REPORT ON

Pre-feasibility Block Cave Mine Design - Mitchell Deposit

Submitted to:

Seabridge Gold Inc.
400-106 Front Street East
Toronto, ON M5A 1E1
Attention: Mr. Jim Smolik

Project Number:
1114390002-005-R-Rev0
Distribution:
2 copies - Seabridge Gold Inc.
2 copies - Golder Associates Ltd.

MITCHELL PRE-FEASIBILITY STUDY

Executive Summary

This report presents the results of the pre-feasibility assessment of the proposed block caving mine for the Seabridge Gold Inc. Mitchell deposit, part of the KSM property located in the Coast Mountains of northwestern British Columbia. The property is situated in challenging topography with potential for the development of three open pit and two underground mines. The deposit extends approximately $1,500 \mathrm{~m}$ east-west (along strike) and 400 m to 1400 m north-south and are between approximately 300 m and 900 m in the vertical dimension. The deposit is massive, reasonably continuous, and in general, geometrically suitable to mine by block caving. The potential of mining the Mitchell deposit by a combination of open pit and underground methods was investigated in a previous report titled "Block Cave Mining Study" (Golder 2011a), which concluded that it was possible to mine the upper portions of the Mitchell deposit by open pit methods and the deeper portions by block caving.

The mineral resource block model used for the study contained Gold (Au), Silver (Ag), Copper (Cu), and Molybdenum (Mo) grades as well as a Net Smelter Return (NSR) value based on the NSR formula in the pre-feasibility update (PFU) that was published on June 15, 2011. The model also contained measured, indicated, and inferred grades but the inferred grades were set to zero and are not included in this pre-feasibility study. The geological resource contains 1,747M tonnes of mineralized material grading $3.2 \mathrm{~g} / \mathrm{t} \mathrm{Ag}, 0.61 \mathrm{~g} / \mathrm{Au}$, $0.17 \% \mathrm{Cu}$, and 59 ppm Mo. This resource was evaluated using Gemcom's Footprint Finder software to evaluate the economic potential for a block cave mine. A footprint at elevation 235 m produced the most value and resulted in 438M tonnes of block cave resources with 9% unplanned waste dilution at zero grade as shown in Table A.

Table A: Geological and Block Cave Resources for Mitchell

Category	Tonnes (million)	Ag (g/t)	Au (g/t)	Cu (\%)	Mo (ppm)
Geological resources ${ }^{1}$	1,747	3.20	0.61	0.17	59
Mineral inventory	757	3.54	0.56	0.17	50
Block cave resources from PCBC 2,3	$\mathbf{4 3 8}$	3.48	$\mathbf{0 . 5 3}$	$\mathbf{0 . 1 6}$	$\mathbf{3 4}$
Dilution	39	0	0	0	0
Recovery	58%				
Dilution	9%				

[^0]The quality of the rock mass at the Mitchell deposit is rated as good. No major structural features have been identified that might influence the caving mechanism and the progression of the cave in any significant manner. Cavability assessments were made using Laubscher's and Mathews' methods which involve assessing cavability based on experience at other mining operations with rock of similar quality. Both methods indicate that

MITCHELL PRE-FEASIBILITY STUDY

the size (area) of the footprint required to initiate and propagate caving is between approximately 110 m and 220 m . These dimensions are significantly smaller than the size of the footprint of the deposit that can potentially be mined economically by caving. This fact, together with the general large-sized three-dimensional shape of the deposit, suggests that the Mitchell deposit is amenable to cave mining. In situ stresses have been estimated from hydraulic fracturing tests and based on high induced stresses in the cave back, as predicted by numerical modelling, it is expected that stress-induced fracturing of the rock mass may contribute to caving. More sophisticated numerical analyses are recommended to confirm and quantify stress-related impacts as part of future studies.

A significant proportion of the rock at Mitchell is predicted to have block sizes greater than $2 \mathrm{~m}^{3}$. Without some remediation measure being adopted, such large sized blocks will require significant secondary blasting, and there will likely be a significant adverse impact on production and significant damage to the drawpoints that will require ongoing rehabilitation. As a result of this, it is proposed to precondition the rock by hydrofracturing. The cost and schedule to do this have been incorporated into this study. There are a number of uncertainties associated with preconditioning due to the limited number of caving mines where it has been applied and tested. It is also difficult to obtain definitive field data that demonstrates the degree of improvement obtained. The results from these mines are encouraging, however, and there is sufficient experience to indicate that such fragmentation concerns do not represent a fatal flaw at Mitchell. It is recognized that uncertainty in fragmentation and the effectiveness of preconditioning to enhance fragmentation needs to be addressed via production and cost risks. It is also very difficult to quantify the effect of attrition as the rock is brought down within the cave except that experience has indicated that in caving mines operating under similar rock conditions to those at Mitchell, fragmentation of rock, drawn down more than approximately 100 m is generally good. For this study, it was assumed that fragmentation of the initial 100 m of draw height is approximately equal to the estimated in situ block size and, above this, only limited secondary blasting would be required.

The expected coarse fragmentation at Mitchell will result in relatively large isolated drawcone diameters of 13 m or more for a loading width of 5 m . The present experience in other operating mines is that a 15 m by 15 m drawpoint spacing performs well under these coarse fragmentation conditions. Some caving mines operating in good quality rock have successfully expanded the layout to approximately 17 m by 17 m , but it was considered prudent for this study to adopt the slightly more conservative 15 m by 15 m spacing.

The underground mine design was based on modelling using Gemcom's Footprint Finder (FF) and PCBC software. FF modelling indicated that the optimum footprint for the Mitchell deposit is approximately 728 m wide in the north-south direction, $1,022 \mathrm{~m}$ wide in the east-west direction, and 860 m vertically with the footprint elevation at 235 m . PCBC modelling indicated that the block cave could produce 55,000 tonnes per day, requiring the development of 120 new drawpoints per year. The final mine design includes approximately 145 km of drifts and raises, including a 5% contingency to account for the excavations of design items such as service bays, sumps, and electrical substations. The design is composed of six main types of levels including preconditioning, undercut, extraction, secondary breakage, haulage, and conveying. In addition, there are two tunnels (access ramp and conveyor) from the footprint to surface to provide for mine access and material handling. The floors of the extraction drifts and drawpoints are designed to be concreted, which will increase the speed and productivity of the Load-Haul-Dump (LHD) vehicles as well as reduce equipment maintenance. The six levels of the mine design will be accessed through internal ramps beginning on the extraction level. These ramps are strategically positioned to maintain access to the levels during caving and for ventilation purposes. There are 34 extraction drifts on the extraction level and each drift is

MITCHELL PRE-FEASIBILITY STUDY

designed with three ore passes. This reduces the average LHD haul distance to approximately 100 m and improves productivity.

Production material will be hauled from drawpoints to one of three ore passes situated within the same extraction drift. The ore passes from neighbouring extraction drifts will feed a stationary rockbreaker on the secondary breaking level, which will reduce the size of the material further and feed it to the haulage level via passes with chutes. A train on the haulage level will haul the material to one of two gyratory crushers, where it will be crushed and conveyed to the surface.

The proposed mobile equipment is typical of that used in underground mines and is comprised of those pieces directly related to moving ore to the crushers ($8.6 \mathrm{~m}^{3}$ LHDs, secondary rockbreakers, and the train), the development equipment ($4.6 \mathrm{~m}^{3}$ LHDs and $18 \mathrm{~m}^{3}$ trucks) as well as the AnFo loaders and ground support machines. In addition, service equipment is included for construction and mine maintenance activities. At peak operation, Mitchell will require a fleet of approximately 60 pieces of mobile underground equipment. The mine workforce includes both staff and labour positions and the size varies according to the stage of the mine life with a peak quantity of 489 personnel in Year 7.

