	Ti	TI	Tm	U	V	W
Unit Symbol	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
Detection Limit	2.4	0.4	10	0.8	0.1	0.4	0.01	2	8	0.01	0.1	0.5	3	0.2	0.1	6	0.1	0.01	0.1	0.1	0.1	5	0.7
Analysis Method	FUS-MS- Na ₂ O ₂	FUS- Na ₂ O ₂	FUS-MS- Na ₂ O ₂	FUS-MS- Na ₂ O ₂	FUS- Na ₂ O ₂	FUS-MS Na ₂ O ₂	FUS-MS Na ₂ O ₂	FUS-MS- Na ₂ O ₂	FUS-MS Na ₂ O ₂	FUS-MS Na ₂ O ₂	FUS-MS- Na ₂ O ₂	FUS-MS- Na ₂ O ₂	FUS- Na ₂ O ₂	FUS-MS- Na ₂ O ₂									
MAA Hd	< 2.4	8.1	20	9.2	1.2	10.1	0.68	< 2	< 8	> 30.0	3.8	5.8	99	< 0.2	0.8	25	1	0.12	< 0.1	0.5	0.6	29	5.7
MAB Hd	< 2.4	8.6	20	20.5	1.9	11.8	0.71	2	< 8	> 30.0	2.4	6.6	80	< 0.2	1	22	1.1	0.09	0.1	0.7	0.6	9	9.7
MAC Hd	< 2.4	10.1	20	7.6	1.6	7.7	0.68	< 2	< 8	> 30.0	3.6	5.8	63	0.3	1.1	22	1.4	0.09	< 0.1	0.9	0.7	15	3.9
MAD Hd	< 2.4	9.1	40	9.8	1.9	7.3	0.56	< 2	13	> 30.0	2.3	6.3	71	< 0.2	0.9	32	1.2	0.08	< 0.1	0.7	0.7	13	5.9
MAE Hd	< 2.4	8.6	10	4.7	1.8	7.9	0.69	< 2	< 8	> 30.0	3	5.4	70	< 0.2	0.9	23	1.1	0.09	< 0.1	0.8	0.6	15	13.8
LPA Hd	< 2.4	8.9	10	12.3	2.7	27.5	0.22	2	< 8	> 30.0	1.5	5.1	410	< 0.2	0.1	24	0.7	0.12	0.1	< 0.1	0.3	34	3.9
LPB Hd	< 2.4	11.3	10	7.5	2.6	26.6	0.31	< 2	< 8	> 30.0	1.9	4.8	344	< 0.2	0.2	22	1	0.22	0.1	< 0.1	0.4	52	19.8
LPC Hd	< 2.4	11.8	10	8.6	3.6	20.8	0.36	< 2	< 8	> 30.0	1.4	5.2	438	< 0.2	0.3	26	1	0.25	< 0.1	0.2	0.4	56	13.5
LPD Hd	< 2.4	13.9	30	8.7	3.4	17.8	0.34	< 2	< 8	> 30.0	2.1	5.2	511	< 0.2	0.3	25	1.1	0.19	< 0.1	< 0.1	0.4	49	51.3
LPE Hd	< 2.4	13.5	20	9.4	4.1	22.8	0.27	2	< 8	29.5	2.6	3.6	436	< 0.2	0.3	21	1.8	0.3	0.1	0.1	0.5	71	12.6
MAMC Hd	< 2.4	8.4	30	13.9	1.8	9.6	0.69	3	< 8	> 30.0	1.9	5.8	78	< 0.2	0.9	20	1.1	0.09	< 0.1	0.8	0.5	21	8.6
LPMC Hd	< 2.4	10.6	20	9.6	2.9	25.9	0.29	< 2	< 8	> 30.0	2	4.6	417	< 0.2	0.2	21	1	0.21	0.1	0.1	0.4	46	16.3
MG1 Hd	< 2.4	8.8	30	45.8	1.7	8.9	0.56	< 2	< 8	> 30.0	3.9	4.8	85	< 0.2	1	19	1	0.13	0.2	0.6	0.5	33	5.8
MG2 Hd	< 2.4	8.2	20	19.5	1.9	7.5	0.55	< 2	< 8	> 30.0	2.9	5.9	86	< 0.2	1	23	1.2	0.1	< 0.1	0.7	0.7	17	4.7
MG3 Hd	< 2.4	9.8	20	33.6	1.8	8.7	0.72	< 2	< 8	> 30.0	3.5	5.7	73	< 0.2	1	28	1.3	0.09	< 0.1	0.8	0.7	21	12.4
MG4 Hd	< 2.4	9.5	20	15.5	1.6	13.5	0.78	< 2	14	> 30.0	2.8	6	60	0.3	0.9	25	1.3	0.08	< 0.1	0.8	0.5	13	4.6
MG5 Hd	< 2.4	9.6	10	19.7	1.5	9.8	0.6	3	< 8	> 30.0	3.1	6	64	< 0.2	0.9	20	1.2	0.08	< 0.1	0.6	0.6	16	22.5
MG6 Hd	< 2.4	10.5	30	15.8	2.1	8.8	0.71	< 2	< 8	> 30.0	4.2	6.3	79	0.3	1.2	38	1.4	0.09	< 0.1	0.7	0.6	13	4.2
MD1 Hd	< 2.4	12.4	20	6.1	1.9	7.3	0.74	< 2	< 8	> 30.0	3.8	4	76	0.3	1	22	1.2	0.14	< 0.1	0.7	0.6	35	7.1
MD2 Hd	< 2.4	7.7	20	6.1	1.3	9	0.73	2	< 8	> 30.0	2.9	3	66	0.3	0.9	22	1	0.09	< 0.1	0.8	0.5	20	6.4
MD3 Hd	< 2.4	7.4	10	7.9	1.7	7.6	0.55	< 2	< 8	> 30.0	2.7	3.9	82	0.3	0.8	20	1.1	0.1	< 0.1	0.7	0.5	29	5.7
MD4 Hd	< 2.4	8	20	16.7	1.6	8.7	0.7	< 2	< 8	> 30.0	3.3	30.2	68	0.2	0.9	24	1.1	0.09	< 0.1	0.7	0.5	17	5.6
MD5 Hd	< 2.4	10.3	10	10.9	1.9	8.4	0.76	< 2	14	> 30.0	3.1	2.8	77	< 0.2	1	25	1.3	0.09	< 0.1	0.8	0.7	19	18.7
LG1 Hd	< 2.4	13.4	40	8.8	2.7	25.3	0.31	< 2	< 8	> 30.0	1.6	4.5	420	0.4	0.2	21	0.9	0.25	< 0.1	0.1	0.4	65	61.3
LG2 Hd	< 2.4	13.5	20	9.6	3.4	25.7	0.32	< 2	< 8	> 30.0	2.5	3.1	411	0.2	0.3	24	1.1	0.26	< 0.1	0.1	0.5	64	20.8
LG3 Hd	< 2.4	10.8	180	13.3	3	23.2	0.29	< 2	< 8	> 30.0	1.5	2.5	370	< 0.2	0.2	28	0.7	0.17	0.2	< 0.1	0.4	48	10.2
LG4 Hd	< 2.4	11.1	10	10.8	2.7	20.5	0.27	< 2	< 8	> 30.0	1.8	4.2	389	< 0.2	0.2	29	0.8	0.15	< 0.1	< 0.1	0.4	44	10.5
LG5 Hd	< 2.4	10.8	50	12.5	2.3	23.6	0.21	< 2	< 8	29.6	2.2	3.2	399	0.4	0.2	29	0.7	0.21	0.1	< 0.1	0.3	70	6.5
LG6 Hd	< 2.4	11.5	< 10	11	3.3	23.8	0.21	< 2	< 8	> 30.0	2.3	2.8	394	0.4	0.2	30	0.9	0.15	< 0.1	< 0.1	0.4	40	4.8
LD1 Hd	< 2.4	10.7	20	10.4	2.7	25.5	0.22	< 2	< 8	29.9	1.7	3.1	410	< 0.2	0.2	24	1.1	0.21	< 0.1	< 0.1	0.4	64	7.3
LD2 Hd	< 2.4	12.6	20	9.9	2.7	23.2	0.18	< 2	< 8	> 30.0	1.6	4.6	416	0.3	0.2	31	0.9	0.16	< 0.1	< 0.1	0.4	41	6.1
LD3 Hd	< 2.4	12.1	20	10.3	3.1	22.9	0.34	< 2	< 8	> 30.0	2.4	2.4	431	< 0.2	0.3	26	1.1	0.25	0.1	0.1	0.4	56	47.7
LD4 Hd	< 2.4	13.4	20	7.4	3.1	24.2	0.42	< 2	< 8	29.2	2.7	4.1	391	0.2	0.3	26	1	0.31	0.1	0.2	0.4	70	22.4
LD5 Hd	< 2.4	11.1	10	10.5	2.5	20.9	0.3	< 2	< 8	> 30.0	1.8	4.3	379	< 0.2	0.2	27	0.8	0.17	< 0.1	< 0.1	0.3	45	14.2

Table	25-3:	Elemental
-------	-------	-----------

Analyte Symbol	Y	Yb	Zn
Unit Symbol	ppm	ppm	ppm
Detection Limit	0.1	0.1	30
Analysis Method	FUS-MS- Na ₂ O ₂	FUS-MS- Na ₂ O ₂	FUS-MS- Na ₂ O ₂
MAA Hd	34.6	4.3	40
MAB Hd	37.3	4.1	30
MAC Hd	47.9	4.8	< 30
MAD Hd	38.9	4.4	30
MAE Hd	43.3	4.3	< 30
LPA Hd	6	0.4	30
LPB Hd	6.8	0.8	40
LPC Hd	6.3	0.8	40
LPD Hd	5.1	0.4	40
LPE Hd	8.6	1.2	40
MAMC Hd	39.6	4.1	40
LPMC Hd	7.4	0.5	40
MG1 Hd	33.5	3.5	100
MG2 Hd	37.4	4.4	< 30
MG3 Hd	41.6	4.7	< 30
MG4 Hd	42.4	5.2	30
MG5 Hd	39.2	4.8	30
MG6 Hd	42.6	5.3	< 30
MD1 Hd	37	4.8	< 30
MD2 Hd	38	4	< 30
MD3 Hd	36.3	4.9	< 30
MD4 Hd	34.8	4	< 30
MD5 Hd	44	5	< 30
LG1 Hd	7.2	0.8	40
LG2 Hd	7.5	0.5	60
LG3 Hd	5.3	0.6	70
LG4 Hd	4.7	0.3	< 30
LG5 Hd	7.6	0.5	70
LG6 Hd	3.7	< 0.1	30
LD1 Hd	6.5	0.6	40
LD2 Hd	3.9	0.4	40
LD3 Hd	8.2	0.8	60
LD4 Hd	9.9	0.9	70
LD5 Hd	6.9	0.7	40

April 2021

RESPONSE TO IR-26

ID:	IR-26
Expert Department or	NRCan-21
Group:	
Guideline Reference:	Section 7.1
EIS Reference:	Chapter 7 and Baseline hydrology and surface water quality monitoring
	program (Appendix D Local water quality tables)
Context and Rationale:	Section 7.1 of the EIS Guidelines states that the EIS will present
	information in sufficient detail to enable the identification of how the project
	could affect the VCs and the analysis of those effects. Baseline water
	quality has been monitored at the site since 2011. Upon review of table
	7.24 of Chapter 7 of the EIS, the baseline concentrations for a number of
	elements (including chromium) are high compared to the regional water
	quality monitoring stations. Currently, the proponent derived local baseline
	concentrations by pooling all water quality monitoring stations together and
	calculated a 75th percentile value as baseline water quality. Upon review of
	Appendix D of the baseline document, high chromium levels appear to have
	occurred predominantly in 2011 and have often been below the detection
	limit of 1ppb ever since. The variability in metal concentration depends on
	many factors and it is likely not appropriate to use baseline metal data in
	streams to derive a baseline for Valentine and Victoria Lakes.
Information Request:	a. Set baseline metal concentrations for Valentine Lake, Victoria Lake and
	Victoria River based only on measurements in the given water bodies
	that will receive effluent discharge. Discuss the baseline water quality
	for chromium in comparison to the Canadian Water Quality guideline for
	the protection of aquatic life of 1pbb for hexavalent chromium and 8ppb
	for trivalent chromium.
	Assess the need to include chromium as a contaminant of potential
	concern in the EIS given its toxicity to fish and fish habitat.
Response:	a. As indicated by the reviewer, pooled water quality data was used to
	describe local Project Area baseline conditions; however, in the
	assessment of effects on water quality (please refer to the Assimilative
	Capacity Study presented in Appendix 7C of the EIS and associated
	effects assessment for surface water quality in Section 7.5.2.3 of the
	EIS), water quality data was discretized for the small tributaries and
	ponds from the larger receivers (i.e., Victoria Lake Reservoir, Valentine
	Lake and Victoria River).
	As described in the Assimilative Capacity Study, local
	waterbody/watercourse water guality was used to model the effluent
	mixing and assimilation at the final discharge point and in the

ID:	IR-26
	downstream channel at 100 m and 250 m. Continuing downstream, the model transitioned to what was referred to as the ultimate receiver (i.e., Victoria Lake Reservoir, Valentine Lake or the Victoria River). The baseline water quality data used to model effluent effects in each of the ultimate receivers was from the respective waterbody water quality data (i.e., the entire dataset was not pooled). The effluent assessment used local, smaller watercourse/waterbody water quality to assess effects at and downstream of the final discharge point and used the larger lake/river water quality data to assess the extent of the mixing zone in the downstream ultimate receiver.
	Please refer to part b) below for further information on chromium (Cr).
	The groundwater water quality assessment considered Cr with a reportable detection limit (RDL) of 1 ug/L (EIS Baseline Study Appendix [BSA].3, Attachment 3-A, Table C-2) and observed all samples below the RDL. In the dissolved constituent groundwater environment, it is assumed that most Cr is in the more soluble and mobile hexavalent form, thus it is assumed that groundwater quality was below the Cr-6 Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life (CWQG-FAL) threshold of 1 ug/L and Cr-3 CWQG-FAL threshold of 8.9 ug/L.
	In BSA.3, Attachment 3-C, Table 4.34, regional water quality stations monitoring chromium observed a maximum concentration of 0.37 ug/L, which is below the CWQG-FAL threshold for both Cr-6 and Cr-3. Upon further review of the local water quality presented in BSA.3, Attachment 3-C, it is acknowledged that Cr concentrations appear to be anomalously higher specifically during 2011, the first year of the field monitoring program. In total, 619 samples were collected in the local field program commencing in 2011; 505 of the Cr samples were below detection limit, yet during 2011, some Cr samples in surface water approached 100 ug/L. Additional anomalously high Cr values were observed during the February 6, 2014 sampling event (maximum Cr concentration of 160 ug/L). Such high concentrations were not observed at that same station in subsequent years or sampling events.
	Unfortunately, as a decade has passed since the sampling was undertaken in 2011, the cause or sources of the anomalies in Cr concentration are not able to be investigated. However, to assess this apparent anomaly, the 2011 Cr samples, as well as the February 6, 2014 data, were parsed from the dataset and the statistical analysis was re-run. The resulting analysis covering the local field monitoring

ID:	IR-26
	period extending from 2012 - 2019 had a total of 515 samples with 446 samples below RDL, and a maximum Cr concentration of 19.7 ug/L.
	If a quantitative value for non-detects is assumed to be 1/2 the RDL (EC 2012), then the mean concentration and 75 th percentile for Cr from 2012-2019 was 0.81 ug/L and 0.5 ug/L, respectively, neither of which exceed 1 ug/L, the CWQG-FAL threshold for CR-6. The 75 th percentile is calculated to be slightly less than the mean concentration because many of the samples were below detection and were represented by a value of 0.5 ug/L thus skewing the data set towards lower concentrations. Cr was non-detect in local groundwater and well below the 1 ug/L CWQG-FAL Cr-6 threshold in regional surface water quality and in local field-based water quality when the anomalous 2011 years and Feb 6/14 sampling was parsed from the dataset. Cr was also not detected as a parameter of potential concern in the geochemical water quality assessment (Appendix 7-A and 7-B, in the EIS). For the above reasons, Cr was not forwarded as a parameter of potential concern.
	Reference:
	Environment Canada (EC). 2012. Metal Mining Technical Guidance for Environmental Effects Monitoring. Environment Canada
Appendix:	None

April 2021

APPENDIX IR-08.A IR-08 FIGURE AND TABLE

Figure IR-08.1 Groundwater Monitoring Wells, Boreholes, and Test Pits at the Valentine Gold Project

April 2021

Test Hole ID	Easting (m NAD83 UTM Zone 21)	Northing (m NAD83 UTM Zone 21)	Elevation (m)	Test Hole Depth (m)	Depth to Water Level (m)	Туре
20BH-01	489928.4	5357325	384.522	12.27	0.858	Borehole
20BH-02	489963.7	5357270	382.543	13.79	0.353	Borehole
20BH-03	489942.2	5357124	380.135	9.5	0.034	Borehole
20BH-04	490059.8	5357123	380.624	16.08	0.334	Borehole
20BH-05A	490031.1	5357082	380.815	30.4	0.336	Borehole
20BH-05B	490031.4	5357080	380.903	6.4	0.248	Borehole
20BH-06	490094.7	5357089	379.956	9.14	0.498	Borehole
20BH-07	490102.4	5357047	378.923	9.14	0.308	Borehole
20BH-08	489920.2	5357038	380.927	12.19	0.158	Borehole
20BH-09	489944.5	5356940	385.101	9.78	2.739	Borehole
20BH-10	489997.8	5356950	382.165	9.55	0.294	Borehole
20BH-11	489998.6	5356901	383.53	24.54	0.533	Borehole
20BH-12	489967.8	5356862	384.13	18.52	0.5	Borehole
20BH-13	492477.5	5361402	331.826	7.92	0.187	Borehole
20BH-14	492416.4	5360986	332.774	9.6	0.37	Borehole
20BH-15A	491896.1	5360819	339.801	30.63	0.336	Borehole
20BH-15B	491896.1	5360819	339.801	4.57	0.248	Borehole
20BH-16	491272	5360713	334.803	7.52	-0.085	Borehole
20BH-17	491643.1	5360434	345.62	6.4	0.431	Borehole
20BH-18	492430.8	5360379	342.767	12.19	0.474	Borehole
20BH-19	492826.3	5360337	359.195	6.37	0.925	Borehole
20BH-20	492354.9	5359920	362.146	6.33	1.544	Borehole
20BH-21	491701.4	5359788	350.944	10.97	0.398	Borehole
20BH-22	491438.7	5359491	369.825	9.34	0.356	Borehole
20BH-23	492026	5359434	386.363	6.61	0.613	Borehole
20BH-24	491946.3	5358636	361.834	7.86	0.492	Borehole
20BH-25	492019.8	5358304	353.821	6.15	0.298	Borehole
20BH-26A	491720.8	5358475	367.748	30.48	-0.551	Borehole
20BH-26B	491718.3	5358473	367.829	5.77	-0.57	Borehole
20BH-27	491659.7	5358030	357.076	9.24	-0.056	Borehole
20BH-27A	491657.2	5358029	357.236	29.08	-0.133	Borehole
20BH-28	490823.8	5357855	384.545	12.34	0.54	Borehole
20BH-29	491624.6	5357443	340.688	10.97	0.028	Borehole
20BH-30	490762.4	5357410	372.332	10.71	1.115	Borehole
20BH-31	490329.7	5357412	377.465	9.14	0.248	Borehole