The majority of the main ventilation infrastructure is also located on the extraction level. It consists of two fresh air raises, two fresh air drifts, a fresh air ring drift, multiple internal ventilation raises, a return air drift, and two exhaust raises. The conveying level starts beneath the cave and finishes on surface near to the main conveyor transporting material to the plant site. It is designed to accommodate both production ore and development waste material. The required airflow for the Mitchell mine to achieve a production rate of $55,000 \mathrm{tpd}$ is $860 \mathrm{~m}^{3} / \mathrm{s}$ based upon the diesel equipment utilized, air velocity considerations, and a contingency of 20% per level. Heating of the mine air in the winter months is included in the design and cost estimates. It is estimated that the Mitchell mine will require approximately $17,400 \mathrm{kWh}$ of electricity at peak operation. The main contributors to this total are the crushers, conveyor belts, and ventilation fans.

The maximum estimated groundwater inflow for the Mitchell block cave mine is $13,200 \mathrm{~m}^{3} / \mathrm{d}$. At the time of completing this pre-feasibility assessment, estimates by others of the surface inflows into the crater at Mitchell were not available. These surface inflows will report to the drawpoints and will be managed in a similar manner to the groundwater inflows. In future studies, the water management system will need to be enhanced to cater for this additional inflow.

The mine development schedule was separated into three phases; an initial pre-production phase which involves developing the primary access ramp and conveyor drifts; a second, ore production phase, that involves creating enough openings to start and ramp-up production from the cave; and, the final phase, once the mine has reached steady-state production and the development fleet is only required to create enough openings to maintain production. The average annual development quantity is about $4,000 \mathrm{~m}$, with peak development occurring during the second phase, when about $15,000 \mathrm{~m}$ is required per year.

The mine production schedule was developed using Gemcom's PCBC software. It was assumed that sloughing of peripheral waste rock would occur into the crater and cover the upper surface of the material being drawn down. This was modelled in PCBC by adding an infinite supply of waste material on top of the mineralized material. As material is drawn from the drawpoints, the waste mixes with mineralized material as dilution with zero grade (unplanned dilution) and the combined material reports to the drawpoint. The PCBC analyses account for this unplanned dilution. Due to the large fragmentation that is estimated to report to

MITCHELL PRE-FEASIBILITY STUDY

the drawpoints at Mitchell, particularly during the early stages of mining, a draw rate of $200 \mathrm{~mm} /$ day was chosen as a maximum cap in the PCBC analysis but an average draw rate of $108 \mathrm{~mm} /$ day is required to reach production targets (the maximum draw rate modeled never exceeds $165 \mathrm{~mm} /$ day so there are roughly twice as many drawpoints available as are required to meet production targets). Initially, it is assumed that a drawpoint can produce at $60 \mathrm{~mm} /$ day and that this will steadily increase until 50% of a column is mined. Then, the drawpoint will produce up to the set maximum of $200 \mathrm{~mm} /$ day. Mitchell is estimated to have a production ramp-up period of 6 years, steady state production at 20 million tonnes per year for 14 years, and then ramp-down production for another 7 years.

The average mine operating cost is estimated at $\$ 5.00 /$ tonne and consists of the equipment and labour that is required to move material from the drawpoint to the surface conveyor portal and the fixed costs to operate the mine (Table B). This includes the use of the LHDs, secondary breakers, crushers and conveyors, and the labour required to plan and execute the mining plan. Mine labour comprises approximately 52% of the total Mitchell underground mining cost while crushing and conveying is 15%, secondary breaking is 13% and production mucking and haulage is 12%.

Table B: Underground Mine Operating Cost Breakdown

Activity	OPEX (\$/tonne)	(\%)
Labour	$\$ 2.60$	52%
Crusher and conveying	$\$ 0.80$	15%
Stationary and mobile rockbreaking	$\$ 0.61$	13%
Production LHD and haulage	$\$ 0.58$	12%
Fixed costs	$\$ 0.36$	7%
Rehabilitation	$\$ 0.04$	1%
Total	$\$ 5.00$	

The mine capital cost estimate includes the purchase and installation of all equipment and the excavation of all the underground workings. The pre-production capital expenses, over the first 6 years of the mine life, are estimated at $\$ 800$ million with an average sustaining capital cost of $\$ 74$ million over the remaining 31 years. The life-of-mine capital costs are estimated to be $\$ 3.1$ billion

MITCHELL PRE-FEASIBILITY STUDY

Study Limitations

Golder Associates Ltd. (Golder) has prepared this document in a manner consistent with that level of care and skill ordinarily exercised by members of the engineering and science professions currently practising under similar conditions in the jurisdiction in which the services are provided, subject to the time limits and physical constraints applicable to this document. No warranty, express or implied, is made.

This document, including all text, data, tables, plans, figures, drawings and other documents contained herein, has been prepared by Golder for the sole benefit of Seabridge Gold Inc. It represents Golder's professional judgement based on the knowledge and information available at the time of completion. Golder is not responsible for any unauthorized use or modification of this document. All third parties relying on this document do so at their own risk.

The factual data, interpretations, suggestions, recommendations and opinions expressed in this document pertain to the specific project, site conditions, design objective, development and purpose described to Golder by Seabridge Gold Inc., and are not applicable to any other project or site location. In order to properly understand the factual data, interpretations, suggestions, recommendations and opinions expressed in this document, reference must be made to the entire document.

This document, including all text, data, tables, plans, figures, drawings and other documents contained herein, as well as all electronic media prepared by Golder are considered its professional work product and shall remain the copyright property of Golder. Seabridge Gold Inc. may make copies of the document in such quantities as are reasonably necessary for those parties conducting business specifically related to the subject of this document or in support of or in response to regulatory inquiries and proceedings. Electronic media is susceptible to unauthorized modification, deterioration and incompatibility and therefore no party can rely solely on the electronic media versions of this document.

MITCHELL PRE-FEASIBILITY STUDY

Table of Contents

EXECUTIVE SUMMARY i
STUDY LIMITATIONS v
1.0 INTRODUCTION 1
1.1 Mining Concept3
1.2 Scope of Work 6
2.0 GEOLOGICAL SETTING 8
3.0 BLOCK CAVING RESOURCES 12
3.1 NSR Cut-Off 12
3.2 Resource breakdown 12
4.0 PRELIMINARY MINING ASSESSMENT 14
4.1 Footprint Finder Inputs 14
4.2 Footprint Finder Results 15
5.0 GEOTECHNICAL CHARACTERIZATION 17
5.1 Rock Mass Rating 18
5.1.1 Mineralized Rock 20
5.1.2 Host Rock 21
5.2 Intact Rock Strength 21
5.3 Fracture Orientations 23
5.4 Fracture Intensity 24
5.5 Fracture Persistence 25
5.6 In Situ Block Size 26
5.6.1 DFN Model Input and Verification 26
5.6.2 Results 26
5.7 In Situ Stress 27
5.8 Hydrogeological Characterization 28
6.0 CAVING GEOMECHANICS 29
6.1 Cavability 29
6.2 Fragmentation 32

MITCHELL PRE-FEASIBILITY STUDY

6.3 Drawpoint Geometry 35
6.4 Subsidence 35
7.0 MINE DESIGN 40
7.1 Underground Access 41
7.1.1 Emergency Egress 43
7.2 Preconditioning Level 43
7.3 Undercut Level 44
7.4 Extraction Level 45
7.4.1 Drawbell Excavation and Final Drawpoint Support 47
7.5 Secondary Breakage Level 48
7.6 Haulage Level 49
7.7 Conveyor Drift. 50
7.8 Ground Support Design 50
7.9 Material Movement 53
7.10 Mobile Equipment 54
7.11 Mine Workforce. 56
7.12 Contingencies 58
8.0 MINE SERVICES 59
8.1 Ventilation 59
8.1.1 Design Parameters 59
8.1.2 Airflow Design 61
8.2 Dewatering 62
8.3 Mine Water 63
8.4 Mine Power. 63
8.5 Compressed Air 65
8.6 Support Infrastructure 65
9.0 MINE DEVELOPMENT SCHEDULE 66
9.1 Mine Development Workforce 67
10.0 MINE PRODUCTION SCHEDULE 68
10.1 PCBC Input Parameters 68

MITCHELL PRE-FEASIBILITY STUDY

10.1.1 Draw Rate 69
10.1.2 Production Rate Curve (PRC) 70
10.1.3 Cave Start Location 71
10.2 Results of PCBC Analysis 71
10.3 Mine Production Workforce 74
11.0 MINE COSTS 75
11.1 Labour 75
11.2 Mine Capital Costs 77
11.2.1 Mine Development 77
11.2.2 Block Cave Infrastructure 78
11.2.3 Mobile Equipment 78
11.2.4 Stationary Equipment 79
11.2.5 Surface Equipment 80
11.2.6 Closure 80
11.2.7 Life of Mine Capital Cost Schedule 81
11.3 Mine Operating Costs 82
11.3.1 OPEX Sensitivity 84
11.4 Contingencies 84
12.0 PROJECT OPPORTUNITIES AND RISKS 85
12.1 Project Opportunities 85
12.2 Project Risks 86
13.0 CONCLUSIONS 87
14.0 CLOSURE 88
15.0 REFERENCES 89
TABLES
Table 1: Units Used in the Text xiii
Table 2: Mitchell Lithology 10
Table 3: Mitchell Alteration 11
Table 4: Components of the NSR Cut-off from the PFU Study Released in June, 2011 12
Table 5: Geological and Block Cave Resources Table for Mitchell 13

MITCHELL PRE-FEASIBILITY STUDY

Table 6: Mineral Resources Recovered at the Drawpoints 13
Table 7: Input Values Used in Footprint Finder to Evaluate the Block Caving Potential of Mitchell 14
Table 8: Summary of the Footprint Finder results for the Footprint Chosen 235 m Elevation 15
Table 9: Rock Mass Rating System (Bieniawski 1976) 18
Table 10: UCS Testing Results from the 2009 and 2011 Programs 21
Table 11: Field Identification Methods for Description of Rock Strength (ISRM 1981). 22
Table 12: Distribution of Termination of Mapped Features 25
Table 13: Summary of In Situ Stress Values from Hydraulic Fracturing in Borehole M-11-122 28
Table 14: MRMR Rating Classification 30
Table 15: Q' and N Rating Classification 31
Table 16: Design Lengths of the Conveyor and Access Ramps 42
Table 17: Estimated Lengths of the Various Drift Types for the Mitchell Deposit 46
Table 18: Q-System (Barton et al. 1974) 51
Table 19: Ground Support Recommended for Mitchell Mine Infrastructure 53
Table 20: Peak Mobile Equipment Requirements for Mitchell Mine (Year 14) 56
Table 21: Peak Labour Quantities by Job Title (Year 7) 56
Table 22: Summary of Mitchell Drift Dimensions 58
Table 23: Mitchell Ventilation Model - Friction Factors 60
Table 24: Mitchell Ventilation Model - Air Velocities 61
Table 25: A Summary of the Major Contributors to the Peak Electrical Load at Mitchell 64
Table 26: Key PCBC Input Parameters 68
Table 27: Total Production and Average Grades for the Proposed Mitchell Underground Mine 71
Table 28: Breakdown of the Various Labour Mark-Ups 75
Table 29: Yearly Base Rate and All-In Rate for the Different Mine Positions 76
Table 30: Summary of the Unit Cost of the Various Development Sizes Proposed for the Mitchell Mine 78
Table 31: Summary of the Block Cave Infrastructure Capital Cost 78
Table 32: A List of the Mobile Equipment Required and Unit Costs 79
Table 33: Mitchell Stationary Equipment Costs 80
Table 34: Surface Infrastructure Cost 80
Table 35: Summary of the Mine Operation Cost 82
Table 36: Influence of increasing or decreasing the labour cost on the OPEX 83
Table 37: Influence of Mine OPEX on Block Cave Resources 84
Table 38: Summary of the Footprint Finder results. 85

MITCHELL PRE-FEASIBILITY STUDY

FIGURES

Figure 1: Location of the Mitchell, Kerr and Sulphurets (KSM) property 2
Figure 2: Aerial view of the general area of the Mitchell deposit (looking east). 3
Figure 3: Site topography and $0.25 \mathrm{~g} / \mathrm{t}$ Au grade shell 3
Figure 4: Typical cross-section through Mitchell deposit (Seabridge 2011). 5
Figure 5: Typical cross-section showing proposed pit, looking east. 6
Figure 6: Aerial view showing the outcrop of the Mitchell deposit and surface expressions of relevant geological features. 8
Figure 7: Isometric view $0.25 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ and $0.1 \% \mathrm{Cu}$ grade shells of the Mitchell deposit. 9
Figure 8: Vertical cross-section (423100 Easting) of the Mitchell deposit showing lithology, alteration, and $0.25 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ and $0.1 \% \mathrm{Cu}$ grade shells. 10
Figure 9: Summary graph of the footprint finder results for the Mitchell deposit. 15
Figure 10: Outline of the Mitchell footprint (inner, black line) with the value of columns of the geological resource at 235 m elevation. 16
Figure 11: Mitchell exploration and geotechnical boreholes and $0.25 \mathrm{~g} / \mathrm{t}$ Au grade shell. 17
Figure 12: Central boreholes and $0.25 \mathrm{~g} / \mathrm{t}$ Au grade shell. 19
Figure 13: Vertical cross-section at Easting 423100 showing correlated RMR and logged RMR. 20
Figure 14: Vertical cross-section at Easting 423100 showing logged ISRM strength 23
Figure 15: Stereographic projection showing open features classified by borehole. 24
Figure 16: Persistence distribution of all mapped features. 25
Figure 17: Example of Mitchell $5 \times 5 \times 5 \mathrm{~m}$ DFN model. 26
Figure 18: Estimated block size from DFN modelling. 27
Figure 19: Cavability assessment using Laubscher's method (Laubscher 1999). 31
Figure 20: Cavability assessment using the Mathews extended stability graph (Trueman and Mawdesley 2003) 32
Figure 21: Maximum/minimum spacing of drawzones based on isolated drawzone diameter (Laubscher 1994). 33
Figure 22: Comparison between the estimated block size at the Mitchell deposit and existing block caving operations (Butcher and Thin 2007). 34
Figure 23: Estimated limit of surface subsidence. 37
Figure 24: Schematic of subsidence profile - section 1. 38
Figure 25: Schematic of subsidence profile - section 2. 38
Figure 26: Plan view of the proposed underground mine layout. 40
Figure 27: Section of the Mitchell mine design (looking south) showing the position of each of main levels in the mine. 41
Figure 28: Plan view of the proposed Mitchell mine access. 42
Figure 29: A plan view of the preconditioning (PC) level showing the coverage of the footprint by both the PC level and the open pit. 43
Figure 30: Plan view of the undercut level. 44

MITCHELL PRE-FEASIBILITY STUDY

Figure 31: Schematic cross-section showing the relationship between the undercut and the extraction levels and drill pattern used to initiate the cave 45
Figure 32: Diagram showing the relationship between the drawbells, drawpoints (extraction x-cut) and extraction drifts 46
Figure 33: Plan view of the drilling pattern used for the drawbell excavation 47
Figure 34: Plan and section view of the proposed drilling and blasting pattern for the drawbells used in the El Teniente layout 48
Figure 35: Plan view of the secondary breaking level, haulage level and extraction level designed for the Mitchell underground 49
Figure 36: Plan view of the conveying and the haulage levels 50
Figure 37: Empirical ground support design chart (Grimstad and Barton 1993). 52
Figure 38: Schematic of the material movement system designed for Mitchell including the 4 m diameter ore passes that feed a secondary breaking level and haulage level 54
Figure 39: Mitchell ventilation breakdown based upon $860 \mathrm{~m} 3 / \mathrm{s}$ of total airflow. 60
Figure 40: Mitchell ventilation flowchart; red indicates leakage to surface, blue indicates leakage across ventilation doors, and orange indicates leakage through ore passes. 62
Figure 41: Chart showing the advance of lateral and vertical development and the quantity of rehabilitation estimated to be required 66
Figure 42: Chart showing the yearly development labour and the amount of vertical and horizontal development, and rehabilitation required per year. 67
Figure 43: Draw and production rates of a selection of block and panel cave mines (after Woo, Eberhart and van As, 2009) 70
Figure 44: Production Rate Curve used to describe the rate of change of the draw rate of one drawpoint 71
Figure 45: Yearly PCBC production schedule showing gold and copper grades 72
Figure 46: The number of active drawpoints and production per year 73
Figure 47: Average yearly draw rate (mm/day) and production (tonnes/year). 73
Figure 48: Yearly production workforce distribution. 74
Figure 49: Yearly distribution of development, production and total workforces, and development advance and production rate per shift. 76
Figure 50: Yearly capital cost estimate and the quantity of lateral and vertical development. 81
Figure 51: Chart showing the variability of the estimated OPEX over the life of the mine compared to the mine production 83