April 2021

Test Hole ID	Easting (m NAD83 UTM Zone 21)	Northing (m NAD83 UTM Zone 21)	Elevation (m)	Test Hole Depth (m)	Depth to Water Level (m)	Туре
20BH-32	490015.1	5357901	414.861	10.57	0.323	Borehole
20BH-33	488545.7	5356767	386.934	10.87	0.592	Borehole
20BH-34	487898.8	5356158	380.224	15.37	0.115	Borehole
20BH-35A	487266.3	5355802	378.359	30.61	0.996	Borehole
20BH-35B	487270.3	5355801	378.25	7.87	0.059	Borehole
20BH-36	487957.2	5355551	362.377	4.67	0.585	Borehole
20BH-37	486046.7	5355231	348.831	7.75	0.689	Borehole
20BH-GLDR-01	491104.1	5357597	368.218	18.31	0.525	Borehole
20TP-01	490003.4	5357586	397.911	2.2	0.3	Test Pit
20TP-02	489872.4	5357491	398.142	2.1	1.1	Test Pit
20TP-03	489980.8	5357490	393.262	2	0.5	Test Pit
20TP-04	490047.5	5357505	390.215	2.2	1.5	Test Pit
20TP-05	489938.1	5357428	391.483	2.3	2.2	Test Pit
20TP-06	490043.9	5357425	385.348	2.6	2	Test Pit
20TP-07	489946.5	5357365	385.964	3.1	0.4	Test Pit
20TP-08	489883.4	5357319	384.667	2.5	2	Test Pit
20TP-09	489970.4	5357312	382.393	3.2	1.5	Test Pit
20TP-10	489920.4	5357274	382.867	2.5	0.5	Test Pit
20TP-100	489641.1	5357423	401.567	3.1	0.6	Test Pit
20TP-101	490389.3	5358221	423.335	0.9	0.4	Test Pit
20TP-102	490785.1	5358461	419.703	0.2	0.1	Test Pit
20TP-103	491192	5358699	407.327	0.3	0.1	Test Pit
20TP-104	490666.9	5356961	379.498	3	0.9	Test Pit
20TP-105	490551.6	5356258	380.565	3.8	1	Test Pit
20TP-106	490265.7	5355844	370.296	4.3	2.9	Test Pit
20TP-107	490563.1	5355538	354.376	2.1		Test Pit
20TP-108	491137.8	5356588	324.519	4.2		Test Pit
20TP-109	491248.3	5357045	344.598	3.4	2.9	Test Pit
20TP-11	490091.6	5357302	380.941	2.85	0.3	Test Pit
20TP-110	491681.7	5357301	328.332	4.1		Test Pit
20TP-111	491976.5	5357738	336.677	2.9	1.1	Test Pit
20TP-112	492251.2	5358248	339.738	2.2	0.6	Test Pit
20TP-113	492256.4	5358754	352.04	4.65	0.6	Test Pit
20TP-114	492615.8	5359287	370.846	4.9	2.5	Test Pit
20TP-115	491925.7	5358975	384.648	1.7	1.1	Test Pit

April 2021

Test Hole ID	Easting (m NAD83 UTM Zone 21)	Northing (m NAD83 UTM Zone 21)	Elevation (m)	Test Hole Depth (m)	Depth to Water Level (m)	Туре
20TP-116	491569.1	5359163	395.917	2.9	1.6	Test Pit
20TP-117	491081.7	5359247	382.373	2.7	1.5	Test Pit
20TP-118	490559.4	5359238	370.754	3.6		Test Pit
20TP-119	491803.3	5359560	374.458	4.6		Test Pit
20TP-12	490054.2	5357250	381.227	3.9	0.3	Test Pit
20TP-120	491980.6	5360205	344.05	3.25	2	Test Pit
20TP-121	492461.7	5360749	334.004	2.8	0.6	Test Pit
20TP-122	492787.2	5361113	328.906	2.43	0.5	Test Pit
20TP-123	490746.9	5358225	406.353	0.4		Test Pit
20TP-13	490112	5357228	380.685	4.8	0.5	Test Pit
20TP-14	490156.9	5357319	380.325	1.85		Test Pit
20TP-15	490142.2	5357151	379.762	4.9	2.5	Test Pit
20TP-16	489900.1	5357182	380.877	2.7	0.3	Test Pit
20TP-17	489892.1	5357087	379.607	4.2	1.3	Test Pit
20TP-18	489864.3	5357004	380.383	3.5	1.4	Test Pit
20TP-19	489784.6	5356976	380.76	3.4	1.8	Test Pit
20TP-20	489853.1	5356913	381.66	3.5	3.4	Test Pit
20TP-21	489882.5	5356881	383.023	4.3	1.7	Test Pit
20TP-22	489926.4	5356803	384.547	4.6	2.5	Test Pit
20TP-23	490074.7	5356910	382.219	4.8	2.5	Test Pit
20TP-24	490127.7	5356965	379.677	2.8	1.5	Test Pit
20TP-25	490041.5	5357009	380.953	4.8	2.5	Test Pit
20TP-26	489979.1	5357007	385.032	5.2	4	Test Pit
20TP-27	489732.5	5359229	357.388	1.5		Test Pit
20TP-28	490034	5355603	350.103	3.9	2.3	Test Pit
20TP-29	490114.3	5355651	354.409	4.2	1.1	Test Pit
20TP-30	490072.3	5355515	344.99	4.2	1	Test Pit
20TP-31	490174.8	5355555	349.215	4.3	3.5	Test Pit
20TP-32	490099.6	5357395	382.045	2.2	0.7	Test Pit
20TP-33	492159	5361201	333.987	2.5	0.7	Test Pit
20TP-34	491512.2	5360668	335.775	2.1	0.35	Test Pit
20TP-35	492074.7	5360588	340.625	2.1	1.6	Test Pit
20TP-36	492741.4	5360522	344.476	3.93	3.1	Test Pit
20TP-37	492680.3	5360195	356.502	0.85	0.2	Test Pit
20TP-38	492296.9	5360387	334.751	3.2	1.5	Test Pit

April 2021

Test Hole ID	Easting (m NAD83 UTM Zone 21)	Northing (m NAD83 UTM Zone 21)	Elevation (m)	Test Hole Depth (m)	Depth to Water Level (m)	Туре
20TP-39	492042.9	5360080	345.198	3.8	1.2	Test Pit
20TP-40	491826.3	5359953	344.058	2.2	1.2	Test Pit
20TP-41	491603.7	5359637	358.837	3.2	0.4	Test Pit
20TP-42	491273.3	5359582	351.768	4.9	0.3	Test Pit
20TP-43	492036.4	5359612	375.331	1.5	0.1	Test Pit
20TP-44	491939.2	5359272	388.515	4.5	0.5	Test Pit
20TP-45	491594.4	5358799	391.215	1.7	0.7	Test Pit
20TP-46	491695.5	5358728	381.772	4.7	1.1	Test Pit
20TP-47	491855.2	5358724	372.779	4.3	1.8	Test Pit
20TP-48	491909.5	5358527	360.782	4.8	0.65	Test Pit
20TP-49	492012.3	5358476	357.313	1.2	1.2	Test Pit
20TP-50	491460.4	5358463	383.27	3	1	Test Pit
20TP-51	492103.8	5358428	353.098	2.4	1	Test Pit
20TP-52	491861.2	5358239	358.088	2	0.3	Test Pit
20TP-53	491896.9	5358081	353.737	1.2	1.6	Test Pit
20TP-54	491924.9	5357964	349.413	1.2	0.2	Test Pit
20TP-55	491618.7	5357867	356.639	1.1	0.1	Test Pit
20TP-56	491251.6	5357853	369.049	1.3	0.3	Test Pit
20TP-57	490529.2	5357829	394.874	1.4	0.4	Test Pit
20TP-58	491652.4	5357731	351.118	2.4	0.2	Test Pit
20TP-59	490153.1	5357684	398.901	1.5	0.7	Test Pit
20TP-60	490191.4	5357573	388.457	0.95	0.5	Test Pit
20TP-61	490194	5357465	384.143	3.1	0.4	Test Pit
20TP-62	490440	5357292	375.341	2.1	0.6	Test Pit
20TP-63	490615.4	5357427	375.865	3.2	0.5	Test Pit
20TP-64	490749.8	5357565	375.431	5.1	1.4	Test Pit
20TP-65	491145.6	5357467	366.418	4.2	1.2	Test Pit
20TP-66	491242	5357500	362.26	2.7	2.2	Test Pit
20TP-67	491375.6	5357637	363.097	2.1	1.3	Test Pit
20TP-68	491694.6	5357571	342.388	2.5	1.2	Test Pit
20TP-69	490160	5357919	409.883	0.4	0.1	Test Pit
20TP-70	489846.2	5357828	421.585	0.6	0.2	Test Pit
20TP-71	488384.6	5356839	392.615	1.6	0.5	Test Pit
20TP-72	488700.3	5356722	384.758	1.9	1.2	Test Pit
20TP-73	488202.4	5356208	375.953	3.1	1.3	Test Pit

April 2021

Test Hole ID	Easting (m NAD83 UTM Zone 21)	Northing (m NAD83 UTM Zone 21)	Elevation (m)	Test Hole Depth (m)	Depth to Water Level (m)	Туре
20TP-74	487690.7	5356178	385.475	4.3	0.8	Test Pit
20TP-75	487318.7	5356065	389.193	1.8	1.6	Test Pit
20TP-76	488099.9	5355824	364.985	3.7	0.7	Test Pit
20TP-77	487596.6	5355790	366.922	3.8	2.5	Test Pit
20TP-78	486890.6	5355715	375.308	3.5	2	Test Pit
20TP-79	487179.3	5355588	364.791	3.4	2	Test Pit
20TP-80	486750.3	5355402	356.527	1.7	0.3	Test Pit
20TP-81	488186.4	5355399	350.406	2.9	1.3	Test Pit
20TP-82	487696.8	5355246	348.229	4.5	0.9	Test Pit
20TP-83	486616.8	5356305	404.321	0.6	0.3	Test Pit
20TP-84	486406	5356253	398.283	0.4		Test Pit
20TP-85	486804.5	5356047	391.6	0.8	0.1	Test Pit
20TP-86	486335.5	5355739	385.001	2.7	1.4	Test Pit
20TP-87	486366.1	5355525	373.952	2.8	0.7	Test Pit
20TP-88	485899.9	5355291	365.5	1.2	0.7	Test Pit
20TP-89	486177.7	5355172	346.456	2.2	1.3	Test Pit
20TP-90	487019	5356201	402.174	1	0.2	Test Pit
20TP-91	486313.4	5356065	388.018	2.4	0.7	Test Pit
20TP-92	486639.4	5355774	387.044	3.5	0.6	Test Pit
20TP-93	486321.5	5355393	358.805	3.3	0.5	Test Pit
20TP-94	486891	5355843	395.207	0.9	0.5	Test Pit
20TP-95	487287.1	5356273	399.401	1.2	0.6	Test Pit
20TP-96	487697.9	5356560	390.067	2.2	0.3	Test Pit
20TP-97	488138.7	5356826	391.657	0.8	0.3	Test Pit
20TP-98	488595.6	5357051	399.783	4.3	0.8	Test Pit
20TP-99	489133	5357244	401.87	2.8	0.8	Test Pit
20TP-GLDR-01	491993.5	5357882	343.385	2.7	0.8	Test Pit
20TP-GLDR-02	492048.2	5358044	344.699	1.9	0.6	Test Pit
20TP-GLDR-03	492146	5358149	341.983	2.3	0.9	Test Pit
20TP-GLDR-04	492147	5358275	348.649	1.8	0.8	Test Pit
20TP-GLDR-05	492007.8	5358814	370.563	5.3	1.4	Test Pit
20TP-GLDR-06	491849.4	5358860	380.933	2.7	1.8	Test Pit
20TP-GLDR-07	491688.7	5358871	389.709	2.6	0.3	Test Pit
20TP-STAN-01	490889.9	5361176	327.881	5.3	1	Test Pit
20TP-STAN-02	490988.1	5360867	329.812	4.6		Test Pit

April 2021

Test Hole ID	Easting (m NAD83 UTM Zone 21)	Northing (m NAD83 UTM Zone 21)	Elevation (m)	Test Hole Depth (m)	Depth to Water Level (m)	Туре
20TP-STAN-03	491756.8	5361485	327.724	5.1		Test Pit
20TP-STAN-04	491834.5	5361280	328.991	3		Test Pit
20TP-STAN-05	493105.3	5361521	317.703	2.5		Test Pit
20TP-STAN-06	493264.8	5361359	313.155	2.2		Test Pit
20TP-STAN-07	492686.9	5360795	330.672	4.3		Test Pit
20TP-STAN-08	491245.9	5359704	345.342	3.9		Test Pit
20TP-STAN-09	491305.5	5359922	338.473	4.9		Test Pit
20TP-STAN-10	491372.7	5360132	338.687	3.5		Test Pit
20TP-STAN-11	491182.9	5360254	338.343	2		Test Pit
20TP-STAN-12	488678.3	5356539	378.298	1.1		Test Pit
20TP-STAN-13	488416.6	5356281	372.951	2.6		Test Pit
20TP-STAN-14	488419.9	5356057	369.081	4.5		Test Pit
20TP-STAN-15	488050.5	5354921	326.089	4.2		Test Pit
20TP-STAN-16	488002.8	5355036	336.671	4.2		Test Pit
20TP-STAN-17	487449.9	5354920	342.002	0.9		Test Pit
20TP-STAN-18	487391.9	5355042	349.28	4.6		Test Pit
20TP-STAN-19	487406.4	5355535	354.682	1.7		Test Pit
20TP-STAN-20	486894.6	5355327	355.892	0.9		Test Pit
20TP-STAN-21	486564.3	5355258	343.848	1.3		Test Pit
20TP-STAN-22	486447.5	5355392	355.017	4.1		Test Pit
20TP-STAN-23	485957.2	5355050	341.244	4.1		Test Pit
20TP-STAN-24	485814.6	5355046	342.2	3.3		Test Pit
20TP-STAN-25	486050.5	5356035	386.646	3.5		Test Pit

April 2021

APPENDIX IR-13.A IR-13 FIGURES AND TABLES

Figure IR-13.1 Baseline water table elevation contours with enhanced permeability fault

Figure IR-13.2 Baseline water table elevation contours with reduced permeability fault

Figure IR-13.3 Water table elevation contours at end of operation with enhanced permeability fault

Figure IR-13.4 Change in water table elevation at end of operation with enhanced permeability fault

Figure IR-13.5 Water table elevation contours at end of operation with reduced permeability fault

Figure IR-13.6 Change in water table elevation at end of operation with reduced permeability fault

Figure IR-13.7 Water table elevation contours following closure with enhanced permeability fault

Figure IR-13.8 Change in water table elevation following closure with enhanced permeability fault

April 2021

Groundwater elevation and drawdown maps for the post-closure conditions for the reduced permeability fault scenarios are presented in Figures IR-13-9 and IR-13-10, respectively.

Figure IR-13.9 Water table elevation contours following closure with reduced permeability fault

Figure IR-13.10 Change in water table elevation following closure with reduced permeability fault

April 2021

Water Feature	Net Flow from Groundwater to Feature (m ³ /d)				
	Operation	Operation with Enhanced Permeability Faults	Operation with Reduced Permeability Faults		
Unnamed Tributary to Victoria Lake Reservoir NT1	623.7	608.4	619.7		
Unnamed Tributary to Victoria Lake Reservoir NT2	768.6	768	768.5		
Frozen Ear Lake and Tributaries NT3	2349.8	2132.2	2352.3		
Unnamed Tributary to Valentine Lake NT4	173	173	173		
Unnamed Tributary to Valentine Lake NT5	367.6	367.5	367.6		
Middle and East Pond and Tributaries EP1	547.3	-1475.9	516.8		
West Pond and Tributaries WP1	751.6	-3430.2	689		
Unnamed Tributary to Victoria Lake Reservoir ST1	614.9	598.6	614.8		
Unnamed Tributary to Victoria Lake Reservoir ST2	2469.3	2441.8	2468.8		
Unnamed Tributary to Victoria River ST3	208.1	173.4	207.2		
Unnamed Tributary to Victoria River ST4	3113.4	2467.8	3099.3		
Unnamed Tributary to Victoria River VR1	206.4	206.4	206.4		
Unnamed Tributary to Victoria River VR2	387	385.6	386.9		
Unnamed Tributary to Victoria River VR3	962.3	931.4	960.7		
Unnamed Tributary to Victoria River VR4	1947.4	1753.2	1930		
Victoria River	19748.8	19516.3	19764.9		

Table IR-13-1 Estimated Groundwater Discharge to Water Features for Operations Phase
April 2021

Water Feature	Net Flow from Groundwater to Feature (m ³ /d)		
	Post-Closure	Post-Closure with Enhanced Permeability Faults	Post-Closure with Reduced Permeability Faults
Unnamed Tributary to Victoria Lake Reservoir NT1	627	606.7	618
Unnamed Tributary to Victoria Lake Reservoir NT2	821.7	783.6	784.1
Frozen Ear Lake and Tributaries NT3	2442.4	2345.8	2460.5
Unnamed Tributary to Valentine Lake NT4	325.5	338.7	338.7
Unnamed Tributary to Valentine Lake NT5	548.4	591.1	591.1
Middle and East Pond and Tributaries EP1	606.5	604.5	618.2
West Pond and Tributaries WP1	1621.2	951.9	1620.5
Unnamed Tributary to Victoria Lake Reservoir ST1	916.1	911.5	916.8
Unnamed Tributary to Victoria Lake Reservoir ST2	2513.4	2484.6	2512
Unnamed Tributary to Victoria River ST3	850.9	820.9	849.6
Unnamed Tributary to Victoria River ST4	3691.3	3702.8	3675.9
Unnamed Tributary to Victoria River VR1	206.3	206.3	206.3
Unnamed Tributary to Victoria River VR2	360.6	356.5	360.3
Unnamed Tributary to Victoria River VR3	888.4	870.1	887.4
Unnamed Tributary to Victoria River VR4	2014.7	1979.5	2012.5
Victoria River	19882.9	19948.8	19935.3

Table IR-13-2 Estimated Groundwater Discharge to Water Features for Operations Phase

Figure IR-13.11 Particle traces illustrating flow paths from Waste Rock Piles and LGO Stockpiles at end of operation with enhanced permeability fault

Figure IR-13.12 Particle traces illustrating flow paths from Waste Rock Piles and LGO Stockpiles at end of operation with reduced permeability fault

Figure IR-13.13 Particle traces illustrating flow paths from Waste Rock Piles and LGO Stockpiles following closure with enhanced permeability fault

Figure IR-13.14 Particle traces illustrating flow paths from Waste Rock Piles and LGO Stockpiles following closure with reduced permeability fault

April 2021

APPENDIX IR-18.A IR-18 MAPS AND CROSS-SECTIONS

NW

16350E

Location NW: 491825, 5360104 SE: 491972, 5359625

Vertical exaggeration: 1x

Scale: 1:2,800

Vertical exaggeration: 1x

SE

SE 17090E

Scale: 1:3,000

200m

Vertical exaggeration: 1x

NW

SE

SE Location

NW

200m

NW

200m ٦

Vertical exaggeration: 1x

200m

SE

Vertical exaggeration: 1x

200m

NW

SE

Vertical exaggeration: 1x

200m

10590E

SE

April 2021

APPENDIX IR-19.A ARD/ML MANAGEMENT PLAN

April 2021

Appendix IR-19.A

ARD/ML Assessment and Management

Marathon completed a Phase 1 and 2 Acid Rock Drainage/Metal Leaching (ARD/ML) assessment prior to submission of the EIS, using methods that followed the Mine Environment Neutral Drainage (MEND) publication entitled "Prediction Manual for Characterizing Drainage Chemistry from Sulphidic Geologic Materials" (Price 2009). These geochemistry baseline programs included:

- Static testing of approximately 350 samples of waste rock, ore, overburden, and tailings for Acid-Base Accounting (ABA), Shake Flask Extraction (SFE), and total metals
- Characterization of composite samples using the static tests and mineralogical methods
- Kinetic testing of composite samples including 14 humidity cells, two ageing tests and two subaqueous columns tests

As a result of this test work, the following key geochemical characterization information has been determined, which has informed the environmental assessment, as well as the ongoing and follow-up phases of sampling, testing, and assessment work:

Leprechaun Deposit

Approximately 1.9 Mm³ of overburden will be excavated from the Leprechaun open pit. Overburden is classified as non-PAG material with no exceedances of the MDMER limits in leach testing.