MITCHELL PRE-FEASIBILITY STUDY

APPENDICES

APPENDIX A

Trade-off Studies

APPENDIX B

Geotech - G1

APPENDIX C

Geotech - G2
APPENDIX D
Detailed Level Drawings

APPENDIX E

Definition of Block Cave Terms

APPENDIX F

Geotech - G3

APPENDIX G

Material Movement Process Flow Diagram

APPENDIX H

Ventilation Design - Airflow Calculations for Each Level

APPENDIX I

Electrical Design - WN Brazier Associates Ltd.

APPENDIX J

Workforce Breakdown by Year
APPENDIX K
Development and Production Schedules by Year

APPENDIX L

Capital Cost Schedule by Year and an Example of Development Cost Calculation
APPENDIX M
OPEX Calculation and Operating Cost by Year

MITCHELL PRE-FEASIBILITY STUDY

Table 1: Units Used in the Text

Unit	Definition
m	Metre
km	Kilometres
mm	Millimetres
g / t	Grams per tonne
\% Grade	Grade item in \% (such as Copper)
US\$/t	US dollars per tonne
\$	Dollars - assumed cad unless specified
M	Million
\%	Percent
ppm	Parts per million
m^{2}	Square metres
m^{3}	Cubic metres
m / s	Metres per second
MPa	Mega Pascal's
FF/m	Fracture frequency per metre
。	Degrees in an angle
Q'	Modified Q (Barton's rock mass classification system)
N	Stability number
"	Inch
$\mathrm{m}^{3} / \mathrm{s}$	Cubic metres per second
kW	Kilo Watt
kWh	Kilowatt hour
HP	Horsepower
Pa	Pascal
BTU	British thermal unit
MMBTUH	Million British thermal units per hour
${ }^{\circ} \mathrm{C}$	Temperature - degrees Celsius
cfm	Cubic foot per minute
cfm/bhp	Cubic foot per minute per boiler horsepower
$\mathrm{Ns}^{2} / \mathrm{m}^{8}$	Gaul - Resistance of an airway when one cubic metre per second air causes a pressure drop of one Pascal
$\mathrm{m}^{3} / \mathrm{d}$	Cubic metres per day
$\mathrm{m}^{3} / \mathrm{hr}$	Cubic metres per hour
mm/day	Millimetres per day
\$/m	Dollars per metre
\$M	Million dollars
\$/tonne	Dollars per tonne

Unit	
Mtonnes	Million tonnes
tpd	Tonnes per day

MITCHELL PRE-FEASIBILITY STUDY

1.0 INTRODUCTION

Seabridge Gold Inc.'s (Seabridge) KSM project is a major gold-copper deposit located in northwest British Columbia (BC), approximately 40 kilometres southwest of Bell II on Highway 37 and 21 km south-southeast of the Eskay Creek Mine (Figure 1). An aerial view looking to the east is shown in Figure 2. The site characteristics are described in detail in the Seabridge pre-feasibility study update (PFU) report (Seabridge 2011).

The KSM property contains the Kerr, Sulphurets, Mitchell, and Iron Cap deposits. Golder Associates Ltd. (Golder) completed the pre-feasibility level assessment (PFS) of block cave mining for the Mitchell and Iron Cap deposits. This report presents the results of the pre-feasibility assessment of the proposed block caving mine for the Mitchell deposit. A similar evaluation for the Iron Cap deposit is presented in a separate report.

Figure 1: Location of the Mitchell, Kerr and Sulphurets (KSM) property.
MITCHELL PRE-FEASIBILITY STUDY

Figure 2: Aerial view of the general area of the Mitchell deposit (looking east).

1.1 Mining Concept

The Mitchell deposit is a porphyry type intrusion that has been deformed by subsequent tectonic processes, resulting in a footwall contact dipping at approximately 40 degrees to the north. The deposit outcrops at the base of the Mitchell valley just to the west of the Mitchell glacier, which has previously eroded some of the deposit at the base of the valley. Figure 3 shows the site topography and the $0.25 \mathrm{~g} / \mathrm{t}$ gold (Au) grade shell.

Figure 3: Site topography and $0.25 \mathrm{~g} / \mathrm{t}$ Au grade shell.

MITCHELL PRE-FEASIBILITY STUDY

The geometrical shapes of the $0.25 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ or $0.1 \% \mathrm{Cu}$ grade shells are very similar and superimpose one another. They extend approximately $1,500 \mathrm{~m}$ east-west (along strike) and 400 m to 1400 m north-south and are between approximately 300 m and 900 m in the vertical dimension. A "typical" cross-section through the deposit is shown in Figure 4. The deposit is large in three dimensions, and reasonably continuous. It is understood that the deposit remains open at depth.

The proposed mine plan will involve open pit mining to a designed depth followed by block cave mining from the underground. The pre-feasibility open pit design is presented as an appendix in the report entitled "Kerr-Sulphurets-Mitchell (KSM) Prefeasibility Study Update" (Seabridge 2011).

An assessment was made by Moose Mountain Technical Services (MMTS) of the limit of the pit shell at which the open pit mining cost approximately matches the underground block caving mining cost. This pit is referred to as the M685 pit. A typical cross-section showing the proposed open pit design is shown in Figure 5. No detailed optimization was carried out as to the precise transition from open pit to underground mining. This will need to be undertaken as part of the feasibility study.

The Mitchell deposit has been the focus of another report by Golder, titled "Bock Cave Mine Study" (Golder 2011a), and reports by Seabridge. The relevant Seabridge reports are:

- The pre-feasibility study evaluating the potential to mine the Mitchell deposit solely by open pit methods. This report was published on March 31, 2010 and the relevant sections to this report include:
- Appendix G1: A geotechnical design of the open pit by Bruce Geotechnical Consultants Inc. (BGC);
- Appendix G7: An open pit depressurization analysis by BGC;
- Appendix F: A mine design section by MMTS;
- The mineral resource update published on January 25, 2011; and
- The pre-feasibility study update published on June 15, 2011.

MITCHELL PRE-FEASIBILITY STUDY

Figure 4: Typical cross-section through Mitchell deposit (Seabridge 2011).

MITCHELL PRE-FEASIBILITY STUDY

Figure 5: Typical cross-section showing proposed pit, looking east.

1.2 Scope of Work

Mitchell is part of the KSM property located in the Coast Mountains in northwestern British Columbia amid challenging topography. The property has the potential for the development of three open pit and two underground mines. Several engineering consultants were engaged by Seabridge to evaluate the technical issues and economic potential of the property as part of an update to the PFS published in 2011. Golder was engaged to evaluate the potential to mine the Mitchell deposit using block caving methods to the pre-feasibility level of engineering study. This includes the following scope:

- Integration with open pit mining;
- Underground mine access including a trade-off study regarding the use of shafts versus conveyors to move broken material to surface (Appendix A);
- Fragmentation of the caved rock as it reports to the drawpoints;
- Drawpoint spacing to maximize recovery and minimize dilution;

MITCHELL PRE-FEASIBILITY STUDY

- Stability assessments and support requirements for all underground excavations;
- Drawpoint layout and extraction level design;
- Mine ventilation and services (de-watering, shops, etc.);
- Mine development and production schedules;
- Mine equipment selection including trade-off studies between electric and diesel Load-Haul-Dump machines, and between diesel trucks, electric trucks and trains; and
- Capital and operating cost estimates of the block caving operations.