Less than 0.5% of the approximately 50 Mm³ of Leprechaun waste rock is classified as PAG. Overall, the waste rock pile is not expected to generate ARD due to the small amount of PAG material and significant excess of NP. Therefore, specific ARD management of waste rock is not required. Furthermore, there are no exceedances of MDMER limits observed in humidity cell leachates.

About 10% of low-grade ore is estimated to be PAG, but overall is not expected to generate ARD within the relatively short residence time of low-grade ore in the stockpile. While kinetic testing suggests moderate leaching potential for AI and P, there are no exceedances of MDMER limits observed in these tests.

Marathon Deposit

Approximately 4.4 Mm³ of overburden will be generated from the Marathon open pit. Overburden is classified as non-PAG material. There are no exceedances of MDMER limits observed in SFE leachates from overburden. Based on current materials balance over the life of mine, all of the stockpiled overburden will be used during rehabilitation and closure.

Approximately 14% of the 60 Mm³ of waste rock is conservatively estimated to be PAG. Blending PAG and non-PAG rock with excess of neutralization potential and/or encapsulation of PAG waste by non-PAG rock is recommended to neutralize acidity potentially generated in isolated pockets of PAG material. The waste rock pile will be covered by growth medium / overburden during rehabilitation, further reducing the

April 2021

risk of ARD/ML. There are no exceedances of MDMER limits observed in leachates from the waste rock humidity cells.

Approximately one-half of the low-grade ore is conservatively classified as PAG. The ARD onset time in PAG low-grade ore is conservatively estimated at six years based on maximum laboratory leaching rates. There are no exceedances of MDMER limits observed in leachates from low-grade ore under neutral conditions. In the mine plan, the Marathon low-grade ore stockpile runoff and toe seepage has been segregated from other mine component flow streams to facilitate collection and further ARD treatment, if required.

Plant Site

High-grade ore from the Leprechaun and Marathon deposits will be stockpiled together with 30% of the material originating from Leprechaun and the reminder from Marathon, on average. Approximately 13% and 67% of ore samples from Leprechaun and Marathon pits, respectively, are conservatively classified as PAG. The overall mixture of Leprechaun and Marathon high-grade ores classifies as non-PAG and the high-grade ore stockpile is not expected to generate ARD. Drainage from the high-grade ore stockpile flows by gravity to the TMF and any potential acidity will be neutralized in the decant pond or in the mill during pH adjustment required as a part of the gold recovery by cyanide process. No exceedances of MDMER are observed in SFE extracts.

Approximately 41 Mt of tailings will be produced from both high-grade ore and low-grade ore with about 38% of the tailing originating from the Leprechaun pit and the remainder from the Marathon pit. Composite samples of tailings from both deposits are non-PAG and are not expected to generate ARD. During operation, TMF pond and seepage will likely exceed the MDMER limits for CN_(T), un-ionized NH₃, and Cu sourced from process water. After closure, tailings beaches covered by soil are not expected to produce acidic runoff and/or have high metal leaching. Seepage from the TMF is conservatively predicted to exceed MDMER limits for CN_(T), un-ionized NH₃, and Cu in post-closure and will be addressed in the long term through passive treatment methods.

Marathon is confident, based on the results of the testing and analysis conducted to date and as outlined above, that employing the following mitigation measures will address the potential geochemical effects associated with planned Project components and activities:

- PAG rock will not be used in construction
- Preferential milling of PAG ore and stockpiling non-PAG ore
- Blending PAG and non-PAG materials and encapsulation of blended material with non-PAG rock within the waste rock piles
- Use of soil covers and revegetation to limit infiltration and oxygen flux as part of progressive and final rehabilitation and closure
- Relocation of any excess of PAG rock (waste rock or low-grade ore) remaining at closure to the mined-out pit, where it will be permanently flooded
- Collection and monitoring of contact water during operation, and treatment if required (adaptive management).

April 2021

As outlined in the EIS, and further addressed in the IR responses provided, as a result of having a less than ideal number of tests completed to date Marathon has utilized a very conservative approach in the assessment of effects from potential geochemical conditions. The limitations in the sampling and test work are a result of several factors, including an exploration focus on mineralized targets and impacts to Marathon's drilling programs over the past year due to COVID-19. Marathon recognizes that further ARD/ML work is required to fully conform to the MEND guidelines and further refinement of Project mitigation is progressing as design of the Project proceeds. Additional ARD/ML testing, as outlined below, will refine the results obtained to date and the associated mitigation measures identified that will be incorporated into the mine plans, waste rock management, stockpile management, and tailings management via the ARD/ML Management Plan such that PAG materials are managed to minimize any potential long-term effects.

Marathon is committed to completing the work necessary to address testing gaps identified in the program completed to date, and as noted by NRCan, within the next 6 to 8 months and prior to construction. The results of this work are required for final design and permitting under the *NL Mines Act* (NL Department of Industry, Energy, and Technology), and will be shared with NRCan as it becomes available:

- Continuation of on-going laboratory and field tests started in 2020. Laboratory tests include two
 humidity cells containing carbonate depleted LGO and tailings from the Marathon deposit. Field bin
 tests of composite materials including nine composite samples representing major waste rock
 lithologies and low-grade ores from both deposits. In 2021, a subaqueous column, an aging test and
 a humidity cell will be started on samples from on-going metallurgical work.
- Additional static testing of samples:
 - to address spatial distribution and sampling requirements per lithology (see attached Tables 1 and 2)
 - to provide the data inputs required to develop an ARD block model for the Marathon pit
 - to better define the location and volumes of non-Potentially Acid Generating (non-PAG) rock, which is required for construction, in Leprechaun and Marathon starter pits
- Additional kinetic testing of Potentially Acid Generating (PAG) materials (waste rock, ore, and lowgrade ore) from major lithologies of the Marathon pit including a composite sample of gabbro. These samples will also be submitted for static tests including Net Acid Generating (NAG) tests, mineralogy, and particle size distribution similar to characterization of composite samples as described in Section 3.2.2 of Attachment 5-B of the EIS.
- Generate an ARD block model for the Marathon pit to provide production schedules for ARD classes of rock and ore and to improve the estimates of PAG material exposures on pit walls.
- Update water quality predictions based on available results of kinetic tests, if required.

Marathon will provide the above information and analysis to regulators, including NRCan, for review and comment via the proposed ARD/ML Management Plan. This plan will be considered 'live' and will continue to be updated as required as additional ARD/ML information is obtained through the construction and operational phases of the Project. The ARD/ML Management Plan would contain the following sections:

April 2021

Introduction

- General Introduction: Company and Project introduction.
- **Objective:** The objective of the ARD/ML management plan is to provide the most recent information and actions required to reduce the risks associated with ARD/ML during all phases of the Project.
- **Related Plans and Documents, Document Management:** List any related plans and documents, and describe document control for the ARD/ML document.

Background

- **Project Components and Activities:** This section will summarize Project components and activities which pose potential ARD/ML risks. This section will also describe the high-level development timelines and phases for each Project component and activity.
- ARD/ML Assessment Summary: This section will focus on the current understanding of ARD/ML potential related to each relevant component of the Project: Marathon and Leprechaun pits, two waste rock stockpiles, two low grade ore (LGO) stockpiles, high grade ore (HGO) stockpile, tailings management facility (TMF) and any rock quarries. The potential ARD/ML risks associated with these components will be (re)assessed for each phase of the Project based on the most recent results of geochemical testing, the ARD block model for the Marathon pit and any updated predictions of water quality.
- **Regulations and Management:** Outline regulatory documents that are applicable and will be followed as part of this Plan. Outline management requirements, personnel responsible, and their responsibilities under the Plan.

ARD/ML Management

- **Project Development:** Describe relevant development components, activities and phases in detail including mine waste material volumes and pit wall exposure for each Project component.
- ARD/ML Management: provide data and methods, and mitigation measures to be employed to manage PAG material generated from Project components and activities, separated by phases as appropriate.

The following is an example method for the identification and the management of PAG rock and ore, which will be subject to further refinement as the ARD/ML Management Plan is developed:

- Samples of drill cuttings from blast holes representing each mine block will be collected.
- The samples will be tested for total carbon and sulphur using LECO furnace or similar method. Average neutralization potential (NP) will be calculated from total carbon and average Acid Potential (AP) will be calculated from total sulphur using standard conversions per the MEND guidelines. If NP/AP ratios indicate the mine block rock is below 2, the block will be classified as PAG.
- PAG rock will be marked after the blast, excavated, and dispatched to the waste rock stockpile.
 PAG rock would only be deposited within a specified distance (to be defined) of the final stockpile shell and preferably next to a non-PAG truck load. Piled PAG rock will be marked, and the geospatial coordinates recorded.

April 2021

- A portion of PAG and non-PAG rock loads will be mixed during grading each lift of the stockpile.
- This mixture will be encapsulated with non-PAG rock deposited within a specified distance (to be defined) from the lift face and forming the topmost lift(s) on the final of the stockpile. Non-PAG rock will reduce oxygen flux into interiors of the pile and provide alkalinity to infiltrating water. This approach has been successfully applied for waste rock piles in other mine sites as referenced in Sections 6.6.3.5 and 6.6.3.6 of Global ARD management guide
 (http://www.gardguide.com/index.php/Chapter) and would be applicable to ARD/ML management at the Valentine Gold Project.
- To limit exposure of PAG high grade ore, this material will be preferentially directed to the mill feed, while non-PAG high grade ore will be allocated to the stockpile, as long as the grade requirement for the mill feed is met.
- LGO stockpiles will be constructed to maximize non-PAG material in the feed in the last year of tailings deposition in the TMF to the extent practicable. This approach will create a non-PAG layer of tailings on the surface of the TMF prior to placement of the soil cover. This non-PAG layer will consume oxygen, reducing oxygen diffusion into tailings deposited earlier. In the last three years of operation, tailings will be deposited in the Leprechaun pit and immediately flooded limiting further oxidation and ARD/ML.

This section will also detail progressive rehabilitation planned for waste rock and ARD/ML mitigation activities planned for the closure.

- Monitoring, Ongoing Testing and Analysis: This section will provide procedures for monitoring of contact water (e.g., the LGO seepage) and solids (e.g., tailings). This section will include details on monitoring locations, lists of monitoring parameters and sampling frequencies for each phase of the Project. Any further testing or analysis work (e.g., cover trials) related to ARD/ML will be described here.
- Adaptive Management: The adaptive management section will discuss additional mitigations that may be triggered by monitoring and/or by results of the future updates to the ARD/ML data. For example, if a certain volume of PAG waste rock cannot be accommodated within the waste rock stockpile at the Marathon pit at the end of operation, that volume could be stored within LGO stockpile footprint or west of the LGO. Another approach might be to build a seepage collection system and connect to the LGO sedimentation pond.

The ARD/ML management plan will be a "live" document, which will be updated and revised as information is gathered during the Project and in consultation with regulators.
VALENTINE GOLD PROJECT: FEDERAL INFORMATION REQUESTS

April 2021

APPENDIX IR-20.A TIME-SERIES GRAPHS

Note: Values below the respective detection limits (DLs) are shown as half DLs. CNWAD - weak acid dissociable cyanide.

Note: Values below the respective detection limits (DLs) are shown as half DLs.

Marathon waste rock humidity cells

Note: Values below the respective detection limits (DLs) are shown as half DLs. CNWAD - weak acid dissociable cyanide.

Marathon waste rock humidity cells

Marathon waste rock humidity cells

Marathon waste rock humidity cells

Note: Values below the respective detection limits (DLs) are shown as half DLs.

Note: Values below the respective detection limits (DLs) are shown as half DLs.

Note: Values below the respective detection limits (DLs) are shown as half DLs.

Note: Values below the respective detection limits (DLs) are shown as half DLs. CNWAD - weak acid dissociable cyanide.

Note: Values below the respective detection limits (DLs) are shown as half DLs.

Note: Values below the respective detection limits (DLs) are shown as half DLs. CNWAD - weak acid dissociable cyanide.

Note: Values below the respective detection limits (DLs) are shown as half DLs.

Note: Values below the respective detection limits (DLs) are shown as half DLs.

Note: Values below the respective detection limits (DLs) are shown as half DLs.

Note: Values below the respective detection limits (DLs) are shown as half DLs.

Note: Values below the respective detection limits (DLs) are shown as half DLs. CNWAD - weak acid dissociable cyanide.

Note: Values below the respective detection limits (DLs) are shown as half DLs.

Note: Values below the respective detection limits (DLs) are shown as half DLs.

VALENTINE GOLD PROJECT: FEDERAL INFORMATION REQUESTS

April 2021

APPENDIX IR-21.A KINETIC TESTING RESULTS

Test Specimen

Sample	Weight (g)
CND 1 Residue CNP DPL	1000

Analysis of Weekly Humidity Cell Leachate

Parameter	Units	CCME FAL	MDMER	0	1	2	3	4	5	6	7	8	9	10
Date			Effective	12-Aug-20	19-Aug-20	26-Aug-20	02-Sep-20	09-Sep-20	16-Sep-20	23-Sep-20	30-Sep-20	07-Oct-20	14-Oct-20	21-Oct-20
LIMS			01-Jun-2021	10106-AUG20	10145-AUG20	10223-AUG20	10008-SEP20	10092-SEP20	10154-SEP20	10233-SEP20	10315-SEP20	10022-OCT20	10133-OCT20	10197-OCT20
Hum Cell Leachate Vo	ol mL	-	-	568	846	859	813	890	899	831	486	394	502	319
pН	no unit	6.0-9.5	-	5.73	5.96	5.42	5.66	5.52	5.45	5.18	4.98	4.84	4.41	4.36
Acidity	mg/L as CaCO ₃	-	-	15	9	6	3	3	4	4	14	15	18	8
Alkalinity	mg/L as CaCO ₃	-	-	2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Conductivity	uS/cm	- -	-	110	32	42	54	54	71	85	66	68	177	61
SO₄	ma/L	-	-	33	10	15	24	21	28	48	31	28	74	19
F	ma/L	0.12	-	< 0.06	< 0.06	< 0.06		< 0.06				< 0.06		
NH₂+NH₄	as N mg/L	-	-	0.1	<0.1	<0.1		<0.1						
	as N mg/L	0.020	0.50	0.000	0.000	0.000		0.000						
CN-	ma/l	-	0.50	0.004	0.002	0.002		< 0.002				< 0.002		
CN CN	mg/L	0.005 oc CNE	0.50	0.007	0.002	0.002		< 0.002				< 0.002		
	mg/L	0.000 as CINF	-	< 0.000	< 0.002	0.002		< 0.002				< 0.002		
ng	mg/L	0.000026	-	< 0.00001	< 0.00001	10.00001		< 0.00001				< 0.00001		
Ag	mg/L	0.00025	-	< 0.00005	< 0.00005	< 0.00005		< 0.00005				< 0.00005		
Ar	mg/L	0.005@pri<0.5	- 0.10	< 0.001	< 0.010	< 0.002		< 0.000				0.0002		
Ro	mg/L	0.005	0.10	< 0.0002	< 0.0002	< 0.0002		< 0.0002				0.0002		
Bo	mg/L			< 0.00100	< 0.00074	< 0.00001		< 0.00140				0.00470		
B	mg/L	15		0.011	0.010	0.004		0.000007				0.000004		
Bi	mg/L	-	-	< 0.00007	< 0.00007	0.0004		< 0.00007				< 0.000		
Ca	mg/L	-	-	10 1	3.03	4 18		6.32				6 74		
Cd	mg/L	0 00009	-	0 000043	0.000004	0.000026		0.00050				0.000283		
Co	ma/L	-	-	0.00113	0.000272	0.000743		0.00218				0.00648		
Cr	ma/L	-	-	< 0.00008	< 0.00008	< 0.00008		< 0.00008				< 0.00008		
Cu	mg/L	0.002	0.10	0.0024	0.0003	0.0009		0.0028				0.0388		
Fe	ma/L	0.3	-	< 0.007	< 0.007	0.011		0.007				0.147		
K	mg/L	-	-	0.322	0.335	0.052		0.088				0.081		
Li	mg/L	-	-	0.0009	0.0011	0.0003		0.0004				0.0007		
Mg	mg/L	-	-	3.76	0.926	1.24		1.52				1.33		
Mn	mg/L	-	-	0.227	0.0657	0.117		0.159				0.198		
Мо	mg/L	0.073	-	< 0.00004	0.00091	< 0.00004		0.00011				< 0.00004		
Na	mg/L	-	-	2.61	2.98	0.52		0.51				0.48		
Ni	mg/L	0.03	0.25	0.0021	0.0005	0.0013		0.0037				0.0133		
Р	mg/L	-	-	0.019	< 0.003	< 0.003		< 0.003				< 0.003		
Pb	mg/L	0.001	0.08	0.00008	< 0.00001	< 0.00001		0.00003				0.00027		
Sb	mg/L	-	-	0.0009	< 0.0009	< 0.0009		< 0.0009				< 0.0009		
Se	mg/L	0.001	-	0.00034	0.00007	0.00009		0.00008				0.00009		
Si	mg/L	-	-	0.89	0.33	0.40		0.57				0.88		
Sn	mg/L	-	-	0.00034	0.00006	0.00024		< 0.00006				0.00006		
Sr	mg/L	-	-	0.00887	0.0330	0.00312		0.00636				0.0126		
Th	mg/L	-	-	< 0.0001	< 0.0001	< 0.0001		< 0.0001				< 0.0001		
Ti	mg/L	-	-	< 0.00005	< 0.00005	< 0.00005		< 0.00005				< 0.00005		
	mg/L	0.0008	-	< 0.000005	< 0.000005	< 0.000005		< 0.000005				< 0.000005		
U	mg/L	0.015	-	< 0.000002	0.000004	< 0.000002		< 0.000002				0.000034		
V	mg/L	-	-	< 0.00001	0.00002	< 0.00001		< 0.00001				< 0.00001		
W	mg/L	-	-	0.00005	0.00009	< 0.00002		< 0.00002				0.00025		
Y	mg/L	-	-	0.000016	< 0.000002	0.000006		0.000066				0.000901		
∠n	mg/L	0.007	0.40	0.016	0.003	0.008		0.019				0.064		

Test Specimen

Sample	Weight (g)
CND 1 Residue CNP DPL	1000

Analysis of Weekly Humidity Cell Leachate

Parameter	Units	CCME FAL	MDMER	11	12	13	14	15	16	17	18	19	20	21
Date			Effective	28-Oct-20	04-Nov-20	11-Nov-20	18-Nov-20	25-Nov-20	02-Dec-20	09-Dec-20	16-Dec-20	23-Dec-20	30-Dec-20	06-Jan-21
LIMS			01-Jun-2021	10255-OCT20	10020-NOV20	10078-NOV20	10125-NOV20	10163-NOV20	10019-DEC20	10071-DEC20	10163-DEC20	10186-DEC20	10241-DEC20	10026-JAN21
Hum Cell Leachate Vo	l mL	-	-	673	755	420	304	308	298	289	353	282	250	304
pН	no unit	6.0-9.5	-	4.28	4.02	3.70	3.76	3.21	3.02	2.98	2.84	2.73	2.70	2.75
Acidity	mg/L as CaCO ₃	-	-	14	49	101	112	174	198	373	454	547	585	556
Alkalinity	mg/L as CaCO ₂	-	-	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Conductivity	uS/cm	· _	-	243	336	561	498	602	691	970	1160	1400	1460	1380
SO4	ma/l	-	-	100	130	240	180	220	290	420	470	630	650	560
F	mg/L	0.12			0.29				0.21				0.16	
NH ₂ +NH.	as N ma/l	0.12			0.20									
		0.020	0.50											
	as in my/L	0.020	0.50											
CNT	mg/∟	-	0.50		< 0.002				< 0.002				< 0.002	
CN _{WAD}	mg/L	0.005 as CNF	-		< 0.002				< 0.002				0.002	
Hg	mg/L	0.000026	-		< 0.00001				< 0.00001				< 0.00001	
Ag	mg/L	0.00025	-		< 0.00005				< 0.00005				0.00005	
AI	mg/L	0.005@pH<6.5	-		4.50				27.8				51.8	
As	mg/L	0.005	0.10		0.0038				0.0043				0.0046	
Ba	mg/L	-	-		0.0338				0.0637				0.0555	
Be	mg/L	-	-		0.000852				0.00236				0.00233	
В	mg/L	1.5	-		0.004				0.004				0.007	
Bi	mg/L	-	-		< 0.000007				< 0.000007				0.000080	
Ca	mg/L	-	-		14.4				11.1				5.10	
Cd	mg/L	0.00009	-		0.00454				0.00459				0.00530	
0	mg/∟	-	-		0.0851				0.0567				0.0901	
Cr	mg/L	-	-		0.00073				0.0276				0.166	
Cu E	mg/∟	0.002	0.10		0.688				1.67				1.20	
Fe	mg/L	0.3	-		3.06				13.9				69.3	
n III	mg/∟	-	-		0.612				0.853				0.830	
LI	mg/L	-	-		0.0072				0.0083				0.0295	
Mp	mg/L	-	-		10.0				4.30				0.727	
Mo	mg/L	-	-		0.00024				0.506				0.727	
No	mg/L	0.075	-		4 70				2 75				4 71	
Ni	mg/L	-	- 0.25		4.79				0.0006				4.71	
D	mg/L	0.05	0.25		< 0.003				< 0.0300				< 0.003	
Ph	mg/L	0.001	0.08		0.000				0.000				0.000	
Sh	mg/L	-	-		< 0.0009				< 0.0009				0.0011	
Se	mg/L	0.001			0.00093				0.00105				0.00085	
Si	mg/L	-	-		3.84				15.4				18.5	
Sn	mg/L	-	-		0.0007				0.00016				0 00041	
Sr	mg/L	-	-		0.0501				0.0378				0.0266	
Th	mg/L	-	-		< 0.0001				0.0028				0.0108	
Ti	mg/l	-	-		0.00008				< 0.00005				0.00014	
ТІ	mg/L	0.0008	-		< 0.000005				< 0.000005				< 0.000005	
U	ma/L	0.015	-		0.00105				0.00328				0.00420	
v	ma/L	-	-		0.00002				< 0.00001				0.00025	
W	mg/l	-	-		0.00054				0.00006				0.00055	
Y	mg/l	-	-		0.0365				0 105				0.0851	
Zn	ma/L	0.007	0.40		0.793				0.603				0.606	

Test Specimen

Sample	Weight (g)
CND 1 Residue CNP DPL	1000

Analysis of Weekly Humidity Cell Leachate

Parameter	Units	CCME FAL	MDMER	22	23	24	25
Date			Effective	13-Jan-21	20-Jan-21	27-Jan-21	03-Feb-21
LIMS			01-Jun-2021	10067-JAN21	10143-JAN21	10208-JAN21	10019-FEB21
Hum Cell Leachate Vol	mL	-	-	307	398	372	302
рН	no unit	6.0-9.5	-	2.71	2.74	2.77	2.69
Acidity	mg/L as CaCO ₃	-	-	589	492	450	468
Alkalinity	mg/L as CaCO ₃	-	-	< 2	< 2	< 2	< 2
Conductivity	uS/cm	-	-	1510	1330	1320	1400
SO₄	ma/L	-	-	660	520	500	540
F	ma/l	0.12	-			< 0.06	
NH ₂ +NH4	as N mg/l	-	-				
	as N mg/l	0.020	0.50				
	as Ning/L	0.020	0.50				
	nig/L	-	0.50			< 0.002	
CN _{WAD}	mg/L	0.005 as CNF	-			< 0.002	
Hg	mg/L	0.000026	-			< 0.00001	
Ag	mg/L	0.00025	-			< 0.00005	
AI	mg/L	0.005@pH<6.5	-			37.6	
As	mg/L	0.005	0.10			0.0026	
Ва	mg/L	-	-			0.0398	
Ве	mg/L	-	-			0.00117	
B	mg/L	1.5	-			0.003	
BI	mg/L	-	-			< 0.000007	
Ca	mg/L	-	-			4.60	
Ca	mg/L	0.00009	-			0.00399	
C0	mg/L	-	-			0.0616	
Cr	mg/L	-	-			0.110	
Cu Ta	mg/L	0.002	0.10			0.556	
ге	mg/L	0.3	-			59.7	
n i	mg/L	-	-			0.544	
LI	mg/L	-	-			0.0126	
Mp	mg/L	-	-			0.09	
Mo	mg/L	-	-			0.545	
No	mg/L	0.073	-			2 11	
Ni	mg/L	-	- 0.25			0.0620	
D	mg/L	0.03	0.25			< 0.0039	
r Ph	mg/L	-	-			< 0.003	
Sh	mg/L	0.001	0.00			< 0.0009	
So	mg/L	-	-			0.00050	
Si	mg/L	0.001	-			32.5	
Sn	mg/L	-	-			0 00026	
Sr	mg/L	-	-			0.00020	
Th	mg/L	-	-			0.0104	
Ti	ma/l	-	-			0.00020	
 ті	ma/l	0.0008	-			< 0.00020	
	mg/L	0.015				0.00191	
V	ma/l	-	-			0.00131	
\\/	mg/∟	-	-			0.00025	
VV V	mg/L	-	-			0.00005	
7n	mg/L	0.007	0 40			0.332	

TEST REPORT

Humidity Cell Test (ASTM D 5744-96)

Test Spe	ecimen						Summary of	ABA Test Data							
Sample				Weight (g)			Parameter	Units	Ref No.:	10141-JUL20					
CND 1 F	Residue CNF	P DPL		1000			Sulphur (S) Sulphide (S⁼)	% %	0 (.408).42					
							NP	t CaCO ₃ /1000 t	t	3.5					
							CO ₃ NP	t CaCO ₃ /1000 t	t	3.3					
	Leachate F	Paramet	ers Measure	ed			Acid Genera	Acid Generation ¹				Acid Neutralization ¹			
Weekly	Volume	рН	Acidity	Alkalinity	Conductivity	SO4	SO4	Cumulative	Weekly	Cumulative	NP	Cumulative	Cumulative		
Leach	Collected						Production	SO₄	S⁼	S⁼	Consumption	NP	CO ₃ NP		
No	ml	unite	CaCO ₃ eq.	CaCO ₃ eq.	uS/cm	ma/l	Rate	Production	Depletion	Depletion		Depletion	Depletion		
INU.	111	units	mg/L	mg/L	μ6/cm	mg/∟	g/t/wk	g/t	%	%	CaCO ₃ , g/t/wk	%	%		
0	568	5.73	15	2	110	33	18.7	18.7	0.15	0.15	19.53	0.56	0.59		
1	846	5.96	9	<2	32	10	8.5	27.2	0.07	0.22	8.81	0.81	0.86		
2	859	5.42	6	<2	42	15	12.9	40.1	0.10	0.32	13.42	1.19	1.27		
3	813	5.66	3	<2	54	24	19.5	59.6	0.15	0.47	20.33	1.77	1.88		
4	890	5.52	3	<2	54	21	18.7	78.3	0.15	0.62	19.47	2.33	2.47		
5	899	5.45	4	<2	71	28	25.2	103.5	0.20	0.82	26.22	3.08	3.27		
6	831	5.18	4	<2	85	48	39.9	143.4	0.32	1.14	41.55	4.27	4.52		
7	486	4.98	14	<2	66	31	15.1	158.4	0.12	1.26	15.69	4.71	5.00		
8	394	4.84	15	<2	68	28	11.0	169.4	0.09	1.34	11.49	5.04	5.35		
9	502	4.41	18	<2	177	74	37.1	206.6	0.29	1.64	38.70	6.15	6.52		
10	319	4.36	8	<2	61	19	6.1	212.7	0.05	1.69	6.31	6.33	6.71		
11	673	4.28	14	<2	243	100	67.3	280.0	0.53	2.22	70.10	8.33	8.84		
12	755	4.02	49	<2	336	130	98.2	378.1	0.78	3.00	102.24	11.25	11.94		
13	420	3.70	101	<2	561	240	100.8	478.9	0.80	3.80	105.00	14.25	15.12		
14	304	3.76	112	<2	498	180	54.7	533.6	0.43	4.24	57.00	15.88	16.84		
15	308	3.21	174	<2	602	220	67.8	601.4	0.54	4.77	70.58	17.90	18.98		
16	298	3.02	198	<2	691	290	86.4	687.8	0.69	5.46	90.02	20.47	21.71		
17	289	2.98	373	<2	970	420	121.4	809.2	0.96	6.42	126.44	24.08	25.54		
18	353	2.84	454	<2	1160	470	165.9	975.1	1.32	7.74	172.82	29.02	30.78		
19	282	2.73	547	<2	1400	630	177.7	1152.8	1.41	9.15	185.06	34.31	36.39		
20	250	2.70	585	<2	1460	650	162.5	1315.3	1.29	10.44	169.27	39.14	41.52		

* Initial Week 0 leachate may included soluble sulphate, and may not indicate oxidation of sulphide in the sample material has occurred.

¹ Calculated values

Summary - Weeks	0 to 20											
Maximum Value	5.96	585	2	1460	650	177.7	-	1.41	-	185.06	-	-
Minimum Value	2.70	3	<2	32	10	6.1	-	0.05	-	6.31	-	-
Average Value	3.39	129	2	416	174	62.6	-	0.50	-	65.24	-	-

Humidity Cell Test (ASTM D 5744-96)

Test Specimen	
Sample	Weight (g)
CND 1 Residue CNP DPL	1000

Parameter	Units	Ref No.: 10141-JUL20
Sulphide (S ⁼) Remaining	%	0.38
NP Remaining	t CaCO ₃ /1000 t	2.1
CO ₃ NP Remaining	t CaCO ₃ /1000 t	1.9

	Leachate P	aramet	ers Measure	ed			Acid Generat	ion ¹		Acid Neutralization ¹			
Weekly Leach	Volume Collected	рН	Acidity	Alkalinity (Conductivity	SO4	SO₄ Production	Cumulative SO₄	Weekly S ⁼	Cumulative S ⁼	NP Consumption	Cumulative NP	Cumulative CO ₃ NP
No	ml	unite	CaCO ₃ eq.	$CaCO_3 eq.$	uS/cm	ma/l	Rate	Production	Depletion	Depletion		Depletion	Depletion
INO.	111	units	mg/L	mg/L	μο/επ	mg/∟	g/t/wk	g/t	%	%	CaCO ₃ , g/t/wk	%	%
21	304	2.75	556	<2	1380	560	170.2	1485.5	1.35	11.79	177.33	44.21	46.89
22	307	2.71	589	<2	1510	660	202.6	1688.1	1.61	13.40	211.06	50.24	53.29
23	398	2.74	492	<2	1330	520	207.0	1895.1	1.64	15.04	215.58	56.40	59.82
24	372	2.77	450	<2	1320	500	186.0	2081.1	1.48	16.52	193.75	61.94	65.69
25	302	2.69	468	<2	1400	540	163.1	2244.2	1.29	17.81	169.88	66.79	70.84

¹ Calculated values

Summary - Weeks 0) to 40											
Maximum Value	5.96	589	2	1510	660	207.0	-	1.64	-	216	-	-
Minimum Value	2.69	3	<2	32	10	6.1	-	0.05	-	6.3	-	-
Average Value	3.16	202	2	603	248	86.3	-	0.69	-	89.91	-	-

TEST REPORT Humidity Cell Test (ASTM D 5744-96)

Cumulative Sulphide and NP Depletion CND 1 Residue CNP DPL

Note: NP depletion calculated based on sulphate assay.

TEST REPORT Humidity Cell Test (ASTM D 5744-96)

Selected Parameters in Weekly Humidity Cell Leachate CND 1 Residue CNP DPL

Carbonate (Ca + Mg/SO₄) and Anorthoclase (Ca/SO₄) Molar Ratio: CND 1 Residue CNP DPL

TEST REPORT Humidity Cell Test (ASTM D 5744-96)

Selected Parameters in Weekly Humidity Cell Leachate CND 1 Residue CNP DPL

TEST REPORT Humidity Cell Test (ASTM D 5744-96)

Selected Parameters in Weekly Humidity Cell Leachate CND 1 Residue CNP DPL

Selected Parameters in Weekly Humidity Cell Leachate CND 1 Residue CNP DPL 10 1 0.1 1 0.001 0.001 0.0001 0.0001 Concentration (mg/L) 0.1 0.01 0 0 0.001 0.000001 0 10 20 30 40 0 10 20 30 40 Time (weeks) Time (weeks) Cd CCME FAL • B CCME FAL Δ

TEST REPORT Humidity Cell Test (ASTM D 5744-96)

Selected Parameters in Weekly Humidity Cell Leachate CND 1 Residue CNP DPL

TEST REPORT Humidity Cell Test (ASTM D 5744-96)

Selected Parameters in Weekly Humidity Cell Leachate CND 1 Residue CNP DPL

Selected Parameters in Weekly Humidity Cell Leachate CND 1 Residue CNP DPL

TEST REPORT Humidity Cell Test (ASTM D 5744-96)

Selected Parameters in Weekly Humidity Cell Leachate CND 1 Residue CNP DPL

April 2021

APPENDIX IR-21.B ARD ONSET

April 2021

Appendix IR-21.B

Model Sensitivity to Acid Rock Drainage (ARD) Lag Time

Natural Resources Canada (NRCan), in IR-21, requested that Marathon "provide rationale for the methods used to determine the lag time to acidic conditions, and a discussion around the sensitivity of the water quality model to the assumptions related to this assumed lag time". In a call on (March 22, 2021), NRCan expressed concerns about estimates of lag time to acidic conditions without kinetic tests being conducted on several potentially acid generating (PAG) samples. The objectives of this memorandum are to:

- provide rationale for the methods used to determine the lag time to acidic conditions and estimate on the possible ranges of ARD onset lag time for exposed PAG materials
- assess and discuss sensitivity of the water quality model to ranges of ARD onset lag time

ARD Onset Time

The determination of the lag time to acidic conditions is based on Equations (1) and (2), which are consistent with the Mine Environment Neutral Drainage (MEND) Manual (2009).

Neutralization Potential (NP) Depletion Rate = Sulphate Leaching Rate*100.09/96.06 + Alkalinity Production Rate – Acidity Production Rate (1)

ARD onset time = (Carb. NP/ NP Depletion Rate) x 1000/(365.25/7) (2)

The following steps were used to derive conservative inputs from existing humidity cell tests (HCT) tests for use in Equations (1) and (2).

a. Leaching rates calculation

Sulphate leaching and alkalinity production rates are required for inputs into Equation 1. These rates are straight calculations from laboratory humidity cell testing results without any scaling to field conditions. The calculation of sulphate leaching rate for a specific week is shown as an example in Equation 3:

Sulphate Leaching Rate (mg/kg/week) = Sulphate Concentration (mg/L) x Leachate volume (L)/Samples mass (1kg)/Leaching time (1 week)

The maximum concentrations from the first month (weeks 1 to 4) of testing were used as inputs to Equation 3 resulting in the highest sulphate leaching rates listed in Table 1 (attached). The highest sulphate production and NP depletion rates using direct HCT data result in the shortest lag time estimates for ARD, which is a conservative approach.

b. Leaching rate regressions with sulfur and NP

The next step was to evaluate the correlation between maxima sulphate and maxima alkalinity leaching rates with sulphur contents and NPs, respectively.