The design and cost estimation of the material handling system (e.g., all conveyors and crusher installations) to deliver material from the underground drawpoints to the Ore Process Control (OPC) was completed by Bosche Ventures and Wardrop. Also, the design and cost estimation for the underground electrical system required for underground mining was completed by WN Brazier Associates Inc. Golder was not involved in the design of the surface infrastructure, except where it relates directly to the underground operations (e.g., ventilation raises) or to provide input to others (e.g., to estimate the size of camp required).

MITCHELL PRE-FEASIBILITY STUDY

2.0 GEOLOGICAL SETTING

The Mitchell deposit is a porphyry-type intrusion that has been deformed by subsequent tectonic processes, resulting in a footwall contact dipping at approximately 40 degrees to the north. The deposit outcrops at the base of the Mitchell valley just to the west of the Mitchell glacier.

A general view of the outcrop of the Mitchell deposit and the surface expressions of relevant geological features are shown in Figure 6.

Figure 6: Aerial view showing the outcrop of the Mitchell deposit and surface expressions of relevant geological features.

The geological information for the Mitchell deposit provided by Seabridge includes the following:

- Lithology;
- Alteration;
- Major faulting; and
- Au and Cu grade shells of $0.25 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ and $0.1 \% \mathrm{Cu}$.

MITCHELL PRE-FEASIBILITY STUDY

The geometrical shapes of the $0.25 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ or $0.1 \% \mathrm{Cu}$ grade shells are very similar and superimpose one another. The deposit extends in plan approximately $1,500 \mathrm{~m}$ east-west (along strike), approximately 400 m to 1400 m north-south, and approximately 300 m and 900 m vertically (Figure 7).

Figure 7: Isometric view $0.25 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ and $0.1 \% \mathrm{Cu}$ grade shells of the Mitchell deposit.

A vertical cross-section towards the centre of the deposit showing lithology, alteration, structure, and grade shells is presented in Figure 8. The lithological units within the area of potential block cave mining (between the floor of the proposed pit and the underground production level) are primarily altered volcanics that lie beneath the Mitchell Thrust Fault (Table 2).

MITCHELL PRE-FEASIBILITY STUDY

Figure 8: Vertical cross-section (423100 Easting) of the Mitchell deposit showing lithology, alteration, and $0.25 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ and 0.1\% Cu grade shells.

Table 2: Mitchell Lithology

Code	Description
MC-MONZ	MC Monzonite
SW-MONZ	SW Monzonite
NM-MONZ	NM Monzonite
NM-STUHI	NM Stuhini group rocks
MC-VOLC	MC Volcanic
SW-VOLC	SW Volcanic
NM-VOLC	NM Volcanic
HIGH-QUARTZ	High quartz

As indicated in Table 3, these rocks are typically associated with intermediate argillic alteration (IARG), quartz-sericite-pyrite alteration (QSP), and chlorite-propylitic alteration (CL-PR). For the purpose of this study, the logged alteration codes have been classified into the above three alteration types (IARG, QSP, and CL-PR). Alteration types that did not fit these three broad categories have been classified as "Other" as indicated in Table 3.

MITCHELL PRE-FEASIBILITY STUDY

Table 3: Mitchell Alteration

Code	Description	Logged Codes	Percentage by Length of Logged Rock (\%)
CL-PR	Chlorite-propylitic alteration	CL, CL2, CLSTW, CL2STW, PR	62.3
IARG	Intermediate argillic alteration	IARG	8.3
QSP	Quartz-sericite-pyrite alteration	QSP, QSPSTW	13.7
Other	Carbonate veining Hematization Hornfels or skarn Potassic Late quartz veins Silicic	CARB	

Note: \quad Taken from Seabridge (2011).

MITCHELL PRE-FEASIBILITY STUDY

3.0 BLOCK CAVING RESOURCES

A mineral resource block model was provided by Moose Mountain Technical Services (MMTS) and contained Gold (Au), Silver (Ag), Copper (Cu), and Molybdenum (Mo) grades as well as a Net Smelter Return (NSR) value based on the NSR formula in the pre-feasibility update (PFU) that was published on June 15, 2011. The model also contained measured, indicated, and inferred grades. The inferred grades were set to zero and are not included in this pre-feasibility study.

3.1 NSR Cut-Off

The NSR cut-off used in this report is based on the NSR formula detailed in the PFU that was also used to determine general and administration (GA), water treatment and milling costs as detailed in Table 4. The underground mining cost was determined from first principles and is discussed further in Section 11.
Table 4: Components of the NSR Cut-off

Item	US\$/t Milled
Underground Mining ${ }^{1}$	5.84
Milling, G\&A and Site Service	9.57
Total	$\mathbf{1 5 . 4 1}$

Note: ${ }^{1}$ The mining cost used to determine the resources discussed in this section was a preliminary one. More details on the mining cost can be found in Section 11.2.

3.2 Resource breakdown

The following definitions are applicable to this report:

- Geological resources are as presented in the PFU (Seabridge 2011) and include all of the measured and indicated mineral resources, including those mined by open pit;
- Mineral inventory is the portion of the potentially economic resources above the NSR cut-off located outside the pit;
- Dilution is defined as material with zero grade that is mined within the footprint at the 235 m elevation, including the inferred material;
- Block cave resources are the measured and indicated material that is mined from within the footprint at the 235 m elevation and with NSR $>\$ 15.41$. It is determined by PCBC and also includes the dilution; and
- Recovery is the ratio of block cave resources to the mineral inventory, and represents the proportion of potentially economic material recovered in the mine plan.

MITCHELL PRE-FEASIBILITY STUDY

The geological resource contains 1,747M tonnes of mineralized material grading $3.2 \mathrm{~g} / \mathrm{t} \mathrm{Ag}, 0.61 \mathrm{~g} / \mathrm{t} \mathrm{Au}$, $0.17 \% \mathrm{Cu}$, and 59 ppm Mo. This resource was evaluated using Gemcom's Footprint Finder software (the Footprint Finder results will be discussed in Section 4) to evaluate the economic potential for a block cave mine. The result is approximately 438 M tonnes of block cave resources, including 9% unplanned and 10% planned dilution. A summary of the Mitchell block cave resources can be found in Table 5 and Table 6.

Table 5: Geological and Block Cave Resources Table for Mitchell

Category	Tonnes (million)	$\mathbf{A g}(\mathbf{g} / \mathbf{t})$	$\mathbf{A u}(\mathbf{g} / \mathbf{t})$	$\mathbf{C u}(\%)$	$\mathbf{M o}$ (ppm)
Geological resources ${ }^{1}$	1,747	3.20	0.61	0.17	59
Mineral inventory	757	3.54	0.56	0.17	50
Block cave resources from PCBC 2,3	438	3.48	$\mathbf{0 . 5 3}$	$\mathbf{0 . 1 6}$	$\mathbf{3 4}$
Dilution	39	0	0	0	0
Recovery	58%				
Dilution	9%				

Notes: ${ }^{1}$ Geological resources presented in Table 1.1 of the PFU (Seabridge 2011).
${ }^{2}$ PCBC includes column mixing with dilution and shutting of columns (drawpoints) when NSR $<\$ 15.41$ so a portion of the diluted mineral inventory is not recovered.
${ }^{3}$ Block cave resources can be considered as Probable Mineral Reserves within the complete pre-feasibility study report.