(3)

April 2021

A linear regression for maximum sulphate leaching rates versus sulphur contents results in a R² considered to be acceptable for general predictive use. Note that the reported R² was obtained after removal of one outlier, sample M MD (Figure 1). This sample showed an order of magnitude higher sulphate production rate likely due to over crushing of the sample resulting in higher reactive surface area. The regression equation (Equation 4) was used to estimate sulphate leaching rates from PAG samples with known sulphur content, which are provided in Table 2 (attached). A similar approach has been presented in Environmental Impact Statements (EISs) for other Canadian mine projects (e.g., SRK 2006, 2013).

Sulphate Leaching Rate (mg/kg/week) = 15.6*Sulphur Content (wt%) (4)

Maximum alkalinity leaching rates show poor correlation with NP even after removal of apparent outliers shown in red on Figure 2. Therefore, the 95th percentile of maximum alkalinity leaching rates (67.7 mgCaCO₃/kg/week) was conservatively selected for input into Equation 1 regardless of NP of the PAG sample.

The Acidity Production Rate was ignored in Equation 1 resulting in shorter lag time estimates for ARD, which is a an additionally conservative assumption. Considering the inputs and assumptions discussed above, the resulting calculation of NP depletion rate for each PAG sample was done using Equation 5.

NP Depletion Rate (mgCaCO₃/kg/week) = 15.6*Sulphur Content (wt%)*100.09/96.06 + 67.7 (5)

April 2021

Examination of the sulphur inputs to this equation clearly shows than the first term of Equation 5 is an order of magnitude lower than the second term, alkalinity production rate. The second term is a constant and the NP Depletion Rate does not vary much between samples as shown in Table 2 (attached). Therefore, the NP of a sample becomes the key factor determining ARD onset time in the sample per Equation 2.

Figure 2. Regression of NP vs. maximum alkalinity rates from laboratory humidity cells.

c. Calculation of ARD onset time

Time to onset of ARD was calculated for all PAG samples from the Marathon deposit using Equation 2 (Table 1). Minimum, median, and maximum values are shown in Table 3 (attached) for the following three groups of samples:

- high grade ore
- low grade ore
- waste rock

The estimates of ARD onset time are conservative because the estimates are based on the laboratory rates. Laboratory derived rates are faster than the respective field rates, which, if field rates were applied, could result in a more realistic estimation of the ARD lag time. This is demonstrated in Table 1 (attached) by comparison of the recent field test results to the laboratory results for the same sample of low-grade ore (MLGO-Met) with an uncertain ARD potential. Field based ARD onset time (200 years) is

April 2021

approximately 30 times longer than the ARD onset time (6.3 years) calculated using laboratory-based inputs for this sample. Nevertheless, the conservative ranges of ARD onset time were used for sensitivity analysis of the water quality model.

Water Quality Model Sensitivity

ARD onset time lags were considered a probabilistic input parameter with triangular probability distributions in both the EIS (original) and sensitivity (models). In the original GoldSim model, one probability distribution was used to represent acidic rates in all mine components (Figure 3). In the sensitivity model for Marathon site, a separate probability distribution of ARD onset was assigned to ore, low grade ore and waste rock in accordance with statistics from Table 3 (attached).

Figure 3. Probability distributions for ARD onset time in the EIS model for all materials (a) and the sensitivity model for ore (b), low grade ore (c), and waste rock (d).

April 2021

The results obtained for the low-grade ore stockpile, waste rock, and open pit are provided in Tables 4 to 12 (attached). For each of these mine components, three tables are presented: 1) original results from the EIS model; 2) new results from the sensitivity model, and 3) ratios of new results to the original results. Ratios greater than 1.2 are highlighted in gray in the tables indicating a substantial increase from the original result. The key increases can be summarized as follows:

- In the LGO stockpile, increases of up to 3.1x for Zn and 1.5x for Ni concentrations are predicted during operation. Concentrations of these metals remain below MDMER limits at 95% confidence levels.
- In the waste rock stockpile, increases of up to 1.4x for Zn and 1.3x for Ni concentrations are predicted during operation and up to 1.3x for Zn during closure. In both phases of the mine life cycle, concentrations of these metals remain below MDMER limits at 95% confidence levels.
- In mine water from the pit, increases up to 2.4x for Ni, up to 2.2x for Zn, and 1.3x for Cd concentrations are predicted during operation. In the pit lake, an increase in concentration up to 1.21x for Zn is predicted during closure. In both phases of the mine life cycle, concentrations of Ni and Zn are below MDMER limits and Cd concentration remains below the short-term Canadian Water Quality guideline at 95% confidence levels.

Overall model results show that faster ARD onset times result in an increase of average concentrations of Zn, Ni, and Cd generally during operation, and to a lesser degree post-closure. Other parameters were less influenced by ARD onset because there was either a lower or no multiplier used for acidic leaching rates as noted in Section 5.3.1.1 in Appendix 7B of the EIS.

pH of LGO Seepage

The water quality GoldSim model probabilistically assumes that pH in the low-grade ore stockpile will be between 7.5 and 8.5, based on pH measured in the M-LGO humidity cell in the first week (Figure 3). The validity of this assumption can be tested by comparing alkalinity and acidity rates measured in normal (M-LGO) and carbonate depleted (M-LGO CNP DPL) humidity cells, respectively. The alkalinity rate is always greater than the acidity rate over the testing period (Figure 3). On average, the alkalinity production rate (22.5 mg CaCO₃/kg/week) is almost 8x higher than the acidity production rate (2.9 mg CaCO₃/kg/week) between weeks 10 and 20, when rates stabilized in both cells (Figure 3). This observation indicates that there is more than enough alkalinity produced from 50% of the non-PAG ore to neutralize acidity generated from 50% of the PAG material. Therefore, a reduction of pH below 6.5 in seepage from LGO stockpile is not expected.

April 2021

Figure 3. Alkalinity and acidity rates and pH from normal (M-LGO) and carbonate depleted (M-LGO CNP DPL) humidity cells

Summary

Conservative assumptions were used to calculate ARD onset time for PAG samples from the Marathon deposit. These calculations produced conservative (shorter) ARD onset time lags, which were subsequently used to evaluate the sensitivity of the water quality model predictions. Using a stochastic sampling of these inputs, the model predictions did not exceed the MDMER limits in discharges from the LGO stockpile, waste rock, or open pit over the life of the proposed mine. Therefore, treatment of these discharges is not required, which is the same conclusion presented in the EIS.

References:

- Mine Environment Neutral Drainage Program (MEND), 2009. Prediction Manual for Drainage Chemistry from Sulphidic Geologic Materials, MEND Report 1.20.1, p. 1-579.
- SRK Consulting. 2006. Galore Creek Project ML/ARD Characterization Report. Report prepared for Novagold Resources Inc. SRK Project. 1CR003.002. May 2006.
- SRK 2013. Metal Leaching and Acid Rock Drainage Potential Characterization Sisson Project. August 2013.

April 2021

TABLES 1 TO 12

Table 1: Estimates of rates and NP depletion time in kinetic tets

			Lepre	chaun cor	nposite sa	amples				Marathon	composit	e sample	s	
			Lat	ooratory H	umididty	cells			Lab	oratory H	lumididty	cells		Field bin
Parameter	Unit	L TRJ	L QZ- TQTP	L SED	L MD	L QZ- QTP	LLGO - Met	M QE- POR	M AQPOR	M CG	M MD	M QZ- QE- POR- QTP- MIN	MLGO - Met	MLGO - Met
S _{TOTAL}	wt.%	0.080	0.11	0.003	0.13	0.048	0.27	0.083	0.33	0.003	0.27	0.38	0.59	0.59
Carb. NP	kg CaCO ₃ /t	48.3	44.7	9.2	97.3	51.6	61.3	62.5	48.6	87.3	88.7	22.7	28.9	28.9
AP	kg CaCO₃/t	0.94	1.88	0.62	2.19	0.62	7.19	1.56	7.50	0.62	5.94	8.75	18.8	18.8
Carb. NPR	unitless	51	24	15	44	83	8.5	40	6.5	141	15	2.6	1.5	1.5
Max Sulphate Rate	mg/kg/week	1.17	2.9	0.70	1.38	1.06	8.3	1.8	4.6	0.51	46.7	1.15	10.5	0.45
Max Alkalinity Rate	mg CaCO ₃ /kg/week	16	22	11.9	22	12	60	13	12	20	11	12	77	2.3
NP Depletion Rate	mg CaCO ₃ /kg/week	17	25	13	23	13	69	15	17	21	59	14	88	3
NP Depletion Time	year	55	34	14	81	78	17	79	55	80	29	32	6.3	200
AP Depletion Time	year	15	12	16	29	11	16	16	30	22	2.3	140	33	768

Notes:

NP Depetion Rate = Max Sulphate Rate*100.09/96.06 + Max Alkalinity Rate

NP Depletion Time = (Carb. NP/Max NP Depetion Rate) x 1000/(365.25/7)

Sample ID	Lithocode and material	Au	Total S	Carb. NP	AP from total S	Carb NPR	Sulfate rate	Alkalinity rate	NP depletion rate	ARD onset time
Units	Lithocode and material	ppb	wt.%	kg Ca	aCO₃/t	unitless		mg/kg/wee	k	years
MA-16-116	1. QE-POR	102	0.30	6.1	8.8	0.7	4.7	67.7	72.6	1.6
MA-16-079	1. QE-POR	9	0.35	14.6	10.9	1.3	5.5	67.7	73.4	3.8
MA-15-035	1. QE-POR	5	0.59	28.0	18.4	1.5	9.2	67.7	77.3	6.9
MA-18-281 177251	1. QE-POR	14	0.580	23.2	14.4	1.6	9.0	67.7	77.1	5.8
MA-18-278 167699	1. QE-POR	5	0.811	33.8	19.1	1.8	12.7	67.7	80.9	8.0
MA-18-290 178278	2. AQPOR	28	2.52	0.4	67.2	0.0	39.3	67.7	108.7	0.1
MA-18-281 177047	2. AQPOR	23	1.08	18.5	26.6	0.7	16.8	67.7	85.3	4.2
MA-16-156 108817	2. AQPOR	14	0.202	5.1	3.75	1.4	3.2	67.7	71.0	1.4
MA-16-082	4. GB	5	3.04	12.3	94.7	0.1	47.4	67.7	117.1	2.0
MA-18-280 167924	6. QZ-QE-POR-QTP-MIN	88	0.808	12.5	21.2	0.6	12.6	67.7	80.8	3.0
MA-18-290 178314	6. QZ-QE-POR-QTP-MIN	5	0.654	15.3	17.2	0.9	10.2	67.7	78.3	3.7
MA-16-101	7. QZ-QE-POR-QTP	238	0.54	14.3	16.9	0.8	8.4	67.7	76.5	3.6
MA-16-116	7. QZ-QE-POR-QTP	15	1.04	37.7	32.2	1.2	16.2	67.7	84.6	8.5
MA-14-015	7. QZ-QE-POR-QTP	171	0.35	16.8	10.6	1.6	5.5	67.7	73.4	4.4
MA-18-267 175269	7. QZ-QE-POR-QTP	276	0.266	10.4	6.25	1.7	4.1	67.7	72.0	2.8
MA-16-156 108949	7. QZ-QE-POR-QTP	24	0.370	18.3	9.38	2.0	5.8	67.7	73.7	4.8
MA-16-101	Low Grade Ore	539	1.18	14.1	36.9	0.4	18.4	67.7	86.9	3.1
MA-18-287 177901	Low Grade Ore	637	0.655	11.4	18.1	0.6	10.2	67.7	78.3	2.8
MA-18-267 175199	Low Grade Ore	387	0.492	18.5	11.6	1.6	7.7	67.7	75.7	4.7
MA-16-122	Low Grade Ore	352	0.32	18.9	9.7	1.9	5.0	67.7	72.9	5.0
MA-16-156 108866	Ore	1115	1.16	4.1	29.1	0.1	18.1	67.7	86.6	0.9
MA-16-116	Ore	3272	0.80	5.9	25.0	0.2	12.5	67.7	80.7	1.4
MA-18-280 167946	Ore	2517	0.674	7.9	17.8	0.4	10.5	67.7	78.7	1.9
MA-16-101	Ore	4465	0.71	10.0	22.2	0.5	11.1	67.7	79.2	2.4
MA-18-290 178287	Ore	1531	0.790	12.3	20.9	0.6	12.3	67.7	80.5	2.9
MA-17-216 145319	Ore	2177	0.944	30.7	25.6	1.2	14.7	67.7	83.0	7.1
MA-16-116	Ore	14388	0.51	31.6	15.6	2.0	8.0	67.7	76.0	8.0

Table 2: Inputs and results of ARD onset time calculation for PAG samples from Marathon deposit.

Material	Statistic	Au	Total S	Carb. NP	AP from total S	Carb NPR	Sulfate rate	Alkalinity rate	NP depletion rate	ARD onset time
Units		ppb	wt.%	kg Ca	aCO ₃ /t	unitless		mg/kg/wee	k	years
	Min	5	0.20	0.4	3.8	0.01	3.2	67.7	71.0	0.9
Ore (High Grade Ore)	Median	171	0.66	14.3	18.1	0.9	10.2	67.7	78.3	2.4
	Max	14388	3.04	37.7	94.7	2.0	47.4	67.7	117.1	8.0
	Min	352	0.32	11.4	9.7	0.4	5.0	67.7	72.9	2.8
Low Grade Ore (LGO)	Median	463	0.57	16.3	14.9	1.1	8.9	67.7	77.0	3.9
	Max	637	1.18	18.9	36.9	1.9	18.4	67.7	86.9	5.0
	Min	5	0.20	0.4	3.8	0.0	3.2	67.7	71.0	0.1
Waste Rock	Median	19	0.59	14.9	17.1	1.3	9.1	67.7	77.2	3.8
	Max	276	3.04	37.7	94.7	2.0	47.4	67.7	117.1	8.5

Table 3: Ranges of ARD onset time for selected PAG materials from Marathon deposit.

Parameter	Linita		CWQG	CWQG	Base	eline	Const	ruction	Oper	ation
Statistics	Units	MDMER	Short-term	Long-term	mean	95 %ile	mean	95 %ile	mean	95 %ile
Aluminum	µg/L	-	-	100	16	22	86	100	600	600
Antimony	µg/L	-	-	-	0.5	0.5	0.97	1.10	20	25
Arsenic	µg/L	100	-	5	0.5	0.5	0.8	0.9	13	15
Barium	µg/L	-	-	-	2.3	3	3.7	4.1	62	73
Boron	µg/L	-	29000	1500	25	25	30	31	220	270
Cadmium	µg/L	-	0.13	0.04	0.01	0.01	0.009	0.011	<u>0.18</u>	<u>0.21</u>
Calcium	µg/L	-	-	-	2800	2900	6300	7200	150000	180000
Chromium	µg/L	-	-	1	<u>1.1</u>	<u>1.9</u>	1.2	1.8	3.3	4.0
Copper	µg/L	100	-	2	0.6	0.9	0.86	0.97	13	15
Iron	µg/L	-	-	300	25	25	28	29	180	270
Lead	µg/L	80	-	1	0.25	0.25	0.27	0.27	0.92	1.10
Magnesium	µg/L	-	-	-	340	350	720	800	16000	19000
Manganese	µg/L	-	596	210	5.5	6.8	19	23	<u>610</u>	<u>740</u>
Mercury	µg/L	-	-	0.026	0.007	0.007	0.010	0.010	0.15	0.19
Molybdenum	µg/L	-	-	73	1.0	1.0	3.7	4.5	110	140
Nickel	µg/L	250	-	25	1.0	1.0	1.2	1.2	7.9	10
Phosphorus	µg/L	-	-	4	<u>50</u>	<u>50</u>	50	50	50	50
Potassium	µg/L	-	-	-	95	130	570	700	20000	24000
Selenium	µg/L	-	-	1	0.25	0.25	0.39	0.44	6.1	7.4
Silver	µg/L	-	-	0.25	0.05	0.05	0.066	0.070	0.69	0.83
Sodium	µg/L	-	-	-	1400	1500	3600	4300	91000	110000
Thallium	µg/L	-	-	0.8	0.05	0.05	0.056	0.059	0.31	0.40
Uranium	µg/L	-	33	15	0.05	0.05	0.86	1.20	31	<u>42</u>
Zinc	µg/L	400	11.3	2.2	<u>2.5</u>	<u>2.5</u>	3.1	3.3	<u>88</u>	<u>250</u>
Chloride	µg/L	-	640000	120000	2400	2600	2400	2600	2400	2600
Nitrate + Nitrite (as Nitrogen)	µg/L	-	-	-	38	53	4800	12000	12000	15000
Nitrite (as Nitrogen)	µg/L	-	-	60	9.9	14	120	280	270	350
Nitrate (as Nitrogen)	µg/L	-	550000	13000	25	25	4600	12000	11000	15000
Total Ammonia (as Nitrogen)	µg/L	-	-	689	25	25	610	1500	1500	1900
Un-ionized Ammonia (as Nitrogen)	µg/L	500	-	19	0.064	0.097	<u>23.0</u>	<u>57</u>	<u>57</u>	<u>72</u>
Cyanide, Total	µg/L	500	-	-	10	10	10	10	10	10
Cyanide, WAD	µg/L	-	-	5	1.0	1.0	1.0	1.0	1.0	1.0
Sulphate	µg/L	-	-	-	1000	1000	5400	6800	180000	220000
Fluoride	µg/L	-	-	120	60	60	85	93	1100	1300
Radium-226	Bq/L	0.37	-	-	0.005	0.005	0.0067	0.0071	0.074	0.088
Temperature	°C	-	-	-	12.0	17.0	9	17	9	18
Total Alkalinity (as CaCO ₃)	mg/L	-	-	-	8.8	9.7	12000	15000	510000	610000
pH (mean or 5 %ile)	pH Unit	6.0-9.5	-	6.5-9.0	7.0	6.9	8.0	8.0	8.0	8.0
Hardness (as CaCO ₃)	mg/L	-	-	-	8.4	8.7	19	21	440	530
Dissolved Organic Carbon	mg/L	-	-	-	1.0	1.0	1.3	1.4	15	18

Table 4: The highest value of the monthly mean and 95th %-ile for each project phase in seepage from the low grade ore stockpile in the EIS model.

Notes:

MDMER - Metal and Diamond Mining Effluent Regulations (Canada), Table 1 of Schedule 4, Maximum Authorized Monthly Mean Concentrations (SOR/2002-222 2020).

CWQG - Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life, short-term and long-term (CWQG-FAL referred to as CWQG) by Canadian Council of Ministers of the Environment (CCME 2020).

Concentrations exceeding MDMER are highlighted gray, CWQG short-term are double underlined, and CWQG long-term are bold. For further details on the parameters and guidelines see Table C-1 notes in Appendix 7B of the EIS.

Parameter	Linita		CWQG	CWQG	Base	eline	Const	ruction	Oper	ation
Statistics	Units	MDMER	Short-term	Long-term	mean	95 %ile	mean	95 %ile	mean	95 %ile
Aluminum	µg/L	-	-	100	16	22	86	100	600	600
Antimony	µg/L	-	-	-	0.5	0.5	0.97	1.10	20	25
Arsenic	µg/L	100	-	5	0.5	0.5	0.8	0.9	13	15
Barium	µg/L	-	-	-	2.3	3	3.7	4.1	62	73
Boron	µg/L	-	29000	1500	25	25	30	31	220	270
Cadmium	µg/L	-	0.13	0.04	0.01	0.01	0.009	0.011	<u>0.18</u>	<u>0.21</u>
Calcium	µg/L	-	-	-	2800	2900	6300	7200	150000	180000
Chromium	µg/L	-	-	1	<u>1.1</u>	<u>1.9</u>	1.2	1.8	3.3	4.0
Copper	µg/L	100	-	2	0.6	0.9	0.86	0.97	13	15
Iron	µg/L	-	-	300	25	25	28	29	270	310
Lead	µg/L	80	-	1	0.25	0.25	0.27	0.27	0.92	1.10
Magnesium	µg/L	-	-	-	340	350	720	800	16000	19000
Manganese	µg/L	-	596	210	5.5	6.8	19	23	<u>610</u>	<u>740</u>
Mercury	µg/L	-	-	0.026	0.007	0.007	0.010	0.010	0.17	0.20
Molybdenum	µg/L	-	-	73	1.0	1.0	3.7	4.5	110	140
Nickel	µg/L	250	-	25	1.0	1.0	1.2	1.2	9.4	11
Phosphorus	µg/L	-	-	4	<u>50</u>	<u>50</u>	50	50	50	50
Potassium	µg/L	-	-	-	95	130	570	700	20000	24000
Selenium	µg/L	-	-	1	0.25	0.25	0.39	0.44	6.1	7.4
Silver	µg/L	-	-	0.25	0.05	0.05	0.066	0.070	0.69	0.83
Sodium	µg/L	-	-	-	1400	1500	3600	4300	91000	110000
Thallium	µg/L	-	-	0.8	0.05	0.05	0.056	0.059	0.31	0.40
Uranium	µg/L	-	33	15	0.05	0.05	0.86	1.20	31	<u>42</u>
Zinc	µg/L	400	11.3	2.2	<u>2.5</u>	<u>2.5</u>	3.1	3.3	<u>270</u>	<u>310</u>
Chloride	µg/L	-	640000	120000	2400	2600	2400	2600	2400	2600
Nitrate + Nitrite (as Nitrogen)	µg/L	-	-	-	38	53	4800	12000	12000	15000
Nitrite (as Nitrogen)	µg/L	-	-	60	9.9	14	120	280	270	350
Nitrate (as Nitrogen)	µg/L	-	550000	13000	25	25	4600	12000	11000	15000
Total Ammonia (as Nitrogen)	µg/L	-	-	689	25	25	610	1500	1500	1900
Un-ionized Ammonia (as Nitrogen)	µg/L	500	-	19	0.064	0.097	<u>23.0</u>	<u>57</u>	<u>57</u>	<u>72</u>
Cyanide, Total	µg/L	500	-	-	10	10	10	10	10	10
Cyanide, WAD	µg/L	-	-	5	1.0	1.0	1.0	1.0	1.0	1.0
Sulphate	µg/L	-	-	-	1000	1000	5400	6800	180000	220000
Fluoride	µg/L	-	-	120	60	60	85	93	1100	1300
Radium-226	Bq/L	0.37	-	-	0.005	0.005	0.0067	0.0071	0.074	0.088
Temperature	°C	-	-	-	12.0	17.0	9	17	9	18
Total Alkalinity (as CaCO ₃)	mg/L	-	-	-	8.8	9.7	12000	15000	510000	610000
pH (mean or 5 %ile)	pH Unit	6.0-9.5	-	6.5-9.0	7.0	6.9	8.0	8.0	8.0	8.0
Hardness (as CaCO ₃)	mg/L	-	-	-	8.4	8.7	19	21	440	530
Dissolved Organic Carbon	mg/L	-	-	-	1.0	1.0	1.3	1.4	15	18

Table 5: The highest value of the monthly mean and 95th %-ile for each project phase in seepage from the low grade ore stockpile in the sensitivity model.

Notes:

MDMER - Metal and Diamond Mining Effluent Regulations (Canada), Table 1 of Schedule 4, Maximum Authorized Monthly Mean Concentrations (SOR/2002-222 2020).

CWQG - Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life, short-term and long-term (CWQG-FAL referred to as CWQG) by Canadian Council of Ministers of the Environment (CCME 2020).

Concentrations exceeding MDMER are highlighted gray, CWQG short-term are double underlined, and CWQG long-term are bold. For further details on the parameters and guidelines see Table C-1 notes in Appendix 7B of the EIS.

Parameter	Base	eline	Const	ruction	Oper	ration
Statistics	mean	95 %ile	mean	95 %ile	mean	95 %ile
Aluminum	1.0	1.0	1.0	1.0	1.0	1.0
Antimony	1.0	1.0	1.0	1.0	1.0	1.0
Arsenic	1.0	1.0	1.0	1.0	1.0	1.0
Barium	1.0	1.0	1.0	1.0	1.0	1.0
Boron	1.0	1.0	1.0	1.0	1.0	1.0
Cadmium	1.0	1.0	1.0	1.0	1.0	1.0
Calcium	1.0	1.0	1.0	1.0	1.0	1.0
Chromium	1.0	1.0	1.0	1.0	1.0	1.0
Copper	1.0	1.0	1.0	1.0	1.0	1.0
Iron	1.0	1.0	1.0	1.0	1.5	1.1
Lead	1.0	1.0	1.0	1.0	1.0	1.0
Magnesium	1.0	1.0	1.0	1.0	1.0	1.0
Manganese	1.0	1.0	1.0	1.0	1.0	1.0
Mercury	1.0	1.0	1.0	1.0	1.1	1.1
Molybdenum	1.0	1.0	1.0	1.0	1.0	1.0
Nickel	1.0	1.0	1.0	1.0	1.2	1.1
Phosphorus	1.0	1.0	1.0	1.0	1.0	1.0
Potassium	1.0	1.0	1.0	1.0	1.0	1.0
Selenium	1.0	1.0	1.0	1.0	1.0	1.0
Silver	1.0	1.0	1.0	1.0	1.0	1.0
Sodium	1.0	1.0	1.0	1.0	1.0	1.0
Thallium	1.0	1.0	1.0	1.0	1.0	1.0
Uranium	1.0	1.0	1.0	1.0	1.0	1.0
Zinc	1.0	1.0	1.0	1.0	3.1	1.2
Chloride	1.0	1.0	1.0	1.0	1.0	1.0
Nitrate + Nitrite (as Nitrogen)	1.0	1.0	1.0	1.0	1.0	1.0
Nitrite (as Nitrogen)	1.0	1.0	1.0	1.0	1.0	1.0
Nitrate (as Nitrogen)	1.0	1.0	1.0	1.0	1.0	1.0
Total Ammonia (as Nitrogen)	1.0	1.0	1.0	1.0	1.0	1.0
Un-ionized Ammonia (as Nitrogen)	1.0	1.0	1.0	1.0	1.0	1.0
Cyanide, Total	1.0	1.0	1.0	1.0	1.0	1.0
Cyanide, WAD	1.0	1.0	1.0	1.0	1.0	1.0
Sulphate	1.0	1.0	1.0	1.0	1.0	1.0
Fluoride	1.0	1.0	1.0	1.0	1.0	1.0
Radium-226	1.0	1.0	1.0	1.0	1.0	1.0
Temperature	1.0	1.0	1.0	1.0	1.0	1.0
Total Alkalinity (as CaCO ₃)	1.0	1.0	1.0	1.0	1.0	1.0
pH (mean or 5 %ile)	1.0	1.0	1.0	1.0	1.0	1.0
Hardness (as CaCO ₂)	10	1.0	10	10	10	1.0
Dissolved Organic Carbon	1.0	1.0	1.0	1.0	1.0	1.0
Note: Ratios above 1.2 are bold and hi	ahliahted a	irav.	1.0	1.0	1.0	1.0

Table 6: Concentration ratios between the sensitivity and EIS models for LGO.

Parameter	Unite		CWQG	CWQG	Bas	eline	Const	truction	Ope	ration	Clo	sure	Post-c	losure
Statistics	Units	WIDWER	Short-term	Long-term	mean	95 %ile	mean	95 %ile	mean	95 %ile	mean	95 %ile	mean	95 %ile
Aluminum	µg/L	-	-	100	16	22	20	21	600	600	600	600	600	600
Antimony	µg/L	-	-	-	0.5	0.5	0.52	0.53	34	39	30	35	17	20
Arsenic	µg/L	100	-	5	0.5	0.5	0.5	0.5	24	28	10.0	12	5.6	6.6
Barium	µg/L	-	-	-	2.3	3	2.4	2.9	120	140	80	93	46	54
Boron	µg/L	-	29000	1500	25	25	25	25	130	150	93	100	63	70
Cadmium	µg/L	-	0.13	0.04	0.01	0.01	0.01	0.01	0.23	<u>0.27</u>	<u>0.22</u>	0.26	<u>0.14</u>	<u>0.17</u>
Calcium	µg/L	-	-	-	2800	2900	3000	3100	290000	340000	200000	240000	110000	140000
Chromium	µg/L	-	-	1	<u>1.1</u>	<u>1.9</u>	<u>1.2</u>	<u>1.8</u>	7.8	9.2	7.4	9	4.8	5.5
Copper	µg/L	100	-	2	0.6	0.9	0.7	0.9	74	88	54	60	32	38
Iron	µg/L	-	-	300	25	25	25	25	570	680	350	420	230	270
Lead	µg/L	80	-	1	0.25	0.25	0.25	0.25	2.2	2.8	2.10	2.7	1.40	1.80
Magnesium	µg/L	-	-	-	340	350	350	360	28000	33000	21000	24000	12000	14000
Manganese	µg/L	-	596	210	5.5	6.8	6.3	6.9	<u>1300</u>	<u>1300</u>	<u>980</u>	<u>1100</u>	580	<u>690</u>
Mercury	µg/L	-	-	0.026	0.007	0.007	0.007	0.007	0.52	0.61	0.48	0.55	0.30	0.36
Molybdenum	µg/L	-	-	73	1.0	1.0	1.0	1.0	38	44	28	34	17.0	20.0
Nickel	µg/L	250	-	25	1.0	1.0	1.0	1.0	6.8	8.8	6.7	8.5	5.0	5.9
Phosphorus	µg/L	-	-	4	<u>50</u>	<u>50</u>	<u>50</u>	<u>50</u>	50	50	50	50	50	50
Potassium	µg/L	-	-	-	95	130	130	140	56000	67000	14000	17000	6600	7800
Selenium	µg/L	-	-	1	0.25	0.25	0.25	0.25	3.5	4.1	1.8	2.0	1.1	1.2
Silver	µg/L	-	-	0.25	0.05	0.05	0.051	0.052	1.9	2.2	1.7	1.9	1.0	1.2
Sodium	µg/L	-	-	-	1400	1500	1500	1500	130000	160000	19000	24000	7400	9200
Thallium	µg/L	-	-	0.8	0.05	0.05	0.05	0.05	0.28	0.32	0.26	0.30	0.17	0.20
Uranium	µg/L	-	33	15	0.05	0.05	0.081	0.089	<u>42</u>	<u>52</u>	14	17	8	9
Zinc	µg/L	400	11.3	2.2	<u>2.5</u>	<u>2.5</u>	<u>2.5</u>	<u>2.6</u>	<u>140</u>	200	<u>140</u>	<u>200</u>	<u>110</u>	<u>130</u>
Chloride	µg/L	-	640000	120000	2400	2600	2400	2600	2400	2600	2400	2600	2400	2600
Nitrate + Nitrite (as Nitrogen)	µg/L	-	-	-	38	53	5900	15000	23000	30000	470	910	83	160
Nitrite (as Nitrogen)	µg/L	-	-	60	9.9	14	<u>140</u>	<u>340</u>	530	670	19	29	11.0	14
Nitrate (as Nitrogen)	µg/L	-	550000	13000	25	25	5800	<u>15000</u>	23000	29000	450	880	71	150
Total Ammonia (as Nitrogen)	µg/L	-	-	689	25	25	<u>750</u>	<u>1900</u>	2900	3700	80	130	32	41
Un-ionized Ammonia (as Nitrogen)	µg/L	500	-	19	0.064	0.097	<u>29</u>	<u>72</u>	<u>110</u>	<u>140</u>	3.0	4.9	1.2	1.6
Cyanide, Total	µg/L	500	-	-	10	10	10	10	10	10	10	10	10	10
Cyanide, WAD	µg/L	-	-	5	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Sulphate	µg/L	-	-	-	1000	1000	1100	1200	210000	260000	160000	190000	96000	120000
Fluoride	µg/L	-	-	120	60	60	61	62	1600	1600	1600	1600	1600	1600
Radium-226	Bq/L	0.37	-	-	0.005	0.005	0.0051	0.0052	0.20	0.23	0.18	0.21	0.10	0.12
Temperature	C°	-	-	-	12.0	17.0	11.0	17.0	12.0	17	11.0	17	12	17
Total Alkalinity (as CaCO ₃)	mg/L	-	-	-	8.8	9.7	660	820	900000	1100000	540000	620000	300000	350000
pH (mean or 5 %ile)	pH Unit	6.0-9.5	-	6.5-9.0	7.0	6.9	7.9	7.7	8.0	7.7	7.3	7.2	7.3	7.2
Hardness (as CaCO ₃)	mg/L	-	-	-	8.4	8.7	8.9	9.2	840	980	590	700	320	410
Dissolved Organic Carbon	ma/L	-	-	-	1.0	1.0	1.0	1.0	40	47	36	42	21	25

Table 7: The highest value of the monthly mean and 95th %-ile for each project phase in seepage from the waste rock stockpile in the EIS model.

Notes:

MDMER - Metal and Diamond Mining Effluent Regulations (Canada), Table 1 of Schedule 4, Maximum Authorized Monthly Mean Concentrations (SOR/2002-222 2020). CWQG - Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life, short-term and long-term (CWQG-FAL referred to as CWQG) by Canadian Council of Ministers of the Environment (CCME 2020).

Concentrations exceeding MDMER are highlighted gray, CWQG short-term are double underlined, and CWQG long-term are bold.

For further details on the parameters and guidelines see Table C-1 notes in Appendix 7B of the EIS.

Parameter			CWQG	CWQG	Base	eline	Const	ruction	Ope	ration	Clo	sure	Post-c	closure
Statistics	Units	MDMER	Short-term	Long-term	mean	95 %ile	mean	95 %ile	mean	95 %ile	mean	95 %ile	mean	95 %ile
Aluminum	µg/L	-	-	100	16	22	20	21	600	600	600	600	600	600
Antimony	µg/L	-	-	-	0.5	0.5	0.52	0.53	36	41	33	37	20	24
Arsenic	µg/L	100	-	5	0.5	0.5	0.5	0.5	22	26	11.0	12	6.2	7.2
Barium	µg/L	-	-	-	2.3	3	2.4	2.9	120	140	91	110	55	65
Boron	µg/L	-	29000	1500	25	25	25	25	130	150	99	110	68	76
Cadmium	µg/L	-	0.13	0.04	0.01	0.01	0.01	0.01	0.24	0.28	0.23	0.26	0.14	0.17
Calcium	µg/L	-	-	-	2800	2900	3000	3100	300000	350000	230000	260000	140000	160000
Chromium	µg/L	-	-	1	1.1	<u>1.9</u>	<u>1.2</u>	<u>1.8</u>	8.3	9.6	8.0	9	5.3	6.2
Copper	µg/L	100	-	2	0.6	0.9	0.7	0.9	72	85	54	60	32	38
Iron	µg/L	-	-	300	25	25	25	25	610	720	380	430	230	270
Lead	µg/L	80	-	1	0.25	0.25	0.25	0.25	2.3	3.0	2.20	2.7	1.40	1.80
Magnesium	µg/L	-	-	-	340	350	350	360	28000	33000	23000	26000	14000	16000
Manganese	µg/L	-	596	210	5.5	6.8	6.3	6.9	<u>1300</u>	<u>1300</u>	<u>980</u>	<u>1100</u>	580	<u>690</u>
Mercury	µg/L	-	-	0.026	0.007	0.007	0.007	0.007	0.53	0.62	0.49	0.57	0.30	0.36
Molybdenum	µg/L	-	-	73	1.0	1.0	1.0	1.0	38	44	31	38	19.0	23.0
Nickel	µg/L	250	-	25	1.0	1.0	1.0	1.0	8.6	9.8	7.8	8.7	5.1	5.9
Phosphorus	µg/L	-	-	4	<u>50</u>	<u>50</u>	<u>50</u>	<u>50</u>	50	50	50	50	50	50
Potassium	µg/L	-	-	-	95	130	130	140	52000	61000	15000	17000	7500	8800
Selenium	µg/L	-	-	1	0.25	0.25	0.25	0.25	3.3	3.9	1.9	2.2	1.2	1.4
Silver	µg/L	-	-	0.25	0.05	0.05	0.051	0.052	2.0	2.3	1.8	2.1	1.1	1.3
Sodium	µg/L	-	-	-	1400	1500	1500	1500	120000	140000	19000	24000	8400	10000
Thallium	µg/L	-	-	0.8	0.05	0.05	0.05	0.05	0.30	0.33	0.28	0.32	0.19	0.22
Uranium	µg/L	-	33	15	0.05	0.05	0.081	0.089	<u>39</u>	<u>48</u>	15	18	8	10
Zinc	µg/L	400	11.3	2.2	<u>2.5</u>	<u>2.5</u>	<u>2.5</u>	<u>2.6</u>	<u>200</u>	<u>230</u>	<u>180</u>	<u>210</u>	<u>110</u>	<u>130</u>
Chloride	µg/L	-	640000	120000	2400	2600	2400	2600	2400	2600	2400	2600	2400	2600
Nitrate + Nitrite (as Nitrogen)	µg/L	-	-	-	38	53	5900	15000	23000	30000	470	910	83	160
Nitrite (as Nitrogen)	µg/L	-	-	60	9.9	14	<u>140</u>	<u>340</u>	530	670	19	29	11.0	14
Nitrate (as Nitrogen)	µg/L	-	550000	13000	25	25	5800	<u>15000</u>	23000	29000	450	880	71	150
Total Ammonia (as Nitrogen)	µg/L	-	-	689	25	25	<u>750</u>	<u>1900</u>	2900	3700	80	130	32	42
Un-ionized Ammonia (as Nitrogen)	µg/L	500	-	19	0.064	0.097	<u>29</u>	<u>72</u>	<u>110</u>	<u>140</u>	3.0	4.9	1.2	1.6
Cyanide, Total	µg/L	500	-	-	10	10	10	10	10	11	10	10	10	10
Cyanide, WAD	µg/L	-	-	5	1.0	1.0	1.0	1.0	1.0	1.1	1.0	1.0	1.0	1.0
Sulphate	µg/L	-	-	-	1000	1000	1100	1200	220000	260000	160000	190000	97000	120000
Fluoride	µg/L	-	-	120	60	60	61	62	1600	1600	1600	1600	1600	1600
Radium-226	Bq/L	0.37	-	-	0.005	0.005	0.0051	0.0052	0.21	0.24	0.20	0.22	0.12	0.14
Temperature	°C	-	-	-	12.0	17.0	11.0	17.0	12.0	17	11.0	17	12	17
Total Alkalinity (as CaCO ₃)	mg/L	-	-	-	8.8	9.7	660	820	870000	1000000	590000	670000	340000	410000
pH (mean or 5 %ile)	pH Unit	6.0-9.5	-	6.5-9.0	7.0	6.9	7.9	8.1	8.0	8.2	7.3	7.5	7.3	7.5
Hardness (as CaCO ₃)	mg/L	-	-	-	8.4	8.7	8.9	9.2	860	1000	670	760	410	470
Dissolved Organic Carbon	mg/L	-	-	-	1.0	1.0	1.0	1.0	43	49	39	44	24	28

Table 8: The highest value of the monthly mean and 95th %-ile for each project phase in seepage from the waste rock stockpile in the sensitivity model.