Table 6: Mineral Resources Recovered at the Drawpoints

Category	Tonnes (million)	$\mathbf{A g}(\mathbf{g} / \mathbf{t})$	$\mathbf{A u}(\mathbf{g} / \mathbf{t})$	$\mathbf{C u}(\%)$	Mo (ppm)
Measured	138	4.18	0.63	0.20	37
Indicated	242	4.03	0.61	0.19	39
Measured and Indicated	$\mathbf{3 8 1}$	4.08	$\mathbf{0 . 6 2}$	$\mathbf{0 . 1 9}$	$\mathbf{3 8}$
Waste	39	0	0	0	0
Inferred	18	3.92	0.47	0.16	43
Total 4	$\mathbf{4 3 8}$	$\mathbf{3 . 5 6}$	$\mathbf{0 . 5 4}$	$\mathbf{0 . 1 7}$	$\mathbf{3 3}$

Note: ${ }^{4}$ The block cave resources reported in Table 5 have a different grade than those reported in Table 6 . Table 5 represents the results from the PCBC analysis where the inferred grades were set to zero. To report the grade of the inferred material mined in the production schedule, PCBC was evaluated with the influence of the inferred grades included. The difference in grade is less than 5% and considered within the range of accuracy of this study.

MITCHELL PRE-FEASIBILITY STUDY

4.0 PRELIMINARY MINING ASSESSMENT

The Mitchell deposit outcrops at the base of the Mitchell valley near the toe of the Mitchell glacier. Initially, only open pit mining methods were used to evaluate the mining potential of this deposit. However, pit operating costs increase significantly as the pit is deepened. The potential of mining the Mitchell deposit by a combination of open pit and underground methods was investigated in a report titled "Block Cave Mining Study" (Golder 2011a), which concluded that it was possible to mine the upper portions of the Mitchell deposit by open pit methods and the deeper portions by block caving.

Block caving is a low cost underground mining method and it has the potential to achieve very high underground production rates. However, it involves a significant investment of time and money prior to the start of production mining. Because of the potential for low operating costs and high production rates with block caving, other underground mining methods were not investigated.

Gemcom's Footprint Finder (FF) was used to investigate the possibility of mining the Mitchell deposit as a block cave. FF provides estimates of the value of columns of the block model at different elevations. The goal is to determine at which elevation a caving footprint would be the most successful (i.e., the widest) and the most profitable. FF is a tool used to evaluate the potential for a deposit to be mined by block caving. Additional information concerning the FF module is presented in Golder's initial report on block caving the Mitchell deposit (Golder 2011a).

4.1 Footprint Finder Inputs

Footprint Finder requires a block model of the mineralized material, including a value attribute such as NSR, and cost inputs to evaluate the potential profitability of caving a mineral deposit. FF used the NSR block model discussed in Section 3.0. Table 7 shows the typical inputs required and the values used for Mitchell. These costs were mostly based on experience, with the exception of "Other Operating Costs" which were based on the PFU (Seabridge 2011). Additional details concerning the inputs and their definitions can be found in the Golder report "Block Panel Caving Conceptual Study for the KSM Project" (Golder 2011b).

Table 7: Input Values Used in Footprint Finder to Evaluate the Block Caving Potential of Mitchell

Footprint Finder Input	Value
Incremental horizontal capital cost	$\$ 1,075$ per m^{2}
Incremental vertical capital cost	$\$ 112,000$ per m
Fixed capital costs	$\$ 100 \mathrm{M}$
Mining operating cost	$\$ 5.40$ per tonne
Other operating costs (milling, G\&A)	$\$ 8.41$ per tonne
Maximum column height	500 m
Pit shell (depth: 405 m)	LG PIT 08-UG OP Cut-off 15OCT2010.dxf

MITCHELL PRE-FEASIBILITY STUDY

4.2 Footprint Finder Results

A summary of the FF results is shown in Figure 9. A footprint at elevation 175 m will have the most tonnage ($\$ 994 \mathrm{M}$ and 539 M tonnes), while a footprint at 235 m will have the most value ($\$ 1,275 \mathrm{M}$ and 526 M tonnes). The Mitchell block cave design was based on the 235 m elevation footprint, with tonnage and grade summary presented in Table 8 and the footprint geometry shown in Figure 10.

Figure 9: Summary graph of the footprint finder results for the Mitchell deposit.

Table 8: Summary of the Footprint Finder results for the Footprint Chosen 235 m Elevation

Elevation (m)	Tonnage (Mtonnes)	$\mathbf{A u}(\mathbf{g} / \mathbf{t})$	$\mathbf{C u}(\%)$	$\mathbf{A g}(\mathbf{g} / \mathbf{t})$	$\mathbf{M o}(\mathbf{p p m})$
235	526	0.57	0.18	3.79	39.69

MITCHELL PRE-FEASIBILITY STUDY

Figure 10: Outline of the Mitchell footprint (inner, black line) with the value of columns of the geological resource at 235 m elevation.

MITCHELL PRE-FEASIBILITY STUDY

5.0 GEOTECHNICAL CHARACTERIZATION

The characterization of the rock mass has focused on the rock in and around the extraction level of the proposed block cave mine and on the mineralized rock above this that will be caved. A second area of interest involves the rock where the ramps, conveyor drifts, raises, and other mine infrastructure will be excavated to connect the production elevation to surface.

Characterization of the rock was based on core photographs and data collected for exploration drillholes, detailed geotechnical data collected for drilling programs carried out by BGC in 2009 (BGC 2010) and Golder in 2011 (Golder 2012a), outcrop mapping data (Golder 2012a), laboratory testing data (BGC 2010; Golder 2012a), and an interpreted geological model provided by Seabridge. Detailed descriptions of the available data for this study are contained in the geotechnical characterization report (Golder 2012b).

There are a total of 114 exploration holes and 14 geotechnical holes in the Mitchell deposit area. The borehole locations are shown in Figure 11. Geotechnical boreholes are shown in red.

Figure 11: Mitchell exploration and geotechnical boreholes and $0.25 \mathrm{~g} / \mathrm{t}$ Au grade shell.

For the purpose of this study, host rock refers to the rock mass outside of the immediate area of mineralization. The host rock in which the mine infrastructure (e.g., raises, conveyor drifts, ramps, etc.) will be excavated has been assessed based on data collected for nearby drillholes.

MITCHELL PRE-FEASIBILITY STUDY

The key components of the rock mass characterization are summarized below. A more detailed description of the rock mass characterization, and the data on which it is based, is contained in the Golder geotechnical characterization report (Golder 2012b). Further site characterizations and geotechnical conditions are presented in BGC's pre-feasibility report for the open pit (BGC 2010).

5.1 Rock Mass Rating

The geotechnical boreholes were logged for rock quality according to the Rock Mass Rating (RMR F_{66}) system (Bieniawski 1976). Detailed criteria for the rating system are shown in Appendix B with example core photographs for each of the categories listed in Table 9 below.

Table 9: Rock Mass Rating System (Bieniawski 1976)

Rating	Description
$0-20$	Very poor rock
$20-40$	Poor rock
$40-60$	Fair rock
$60-80$	Good rock
$80-100$	Very good rock

The exploration boreholes were only logged for rock quality designation (RQD) data, while the geotechnical boreholes were logged for both RQD and RMR. A good correlation was observed between RQD and RMR for the geotechnical boreholes. Using the RQD and RMR data from the Mitchell "central" boreholes (Figure 12), a correlation was developed between the two. The correlation equation was then applied to the exploration boreholes to estimate RMR values from RQD. Figure 13 shows a typical cross-section with both correlated and logged RMR data. A complete set of cross-sections is contained in the geotechnical characterization report (Golder 2012b).

MITCHELL PRE-FEASIBILITY STUDY

Figure 12: Central boreholes and $0.25 \mathrm{~g} / \mathrm{t}$ Au grade shell.

MITCHELL PRE-FEASIBILITY STUDY

Figure 13: Vertical cross-section at Easting 423100 showing correlated RMR and logged RMR.

A brief discussion of the typical rock quality for the mineralized rock and the surrounding host rock where some of the mine infrastructure will be located is contained in the following sections.

5.1.1 Mineralized Rock

The average RMR for the mineralized rock between the pit floor (El. 405 m) and the production horizon (El. 235 m) was determined to be approximately 77 . The rock conditions are classified as "good" according to the ratings shown in Table 9 and are relatively consistent across the deposit. Values are in agreement with those described in the pre-feasibility open pit study (Seabridge 2011).