Notes:

MDMER - Metal and Diamond Mining Effluent Regulations (Canada), Table 1 of Schedule 4, Maximum Authorized Monthly Mean Concentrations (SOR/2002-222 2020).

CWQG - Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life, short-term and long-term (CWQG-FAL referred to as CWQG) by Canadian Council of Ministers of the Environment (CCME 2020).

Concentrations exceeding MDMER are highlighted gray, CWQG short-term are double underlined, and CWQG long-term are bold.

For further details on the parameters and guidelines see Table C-1 notes in Appendix 7B of the EIS.

Table 9: Concentration ratios between t	the sensitivity and EIS models for waste rock.
---	--

Parameter	Const	ruction	One	ation	Clo	sure	Post-r	losure
Statistics	mean	95 %ile	mean	95 %ile	mean	95 %ile	mean	95 %ile
Aluminum	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Antimony	1.0	1.0	11	11	11	11	1.0	1.0
Arsenic	1.0	1.0	0.9	0.9	1.1	1.0	1.0	1.0
Barium	1.0	1.0	1.0	1.0	1.1	1.2	1.0	1.0
Boron	1.0	1.0	1.0	1.0	1.1	1.1	1.0	1.0
Cadmium	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Calcium	1.0	1.0	1.0	1.0	1.2	1.1	1.0	1.0
Chromium	1.0	1.0	1.1	1.0	1.1	1.1	1.0	1.0
Copper	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Iron	1.0	1.0	1.1	1.1	1.1	1.0	1.0	1.0
Lead	1.0	1.0	1.0	1.1	1.0	1.0	1.0	1.0
Magnesium	1.0	1.0	1.0	1.0	1.1	1.1	1.0	1.0
Manganese	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Mercury	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Molybdenum	1.0	1.0	1.0	1.0	1.1	1.1	1.0	1.0
Nickel	1.0	1.0	1.3	1.1	1.2	1.0	1.0	1.0
Phosphorus	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Potassium	1.0	1.0	0.9	0.9	1.1	1.0	1.0	1.0
Selenium	1.0	1.0	0.9	1.0	1.1	1.1	1.0	1.0
Silver	1.0	1.0	1.1	1.0	1.1	1.1	1.0	1.0
Sodium	1.0	1.0	0.9	0.9	1.0	1.0	1.0	1.0
Thallium	1.0	1.0	1.1	1.0	1.1	1.1	1.0	1.0
Uranium	1.0	1.0	0.9	0.9	1.1	1.1	1.0	1.0
Zinc	1.0	1.0	1.4	1.2	1.3	1.1	1.0	1.0
Chloride	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Nitrate + Nitrite (as Nitrogen)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Nitrite (as Nitrogen)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Nitrate (as Nitrogen)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Total Ammonia (as Nitrogen)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Un-ionized Ammonia (as Nitrogen)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Cyanide, Total	1.0	1.0	1.0	1.1	1.0	1.0	1.0	1.0
Cyanide, WAD	1.0	1.0	1.0	1.1	1.0	1.0	1.0	1.0
Sulphate	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Fluoride	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Radium-226	1.0	1.0	1.1	1.0	1.1	1.0	1.0	1.0
Iemperature	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Total Alkalinity (as CaCO ₃)	1.0	1.0	1.0	0.9	1.1	1.1	1.0	1.0
pH (mean or 5 %ile)	1.0	1.0	1.0	1.1	1.0	1.0	1.0	1.0
Hardness (as CaCO ₃)	1.0	1.0	1.0	1.0	1.1	1.1	1.0	1.0
Dissolved Organic Carbon	1.0	1.0	1.1	1.0	1.1	1.0	1.0	1.0

Note: Ratios above 1.2 are bold and highlighted gray.

Parameter	Linite		CWQG	CWQG	Bas	eline	Const	ruction	Ope	ration	Clo	sure	Post-c	closure
Statistics	Units	MDMER	Short-term	Long-term	mean	95 %ile	mean	95 %ile	mean	95 %ile	mean	95 %ile	mean	95 %ile
Aluminum	µg/L	-	-	100	16	22	20	29	210	300	100	110	120	120
Antimony	µg/L	-	-	-	0.5	0.5	0.50	0.50	3.8	4.7	1.0	1.1	0.71	0.77
Arsenic	µg/L	100	-	5	0.5	0.5	1.4	2.1	3.2	3.7	2.2	2.4	2.2	2.3
Barium	µg/L	-	-	-	2.3	3	5.2	7.6	17	22	4	5	4	5
Boron	µg/L	-	29000	1500	25	25	25	25	32	38	25	25	25	25
Cadmium	µg/L	-	0.13	0.04	0.01	0.01	0.010	0.015	0.025	0.030	0.017	0.019	0.015	0.016
Calcium	µg/L	-	-	-	2800	2900	68000	98000	75000	96000	14000	15000	22000	22000
Chromium	µg/L	-	-	1	<u>1.1</u>	<u>1.9</u>	1.1	1.8	1.5	2.4	1.4	1.9	1.3	1.9
Copper	µg/L	100	-	2	0.6	0.9	1	1.3	6.5	7.8	1.7	1.8	1.3	1.4
Iron	µg/L	-	-	300	25	25	480	880	440	800	210	230	320	330
Lead	µg/L	80	-	1	0.25	0.25	0.25	0.25	0.27	0.31	0.25	0.25	0.25	0.25
Magnesium	µg/L	-	-	-	340	350	6500	9800	6900	9500	1500	1700	2200	2300
Manganese	µg/L	-	596	210	5.5	6.8	<u>620</u>	<u>1100</u>	510	<u>840</u>	160	170	190	200
Mercury	µg/L	-	-	0.026	0.007	0.007	0.007	0.007	0.04	0.05	0.014	0.015	0.011	0.012
Molybdenum	µg/L	-	-	73	1.0	1.0	5.6	8.0	13	16	3	3	3	3
Nickel	µg/L	250	-	25	1.0	1.0	1.0	1.0	1.3	1.7	1.0	1.1	1.0	1.0
Phosphorus	µg/L	-	-	4	<u>50</u>	<u>50</u>	50	50	50	50	50	50	50	50
Potassium	µg/L	-	-	-	95	130	600	860	5500	6700	600	690	400	430
Selenium	µg/L	-	-	1	0.25	0.25	0.38	0.39	0.8	1.0	0.46	0.48	0.41	0.42
Silver	µg/L	-	-	0.25	0.05	0.05	0.050	0.050	0.19	0.23	0.069	0.075	0.058	0.060
Sodium	µg/L	-	-	-	1400	1500	42000	70000	40000	64000	6300	7000	12000	12000
Thallium	µg/L	-	-	0.8	0.05	0.05	0.050	0.050	0.054	0.062	0.050	0.050	0.050	0.050
Uranium	µg/L	-	33	15	0.05	0.05	0.78	0.92	5.3	6.6	0.6	0.7	0.41	0.43
Zinc	µg/L	400	11.3	2.2	<u>2.5</u>	<u>2.5</u>	2.5	2.5	<u>13</u>	<u>32</u>	6.8	9.0	6.1	7.0
Chloride	µg/L	-	640000	120000	2400	2600	36000	59000	33000	48000	5300	5900	9200	9400
Nitrate + Nitrite (as Nitrogen)	µg/L	-	-	-	38	53	720	1800	4900	9400	100	120	83	91
Nitrite (as Nitrogen)	µg/L	-	-	60	9.9	14	20	43	110	250	93	110	91	100
Nitrate (as Nitrogen)	µg/L	-	550000	13000	25	25	700	1700	4800	9200	100	120	83	92
Total Ammonia (as Nitrogen)	µg/L	-	-	689	25	25	380	610	790	1400	140	160	130	150
Un-ionized Ammonia (as Nitrogen)	µg/L	500	-	19	0.064	0.097	14	<u>23</u>	<u>30</u>	<u>53</u>	5	6	5	6
Cyanide, Total	µg/L	500	-	-	10	10	10	10	10	10	10	10	10	10
Cyanide, WAD	µg/L	-	-	5	1.0	1.0	1.1	1.2	1	1	1.0	1.0	1.0	1.0
Sulphate	µg/L	-	-	-	1000	1000	170000	290000	160000	260000	21000	24000	46000	47000
Fluoride	µg/L	-	-	120	60	60	60	60	220	260	80	85	68	70
Radium-226	Bq/L	0.37	-	-	0.005	0.005	0.0050	0.0050	0.021	0.025	0.0073	0.0078	0.0110	0.0110
Temperature	°C	-	-	-	12.0	17.0	9.2	17	9.3	18	9.1	18	10	18
Total Alkalinity (as CaCO ₃)	mg/L	-	-	-	8.8	9.7	300	480	99000	120000	11000	14000	6800	7800
pH (mean or 5 %ile)	pH Unit	6.0-9.5	-	6.5-9.0	7.0	6.9	7.8	7.6	7.8	7.6	7.3	7.2	7.4	7.3
Hardness (as $CaCO_3$)	mg/L	-	-	-	8.4	8.7	200	290	220	280	41	44	64	64
Dissolved Organic Carbon	ma/L	-	-	-	1.0	1.0	1.0	1.0	4.1	4.9	1.4	1.5	1.2	1.2

Table 10: The highest value of the monthly mean and 95th %-ile for each project phase in pit water in the EIS model.

Notes:

MDMER - Metal and Diamond Mining Effluent Regulations (Canada), Table 1 of Schedule 4, Maximum Authorized Monthly Mean Concentrations (SOR/2002-222 2020). CWQG - Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life, short-term and long-term (CWQG-FAL referred to as CWQG) by Canadian Council of Ministers of the Environment (CCME 2020).

Concentrations exceeding MDMER are highlighted gray, CWQG short-term are double underlined, and CWQG long-term are bold.

For further details on the parameters and guidelines see Table C-1 notes in Appendix 7B of the EIS.

Parameter	Linite	MDMER	CWQG	CWQG	Bas	eline	Const	ruction	Ope	ration	Clo	sure	Post-c	losure
Statistics	Office		Short-term	Long-term	mean	95 %ile	mean	95 %ile	mean	95 %ile	mean	95 %ile	mean	95 %ile
Aluminum	µg/L	-	-	100	16	22	20	29	190	270	99	110	120	120
Antimony	µg/L	-	-	-	0.5	0.5	0.50	0.50	2.9	3.5	0.9	0.9	0.68	0.71
Arsenic	µg/L	100	-	5	0.5	0.5	1.4	2.1	2.6	3.4	2.2	2.3	2.2	2.3
Barium	µg/L	-	-	-	2.3	3	5.2	7.6	14	17	4	4	4	5
Boron	µg/L	-	29000	1500	25	25	25	25	26	28	25	25	25	25
Cadmium	µg/L	-	0.13	0.04	0.01	0.01	0.010	0.015	0.033	0.038	0.018	0.020	0.015	0.017
Calcium	µg/L	-	-	-	2800	2900	68000	98000	68000	88000	13000	14000	22000	22000
Chromium	µg/L	-	-	1	<u>1.1</u>	<u>1.9</u>	1.1	1.8	1.5	2.4	1.4	1.9	1.3	1.9
Copper	µg/L	100	-	2	0.6	0.9	1	1.3	6.5	7.8	1.7	1.8	1.3	1.4
Iron	µg/L	-	-	300	25	25	480	880	440	800	210	230	320	330
Lead	µg/L	80	-	1	0.25	0.25	0.25	0.25	0.30	0.34	0.25	0.26	0.25	0.25
Magnesium	µg/L	-	-	-	340	350	6500	9800	6300	8900	1500	1600	2200	2200
Manganese	µg/L	-	596	210	5.5	6.8	<u>620</u>	<u>1100</u>	510	<u>840</u>	160	170	190	200
Mercury	µg/L	-	-	0.026	0.007	0.007	0.007	0.007	0.04	0.05	0.014	0.015	0.011	0.012
Molybdenum	µg/L	-	-	73	1.0	1.0	5.6	8.0	9	11	2	2	3	3
Nickel	µg/L	250	-	25	1.0	1.0	1.0	1.0	3.0	3.7	1.2	1.3	1.0	1.1
Phosphorus	µg/L	-	-	4	<u>50</u>	<u>50</u>	50	50	50	50	50	50	50	50
Potassium	µg/L	-	-	-	95	130	600	860	4500	5300	510	570	400	420
Selenium	µg/L	-	-	1	0.25	0.25	0.38	0.39	0.6	0.7	0.44	0.46	0.41	0.42
Silver	µg/L	-	-	0.25	0.05	0.05	0.050	0.050	0.16	0.19	0.066	0.069	0.056	0.058
Sodium	µg/L	-	-	-	1400	1500	42000	70000	37000	64000	6000	6600	11000	12000
Thallium	µg/L	-	-	0.8	0.05	0.05	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050
Uranium	µg/L	-	33	15	0.05	0.05	0.78	0.92	4.0	4.8	0.5	0.5	0.40	0.42
Zinc	µg/L	400	11.3	2.2	<u>2.5</u>	<u>2.5</u>	2.5	2.5	<u>28</u>	<u>33</u>	8.2	8.9	6.6	7.0
Chloride	µg/L	-	640000	120000	2400	2600	36000	59000	33000	48000	5300	5900	9200	9400
Nitrate + Nitrite (as Nitrogen)	µg/L	-	-	-	38	53	720	1800	4900	9400	100	120	83	91
Nitrite (as Nitrogen)	µg/L	-	-	60	9.9	14	20	43	110	250	93	110	91	100
Nitrate (as Nitrogen)	µg/L	-	550000	13000	25	25	700	1700	4800	9200	100	120	83	92
Total Ammonia (as Nitrogen)	µg/L	-	-	689	25	25	380	610	790	1400	140	160	130	150
Un-ionized Ammonia (as Nitrogen)	µg/L	500	-	19	0.064	0.097	14	<u>23</u>	<u>30</u>	<u>53</u>	5	6	5	6
Cyanide, Total	µg/L	500	-	-	10	10	10	10	10	10	10	10	10	10
Cyanide, WAD	µg/L	-	-	5	1.0	1.0	1.1	1.2	1	1	1.0	1.0	1.0	1.0
Sulphate	µg/L	-	-	-	1000	1000	170000	290000	160000	260000	22000	25000	46000	47000
Fluoride	µg/L	-	-	120	60	60	60	60	190	220	77	80	67	69
Radium-226	Bq/L	0.37	-	-	0.005	0.005	0.0050	0.0050	0.017	0.020	0.0070	0.0072	0.0110	0.0110
Temperature	°C	-	-	-	12.0	17.0	9.2	17	9.3	18	9.1	18	10	18
Total Alkalinity (as CaCO ₃)	mg/L	-	-	-	8.8	9.7	290	470	75000	91000	9200	10000	6700	7700
pH (mean or 5 %ile)	pH Unit	6.0-9.5	-	6.5-9.0	7.0	6.9	7.8	8.0	7.8	8.0	7.3	7.5	7.4	7.5
Hardness (as CaCO ₃)	mg/L	-	-	-	8.4	8.7	200	290	200	260	39	42	64	64
Dissolved Organic Carbon	mg/L	-	-	-	1.0	1.0	1.0	1.0	3.4	4.0	1.3	1.4	1.1	1.2

Table 11: The highest value of the monthly mean and 95th %-ile for each project phase in pit water in the sensitivity model.

Notes:

MDMER - Metal and Diamond Mining Effluent Regulations (Canada), Table 1 of Schedule 4, Maximum Authorized Monthly Mean Concentrations (SOR/2002-222 2020).

CWQG - Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life, short-term and long-term (CWQG-FAL referred to as CWQG) by Canadian Council of Ministers of the Environment (CCME 2020).

Concentrations exceeding MDMER are highlighted gray, CWQG short-term are double underlined, and CWQG long-term are bold.

For further details on the parameters and guidelines see Table C-1 notes in Appendix 7B of the EIS.