MITCHELL PRE-FEASIBILITY STUDY

5.1.2 Host Rock

Details of the anticipated rock conditions around specific infrastructure excavations are discussed in Section 7.8. The majority of the mine infrastructure is located below the Mitchell Thrust Fault (MTF). Average RMR values are similar to the mineralized rock for each alteration type and range from approximately 65 to 75 , indicating good quality rock.

Rock quality is anticipated to be slightly lower for infrastructure located above the MTF (e.g., the upper portion of the ramp). Average RMR values for each alteration type range from approximately 50 to 60 , indicating fair quality rock.

5.2 Intact Rock Strength

Intact rock strength has been estimated based on International Society for Rock Mechanics (ISRM) strength ratings logged for the geotechnical boreholes as well as Unconfined Compressive Strength (UCS) and Triaxial Strength tests carried out on samples from the 2009 and 2011 field programs. A detailed description of the field and laboratory strength data is presented in the geotechnical characterization report (Golder 2012b).

The intact strength is generally consistent throughout the project site. There is no distinction between the strength of the mineralized rock and that of the surrounding host rock. The data also suggest that there is no significant difference between the strength of the rock above the MTF and below the MTF.

A total of 30 UCS tests were conducted as part of the 2009 and 2011 field programs (BGC 2010; Golder 2011). UCS values ranged from 38 to 205 MPa , with an average UCS (for all alteration types) of 97 MPa . A summary of the testing results by alteration type is presented in Table 10.

Table 10: UCS Testing Results from the 2009 and 2011 Programs

Alteration Type	Number of Samples	Range (MPa)	Average (MPa)
Chloritic-propylitic (CL-PR)	22	$38.3-176.3$	93.6
Phyllic: Quartz-sericite-pyrite (QSP)	4	$68.9-87.4$	75.8
Intermediate argillic (IARG)	2	$86.4-167.6$	127.0
Other	2	$93.5-204.8$	149.1

There are not enough data to conclude whether strengths vary between alteration types. There is no obvious pattern of strength with depth.

A series of triaxial tests were carried out to estimate the failure envelope of the intact rock. All samples were generally consistent in appearance (e.g., colour, veining). Four samples were logged as CL-PR alteration (chloritic and prophylitic alteration) and two samples were logged as QSP (phyllic alteration).

The tests were carried out at confining stresses between 0.5 and 6 MPa . These stresses were based on the results of simple 3D elastic stress modelling to investigate the stresses around the block cave at various stages of cave development. The confining stress in the back of the cave is predicted to approach 6 MPa at approximately 5 m into the back. Details of the analyses are presented in Appendix C .

MITCHELL PRE-FEASIBILITY STUDY

The estimated friction angle and cohesion for the rock mass are 47 degrees and 20 MPa , respectively.
Field intact rock strength estimates were logged for the 2009 and 2011 boreholes according to the ISRM standard field identification methods (ISRM 1981). A description of each strength category from the field logging is described in Table 11.

Table 11: Field Identification Methods for Description of Rock Strength (ISRM 1981)

Grade	Description	Field Identification	Approximate Range of UCS (MPa)
R0	Extremely weak rock	Indented by thumbnail	$0.25-1.0$
R1	Very weak rock	Crumbles under firm blows with point of a geological hammer, can be peeled by a pocket knife	$1.0-5.0$
R2	Weak rock	Can be peeled by a pocket knife with difficulty, shallow indentations made by firm blow with point of geological hammer	$5.0-25$
R3	Medium strong rock	Cannot be scraped or peeled with a pocket knife, specimen can be fractured with single firm blow of geological hammer	$25-50$
R4	Strong rock	Specimen requires more than one blow of geological hammer to fracture it	$50-100$
R5	Very strong rock	Specimen requires many blows of geological hammer to fracture it	$100-250$
R6	Extremely strong rock	Specimen can only be chipped with geological hammer	>250

Logged ISRM strength measurements were found to be somewhat underestimated when compared to laboratory tests. The indices are useful in identifying whether any weak zones exist in the deposit, but should not be relied on for distinguishing between R3 and R4 strength rock. Downhole plots of ISRM strength indices are described in the geotechnical characterization report (Golder 2012b). Figure 14 shows ISRM strength ratings plotted downhole for a "typical" section through the orebody.

MITCHELL PRE-FEASIBILITY STUDY

Figure 14: Vertical cross-section at Easting 423100 showing logged ISRM strength.

It is interesting to note that the rock does not appear to preferentially break along veins or foliation. Field observations indicate that the veins and foliation are not obviously planes of weakness. Qualitative observations suggest that when hit with a geological hammer, fractures are just as likely to form across veins as along veins.

5.3 Fracture Orientations

Oriented core logging was part of the 2009 and 2011 geotechnical drilling programs. Detailed descriptions and stereographic projections of fracture orientations are available in the reports for these field investigations (BGC 2010; Golder 2012a).

The oriented boreholes in the immediate area of mineralization are $\mathrm{M}-09-095, \mathrm{M}-09-096, \mathrm{M}-09-099, \mathrm{M}-11-123$, $\mathrm{M}-11-124, \mathrm{M}-11-125$ and $\mathrm{M}-11-126$. Foliation appears to be prominent, steeply dipping approximately to the north (Figure 15). A second, less dominant joint set dips at moderate angles (30 to 60 degrees) approximately to the south.

MITCHELL PRE-FEASIBILITY STUDY

Figure 15: Stereographic projection showing open features classified by borehole.

5.4 Fracture Intensity

Fracture intensity is characterized by the fracture frequency logged per interval, defined as:

$$
\text { Fracture Frequency }(/ m)=\frac{\text { Number of Fractures in Interval }}{\text { Length of Interval }}
$$

When assessing fracture frequency, only the boreholes in and around the footprint of the mineralized rock were considered. Portions of the holes above the floor of the proposed pit were discarded.

Fracture frequency is generally uniform throughout the Mitchell deposit. It does not appear to vary significantly by location. The average fracture frequency is approximately 1 fracture per metre.

Correlations of fracture frequency with other geotechnical/geological parameters were evaluated in great detail. This included an assessment of the effect of alteration type, rock fabric (i.e., massive, foliated, or stockwork), frequency of closed veins, and intensity of micro-defects. A slightly higher fracture frequency was identified for rock logged with the IARG alteration type and rock logged as having stockwork veining. The differences are not considered significant.

MITCHELL PRE-FEASIBILITY STUDY

5.5 Fracture Persistence

During the 2011 field program, Golder conducted geotechnical mapping along four traverses on rock outcrops at Mitchell. Traverse locations, mapping photos, and geotechnical mapping data sheets are included in the factual report (Golder 2012a).

Two of the traverses had dominant phyllic (QSP) alteration, and two had dominant phyllic alteration with stockwork quartz veining (QSPSTW). Mapped features were characterized by the number of termination ends visible in the outcrop (i.e., 0, 1 or 2). Most features had a persistence of 3 m or less, as shown in Figure 16. However, the data are limited and strongly influenced by the size of the outcrops that were mapped (approximately 12 m by 2 m). It is recognized that there may be more continuous structures in the rock mass than indicated by the data, particularly intermediate or steeply dipping structures that would have been truncated by the mapping window. An allowance was made for this in developing the fracture model of the rock mass discussed in Section 5.6.1. The distribution of features for which either no terminations were visible (termination $=0$), one end of the structure was visible (termination $=1$), or both ends of the structure were visible in the mapping window (termination $=2$) is summarized in Table 12.

Figure 16: Persistence distribution of all mapped features.

Table 12: Distribution of Termination of Mapped Features

Termination	Number of Mapped Features
0	12
1	30
2	26

MITCHELL PRE-FEASIBILITY STUDY

5.6 In Situ Block Size

An estimate of the range of in situ block sizes within the rock mass was developed based on the fracture characteristics discussed above and a Discrete Fracture Network (DFN) model created using the Golder FracMan software. DFN modelling is a methodology of creating a geologically realistic model of the fracture network based on stochastically defined structures. The models depict the geometry and connectivity of the fracture network as well as the geometry of the associated intact rock blocks.