Table 12: Concentration ratios between	the sensitivity and EIS	models for open pit.
--	-------------------------	----------------------

Parameter	Base	eline	Const	ruction	Ope	ration	Clo	sure	Post-c	losure
Statistics	mean	95 %ile	mean	95 %ile	mean	95 %ile	mean	95 %ile	mean	95 %ile
Aluminum	1.0	1.0	1.0	1.0	0.9	0.9	1.0	1.0	1.0	1.0
Antimony	1.0	1.0	1.0	1.0	0.8	0.7	0.9	0.8	1.0	0.9
Arsenic	1.0	1.0	1.0	1.0	0.8	0.9	1.0	1.0	1.0	1.0
Barium	1.0	1.0	1.0	1.0	0.8	0.8	0.9	0.9	1.0	1.0
Boron	1.0	1.0	1.0	1.0	0.8	0.7	1.0	1.0	1.0	1.0
Cadmium	1.0	1.0	1.0	1.0	1.3	1.3	1.1	1.1	1.0	1.1
Calcium	1.0	1.0	1.0	1.0	0.9	0.9	0.9	0.9	1.0	1.0
Chromium	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Copper	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Iron	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lead	1.0	1.0	1.0	1.0	1.1	1.1	1.0	1.0	1.0	1.0
Magnesium	1.0	1.0	1.0	1.0	0.9	0.9	1.0	0.9	1.0	1.0
Manganese	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Mercury	1.0	1.0	1.0	1.0	1.1	1.1	1.0	1.0	1.0	1.0
Molybdenum	1.0	1.0	1.0	1.0	0.7	0.7	0.9	0.8	1.0	1.0
Nickel	1.0	1.0	1.0	1.0	2.3	2.2	1.2	1.2	1.0	1.1
Phosphorus	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Potassium	1.0	1.0	1.0	1.0	0.8	0.8	0.9	0.8	1.0	1.0
Selenium	1.0	1.0	1.0	1.0	0.8	0.7	1.0	1.0	1.0	1.0
Silver	1.0	1.0	1.0	1.0	0.8	0.8	1.0	0.9	1.0	1.0
Sodium	1.0	1.0	1.0	1.0	0.9	1.0	1.0	0.9	0.9	1.0
Thallium	1.0	1.0	1.0	1.0	0.9	0.8	1.0	1.0	1.0	1.0
Uranium	1.0	1.0	1.0	1.0	0.8	0.7	0.8	0.7	1.0	1.0
Zinc	1.0	1.0	1.0	1.0	2.2	1.0	1.2	1.0	1.1	1.0
Chloride	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Nitrate + Nitrite (as Nitrogen)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Nitrite (as Nitrogen)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Nitrate (as Nitrogen)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Total Ammonia (as Nitrogen)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Un-ionized Ammonia (as Nitrogen)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Cyanide, Total	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Cyanide, WAD	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Sulphate	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Fluoride	1.0	1.0	1.0	1.0	0.9	0.8	1.0	0.9	1.0	1.0
Radium-226	1.0	1.0	1.0	1.0	0.8	0.8	1.0	0.9	1.0	1.0
Temperature	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Total Alkalinity (as CaCO ₃)	1.0	1.0	1.0	1.0	0.8	0.8	0.8	0.7	1.0	1.0
pH (mean or 5 %ile)	1.0	1.0	1.0	1.1	1.0	1.1	1.0	1.0	1.0	1.0
Hardness (as CaCO ₃)	1.0	1.0	1.0	1.0	0.9	0.9	1.0	1.0	1.0	1.0
Dissolved Organic Carbon	1.0	1.0	1.0	1.0	0.8	0.8	0.9	0.9	0.9	1.0

Note: Ratios above 1.2 are bold and highlighted gray.

April 2021

APPENDIX IR-25.A IR-25 SGS REPORT

Excerpt from Report

An Investigation of

GOLD RECOVERY FROM VALENTINE LAKE PROJECT ORES

prepared for

MARATHON GOLD

Project 16863-01 (includes 16863-03) – Report 2 of 3 - Milling April 15, 2020

NOTES

DISCLAIMER: This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was(were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativeness of any goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted.

ACCREDITATION: SGS Minerals Services Lakefield is accredited to the requirements of ISO/IEC 17025 for specific tests as listed on our scope of accreditation, including geochemical, mineralogical, and trade mineral tests. To view a list of the accredited methods, please visit the following website and search SGS Lakefield: <u>http://palcan.scc.ca/SpecsSearch/GLSearchForm.do</u>.

SGS Canada Inc. P.O. Box 4300, 185 Concession Street, Lakefield, Ontario, Canada K0L 2H0 Tel: (705) 652-2000 Fax: (705) 652-6365 www.met.sgs.com www.ca.sgs.com

		Comp	Difference
Flowsheet 1		VLMC	Between Flowsheets
Primary Grind Ρ ₈₀ , μm	=	153	
Direct Head, Au g/t	=	2.35	0.00
Calc Head, Au g/t	=	2.81	-0.20
Au Recovery / Extraction			
Gravity Separation (G25), %	=	72.9	14.1
Flotation Concentrate, %	=	20.1	
Flotation Tailing, %	=	7.0	
Flotation Concentrate CN (Avg. of CN3 and 4), $\%$	=	17.0	
Flotation Tailing CN (Avg. of CN5 and 6), $\%$	=	5.1	
Combined FS-1 Circuit Au Recovery, %	=	94.9	0.1
NORM. to DIRECT Head, %	=	94.1	0.7
NORM. to AVG. Calc Head, %	=	95.3	0.6
Final Comb FS-1 Tailing (Avg. of CN3-6), Au, g/t	=	0.14	-0.02
			Difference
Flowsheet 2		VLMC	Between
			Flowsheets
Primary Grind P ₈₀ , μm	=	73	
Direct Head, Au g/t	=	2.35	0.00
Calc Head, Au g/t	=	3.01	0.20
Au Recovery / Extraction			
Gravity Separation (G26), %	=	58.8	-14.1
Gravity Tailing CN (Avg. of CN7 and 8), %	=	36.0	
Combined FS-2 Circuit Au Recovery, %	=	94 .8	-0.1
NORM. to DIRECT Head, %	=	93.4	-0.7
NORM. to AVG. Calc Head, %	=	94.7	-0.6
Final Comb FS-2 Tailing (Avg. of CN7 and 8), Au, g/t	=	0.16	0.02

Table 67: Comparison of the Overall Metallurgy Achieved in FS-1 and FS-2, VLMC Tests

The average gold recovery advantage shown for FS-1 in the above table is less than that calculated for the tests on the Low- Grade Variability samples (Table 56) although the difference in tailings grade remains at 0.02 g/t.

3. Cyanide Detoxification Testwork

3.1. Bulk Cyanide Leaching

Two cyanide detoxification (CND) tests were performed on combined tailing representing the gravityflotation + leach flowsheet (FS-1) bulk cyanide leached (CIL) tailing pulps from tests FCN25b and FCN26b. Cyanide leach test FCN25a was completed on 500 g of Marathon pilot plant flotation concentrate, while FCN25b was completed on 16 kg combined Marathon pilot plant flotation tailing (15.52 kg) and 0.48 kg (dry equivalent) leached residue from test FCN25a. This is equivalent to 3% reground flotation concentrate ($P_{80} = 13 \mu m$) and 97% flotation tailing ($P_{80} = 147 \mu m$). The same mass proportions of Leprechaun deposit pilot plant products were used to generate the FCN26b CIL tailing used in the corresponding CND testwork. Reground flotation concentrate and "as-is" flotation tailing P_{80} 's were 12 µm and 154 µm, respectively.

Cyanide detoxification tests were not undertaken on tailings representing the gravity + tailing cyanide leach process option.

Final CIL barren pulps were subsampled to generate a metallurgical balance and to provide the required analyses (Cu, Fe, CN_T, and CN_{WAD}) for the subsequent detoxification testing. Leach test conditions applied were as follows:

		Flot Conc	Flot Conc	
		CN's,	+ Flot Tail.	
		FCN25a and	FCN25b and	
		FCN26a	FCN26b	
Pulp Density	=	40	50	% Solids (w/w)
Pulp pH	=	11-11.5	10.5-11	Maintained with lime
Cyanide Concentration	=	10		g/L NaCN, maintained for 12 hours
Cyanide Concentration	=		0.3	g/L NaCN maintained @ 0.2 g/L
Carbon Concentration	=	20	5	g/L, Preattritioned Calgon GRC 22
Leach Retention Time	=	36	24	hours

 Table 68: CN Leach Conditions, Flot Concentrate, and Combined Flot Conc + Tail

Test results are presented in Table 69 and Table 70 for the concentrate and combined tailing + concentrate leaches, respectively.

PP Flot	Test	Feed Size P.o.	Feed Reagents (kg/t of CN Feed) Size Added Consumed P ₈₀ Consumed		/t of CN Feed) Consumed		Reagents (kg/t of CN Feed) Added Consumed		36 h Au Extraction	Leach Residue	Head (Au,	Grade, g/t
Conc		μm	NaCN	CaO	NaCN	CaO	%	Au, g/t	Calc.	Direct		
Marathon	FCN25a	13	23.8	0.88	10.5	0.43	97.9	0.56	26.8	27.3		
Leprechaun	FCN26a	12	28.4	0.83	18.4	0.05	97.8	0.68	31.5	59.3		

Table 69: Bulk PP Flotation Concentrate CIL Results

PP Flot Tail + (leached)	Test	Feed Size P ₈₀ ,	Reage Ado	ents (kg/ ded	/t of CN Cons	Feed) umed	24 h Au Extraction	Leach Residue	Head Grade, Au, g/t, Calc.	
Flot Conc		μm	NaCN	CaO	NaCN	CaO	%	Au, g/t		
Marathon	FCN25b	153	0.30	0.27	0.08	0.27	52.3	0.09	0.19	
Leprechaun	FCN26b	142	0.3	0.21	0.10	0.21	59.2	0.10	0.25	

In all respects, the bulk leaching to generate feed for cyanide detoxification tests presented above, performed as expected and confirms the results of the development work presented earlier.

3.2. SO₂/Air Cyanide Destruction

Conventional SO₂/air cyanide detoxification was applied to barren leached tailing slurries generated as described above.

3.2.1. Background

The chemical reaction for the oxidation of weak-acid dissociable cyanide (CN_{WAD}) using sodium metabisulphite ($Na_2S_2O_5$) as the source of SO₂, and air as the source of oxygen, proceeds as follows:

$$2\ \text{CN}^{\text{-}} +\ \text{Na}_2\text{S}_2\text{O}_5 \ +\ 2\ \text{O}_2 \ +\ 2\ \text{OH}^{\text{-}} \rightarrow\ 2\ \text{CNO}^{\text{-}} \ +\ \text{Na}_2\text{SO}_4 \ +\ \text{SO}_4^{2\text{-}} +\ \text{H}_2\text{O}$$

This reaction is catalyzed by the presence of copper. The feed usually contains some copper (as the copper cyano complexes), and if required, additional copper is added as copper sulphate. Hydrated lime is added to the reactor to provide the hydroxide ion for the above reaction.

The base metals (such as copper, zinc and nickel) that previously complexed with the cyanide are liberated and precipitated as metal hydroxides:

$$Cu^{2+} + 2OH^{-} \rightarrow Cu(OH)_2$$

Ferrocyanide is not destroyed in the process and is instead precipitated with other base metals such as copper, zinc and nickel as mixed metal ferrocyanide solids:

$$\begin{array}{rcl} \mathsf{Fe}(\mathsf{CN})_6^{4-} &+& 2\mathsf{Cu}^{2+} &\rightarrow& \mathsf{Cu}_2\mathsf{Fe}(\mathsf{CN})_6\\ \\ \mathsf{Fe}(\mathsf{CN})_6^{4-} &+& 2\mathsf{Zn}^{2+} &\rightarrow& \mathsf{Zn}_2\mathsf{Fe}(\mathsf{CN})_6 \end{array}$$

Thiocyanate, if present, is partially oxidized to cyanate and sulphate:

$$SCN^{\text{-}} + \text{ Na}_2\text{S}_2\text{O}_5 + 3\text{O}_2 + 4\text{OH}^{\text{-}} \rightarrow CN\text{O}^{\text{-}} + \text{Na}_2\text{SO}_4 + 2\text{SO}_4^{2\text{-}} + 2\text{H}_2\text{O}_4$$

The cyanate ion is unstable, and slowly hydrolyzes to ammonium and carbonate ions:

$$\mathsf{CNO}^{\text{-}} + 2 \ \mathsf{H}_2\mathsf{O} \ \rightarrow \ \mathsf{CO}_3^{2\text{-}} + \mathsf{NH}_4^{\text{+}}$$

The rate of hydrolysis of the cyanate ion increases with decreasing pH. The carbonate ion precipitates as calcium carbonate. A small amount of the ammonium ion is found to form ammonia (NH_3) and eventually escapes from the solution as NH_3 gas.

The standard procedure for cyanide detoxification using SO₂/air in a bulk-batch mode was applied. A 1 L reactor equipped with baffles and air sparger was first filled with the feed pulp. The required amount of copper sulphate was added based on the analysis completed prior to testing. The pulp was treated in batch mode with Na₂S₂O₅ and air to reduce the concentration of CN_{WAD} in solution to approximately 1 mg/L.

The oxidation reduction potential (ORP) of the pulp was monitored with a Pt/Ag/AgCl combination electrode, while the residual CN_{WAD} concentration in the solution phase was monitored during the test using the picric acid method. At the end of each test, a solution sample was taken for analysis of CN_T , CN_{WAD} , copper and iron.

Once the batch of pulp has been treated and cyanide destroyed to the target level, the continuous test commenced. Slurry was pumped to the vessel (1 L reactor) at a rate determined by the target residence time requirement (typically, and in this case, ~60 minutes), and reagents (Na₂S₂O₅ and lime) and air were added continuously. Samples of solution phase of the slurry discharge were taken periodically and analysed for CN_T, CN_{WAD}, copper and iron to determine the efficiency of the CND reaction.

It should be noted that batch tests are inefficient and should only be used for determining the amenability of the sample to treatment using SO₂/air and providing a rather conservative indication of reagent requirements. Continuous testing is required for optimization of parameters such as retention time and reagent dosages. In addition, sodium metabisulphite, a partially neutralized form of SO₂, is generally used in laboratory testing to allow accurate addition of the reagent. It is anticipated that in a commercial plant using SO₂ gas, the lime requirement for pH control may require an additional 0.5 mole lime per mole SO₂, or 0.58 g lime per g SO₂ as suggested by the following chemical reactions:

 $2SO_2 + 2NaOH \rightarrow Na_2S_2O_5 + H_2O$ $Na_2S_2O_5 + Ca(OH)_2 \rightarrow CaSO_3 + Na_2SO_3 + H_2O$ $2SO_2 + 2Ca(OH)_2 \rightarrow 2CaSO_3 + 2H_2O$

3.2.2. Results

Results are presented in Table 71 and details are included in Appendix C.

	Teet	Boton	Product (Solution Phase) Analysis, mg/L							Reagent Addition							
Test Number	Dur.,	Time,			CN _{wap} by		, -		g/g CN _{WAD}			g/L Feed Slurry			kg/t Solids		
	min.	min	рн	CΝ _T	Ana. Lab	Picric Acid	Cu	Fe	SO ₂ Equiv.	Lime (CaO)	Cu ⁽¹⁾	SO ₂ Equiv.	Lime (CaO)	Cu ⁽¹⁾	SO ₂ Equiv.	Lime (CaO)	Cu ⁽¹⁾
Marathon, Feed from F	-CN25b		9.8	200	137		15.7	30.5									
CND 1																	
Batch Test	130	130	8.5			0.69			4.75	7.11	0.47	0.48	0.72	0.05	0.65	0.97	0.06
Continuous	Tests								-								
1-1	410	57	8.6	5.00	0.10	0.54	0.1	1.8	4.68	3.66	0.46	0.47	0.38	0.05	0.64	0.50	0.06
1-2	240	52	8.6	9.24	0.14	0.63	0.3	3.4	4.80	3.21	0.36	0.48	0.33	0.04	0.66	0.44	0.05
1-3	185	59	8.5	19.8	0.08	1.03	0.6	6.3	4.82	2.80	0.22	0.49	0.29	0.02	0.66	0.38	0.03
1-4	430	54	8.5	29.7	0.10	1.69	1.8	10.7	4.39	3.02	0.23	0.44	0.31	0.02	0.60	0.41	0.03
Leprechaur Feed from F	n, =CN26b		10.3	300	112		15.6	72.7									
CND 2							******										
Batch Test	230	230	8.5			0.79			8.55	13.8	1.50	0.71	1.14	0.12	0.96	1.54	0.17
Continuous	Tests																
2-1	410	60	8.5	0.2	<0.01	0.32	0.4	0.2	4.25	3.83	1.75	0.35	0.32	0.14	0.48	0.43	0.20
2-2	240	57	8.5	4.02	<0.01	0.67	0.2	1.5	4.32	2.69	1.39	0.36	0.23	0.11	0.48	0.30	0.16
2-3	190	54	8.8	24.9	<0.01	1.40	0.3	9.1	4.28	2.30	0.88	0.35	0.19	0.07	0.48	0.26	0.10
2-4	370	56	8.8	6.90	<0.1	2.19	0.1	0.2	4.46	1.94	1.00	0.37	0.16	0.08	0.50	0.22	0.11

Table 71: SO₂/Air Cyanide Detoxification Summary

-- No sample submitted for assays

 $^{(1)}$ Cu added as copper sulphate (CuSO₄ \bullet 5H₂O), SO₂ added as sodium metabisulphite (Na₂S₂O₅)

The 4.75 g SO₂/g CN_{WAD}, added in CND 1 batch test, and similarly added in all but the last trial on FCN25b (Marathon) feed (CND 1-4) is the fairly standard starting dosage (ratio) after initial batch treatment to the approximate detoxification target. Running at that concentration in the batch treatment stage and in the initial three (of four) continuous runs resulted consistently in CN_{WAD} contents of less than the target of ~1 mg/L (CN_{WAD} analyses by the higher precision methods applied in the SGS Minerals analytical laboratory). Reducing the SO₂ dosage somewhat, to ~4.4 g SO₂/g CN_{WAD}, in the final trial (CND 1-4) yielded similarly low CN_{WAD} after only 54 minutes of retention (less than the reporting limit of 0.1 mg/L CN_{WAD}).

While a considerably higher SO₂ dosage (8.55 g SO₂/g CN_{WAD}) was required to batch treat FCN26b (Leprechaun) pulp to the target range, dosages in the continuous phase were consistently <4.5 g SO₂/g CN_{WAD} in the continuous trials. The CN_{WAD} analyses by the higher precision methods applied in the SGS Minerals analytical laboratory indicated that all trials yielded CN_{WAD} values less than the detection limit (= 0.01 or 0.1 mg/L depending on unspecified interferences).

The principal parameter examined in this testwork was copper dosage. Copper, as explained in the preamble above, is required at a certain concentration to catalyse the detoxification reaction. In both cases, copper addition (as copper sulphate) was reduced by a factor of two without negatively impacting the principal reaction. Copper addition was reduced from 0.46 to 0.23 g/g CN_{WAD} in CND1 and from 1.75 to 0.88 g/g CN_{WAD} in CND2. The reduction in copper sulphate addition had a positive impact on reducing lime requirement.

Cyanide detoxification testwork clearly indicated that the CN_{WAD} present in the CIL barren slurries was easily destroyed to levels below the typical effluent discharge requirement of <1 mg/L CN_{WAD} (to the environment). On all accounts these results must be considered as excellent. As the primary purpose of these tests was to generate material for environmental analysis, SGS did not determine absolute minimal dosage requirements for either SO₂ or copper. Future testwork, if undertaken, should examine further reducing SO₂ dosage, copper dosage and retention time. Based on the data presented here, further reductions are probable.

The final detoxified slurries were turned over to the custody of the SGS Mining Environmental group for a series of short and long term tests. That work was administered, and has been reported, under a separate test program (16863-02) and is not included in this report.