5.6.1 DFN Model Input and Verification

The input data used to construct the model are as follows:

- Distribution of fracture orientations obtained from borehole televiewer data from M-09-095, M-09-096, and M-09-099;
- Distribution of fracture spacing from boreholes within the Mitchell deposit (M-09-095, M-09-096, M-09-099, M-09-123, M-09-124, M-09-125, M-09-126); and
- Distribution of fracture persistence from fracture geometry information collected from outcrop mapping during the 2011 field program (Golder 2012a).

Details on these input parameters are contained in the Golder geotechnical characterization report (Golder 2012b).

A $5 \times 5 \times 5 \mathrm{~m}$ DFN model constructed from the field data is shown in Figure 17. Fracture geometry within the model was found to be in good agreement with the field data on which it was based.

Figure 17: Example of Mitchell $5 \times 5 \times 5$ m DFN model.

5.6.2 Results

The distribution of block sizes indicated by the DFN model is presented in Figure 18. The median block size is approximately $6 \mathrm{~m}^{3}$. This represents a very coarse block size for caving mining. The implications of this are discussed in Section 6.2.

MITCHELL PRE-FEASIBILITY STUDY

Figure 18: Estimated block size from DFN modelling.

5.7 In Situ Stress

In situ stress has been estimated from the results of hydraulic fracture tests in borehole M-11-122. Detailed methodology, analyses, and test results are provided in the factual report for the 2011 field investigation (Golder 2012a).

A summary of estimated in situ stresses from each of the seven tests is presented in Table 13. Note, however, that there are some uncertainties in the calculated principal stresses listed in this table. For example, the vertical stress is calculated based on overburden depth. The results of numerical models, however, suggest that the vertical stress in the floor of the valley (at the location of the tests) may be higher than this. The limitations of the tests are discussed in more detail in the Golder field investigation report (Golder 2012a). The calculated stresses should be considered as an indication of potential stress levels at these locations rather than an accurate estimate of the in situ stress.

MITCHELL PRE-FEASIBILITY STUDY

Table 13: Summary of In Situ Stress Values from Hydraulic Fracturing in Borehole M-11-122

Field Test No.	Depth (m)	Alteration ${ }^{\mathbf{1}}$	$\boldsymbol{\sigma}_{\mathrm{HMax}}$ (MPa)	$\boldsymbol{\sigma}_{\mathrm{HMin}}$ $(\mathbf{M P a})$	$\boldsymbol{\sigma}_{\mathrm{v}}{ }^{2}$ $(\mathbf{M P a})$	Tensile Strength 3 $(\mathbf{M P a})$	Pore Pressure 4 $(\mathbf{M P a})$
7	158.0	QSP	19.5	8.6	4.4	11.2	1.6
6	384.5	CL-PR	47.2	20.5	10.7	11.6	3.8
5	442.0	CL-PR	34.8	16.0	12.3	13.3	4.5
4	511.0	CL-PR	37.7	16.5	14.2	13.1	5.2
3	570.9	CL-PR	39.3	19.5	15.9	12.1	5.8
2	604.4	CL-PR	30.3	15.0	16.8	12.4	6.1
1	608.9	CL-PR	37.9	20.3	16.9	10.9	6.1

Notes: ${ }^{1}$ Alteration types were provided by Seabridge.
${ }^{2}$ Vertical stress was calculated based on the average overburden thickness over the test interval using an estimated density of $2781 \mathrm{~kg} / \mathrm{m}^{3}$.
${ }^{3}$ Determined from laboratory testing.
${ }^{4}$ Pore pressure was calculated based on the column of water at each test interval depth.

Hydraulic fracture orientations were collected for three intervals using impression packers. The orientations suggest that the maximum horizontal stress acts across the valley (roughly north-south) and the minor horizontal stress is oriented along the valley (roughly east-west), as would be expected.

5.8 Hydrogeological Characterization

Hydrogeological testing was carried out as part of the 2009 field program (BGC 2010) and the 2011 field program (Golder 2012a).

In 2009, BGC conducted a total of nine hydrogeological tests below the MTF in the central boreholes (M-09-095, M-09-096, and M-09-099). Hydraulic conductivity values calculated from these tests were presented in BGC's pre-feasibility report for the open pit (BGC 2010). The data indicated hydraulic conductivity values ranging from 1×10^{-9} to $1 \times 10^{-7} \mathrm{~m} / \mathrm{s}$ below the MTF. The highest hydraulic conductivities ($1 \times 10^{-7} \mathrm{~m} / \mathrm{s}$) were calculated from tests conducted at the highest elevations (greater than 800 metres above sea level).

In 2011, Golder conducted a total of 21 hydrogeological tests in five geotechnical boreholes ($\mathrm{M}-11-122, \mathrm{M}-11-123, \mathrm{M}-11-124, \mathrm{M}-11-125$, and $\mathrm{M}-11-126$). The results of the hydrogeological investigation were discussed in "2011 Geotechnical and Hydrogeological Field Investigations, Mitchell Project" (Golder 2012a). Artesian conditions were observed in boreholes $\mathrm{M}-11-122$, $\mathrm{M}-11-123, \mathrm{M}-11-124$, and $\mathrm{M}-11-126$, with vertical static water levels ranging from 9.1 to 33.2 m above ground surface. Vertical static water levels in M-11-125 ranged from 27.2 to 35.2 m below ground surface.

Hydraulic conductivity values calculated from the 2011 hydrogeological tests ranged from 3×10^{-10} to $4 \times 10^{-6} \mathrm{~m} / \mathrm{s}$. The results indicated a general trend of increasing hydraulic conductivity with elevation. This trend generally agrees with the 2009 data.

There is no indication of a correlation between hydraulic conductivity and RMR.

MITCHELL PRE-FEASIBILITY STUDY

6.0 CAVING GEOMECHANICS
 6.1 Cavability

As indicated in Section 5.1, the quality of the rock mass at the Mitchell deposit is rated as good. No major structural features have been identified that might influence the caving mechanism and the progression of the cave in any significant manner.

In situ stresses have been estimated from hydraulic fracturing tests discussed in Section 5.7. The results of the testing suggest that the maximum horizontal stress may be as high as 2 to 4 times the vertical stress (estimated from overburden loading), and the minimum horizontal stress is estimated as 1 to 2 times the vertical overburden stress. Simple 3D elastic numerical models were developed to estimate mining-induced stresses in the back of the cave. The initial model conditions were calibrated to the results of the in situ stress measurements. The results were presented in a technical memorandum titled "Mitchell Block Caving Stress Modelling," included here as Appendix C.

Based on the high induced stresses (ranging from approximately 72 to 127 MPa) in the cave back predicted by the numerical models, it is expected that stress-induced fracturing of the rock mass may contribute to caving. However, given the simplicity of the models at this stage of study, the benefits of potential stress failures in the cave back should be viewed as a potential upside and have not been considered in this design study. More sophisticated numerical analyses are recommended to confirm and quantify stress-related impacts as part of future studies.

A preliminary assessment of the cavability of the rock mass was made using Laubscher's Stability Chart (Laubscher 1999) and the Extended Mathews Stability Graph (Trueman and Mawdesley 2003). Both methods involve assessing cavability based on experience at other mining operations with rock of similar quality. Both assessments were based on average or "typical" geotechnical properties for the rock between the block cave extraction level (El. 235 m) and the proposed pit floor (El. 405 m).

Laubscher Stability Chart

The Laubscher Stability Chart relates the rock quality and stress conditions for a given deposit, characterized by the Modified Rock Mass Rating (MRMR), to the hydraulic radius of the opening. MRMR was estimated to be approximately 51 for the Mitchell deposit. Parameters used to estimate MRMR are outlined in Table 14.

MITCHELL PRE-FEASIBILITY STUDY

Table 14: MRMR Rating Classification

Parameter	Description	Rating
Intact rock strength	97 MPa	10
RQD	98\%	15
FF/m	2 joint sets, average spacing 2.8 m	25
Joint condition		21
Large scale	Moist, straight	70\%
Small scale	Moist, rough undulating	75\%
Joint wall alteration	No alteration	100\%
Joint filling	None	100\%
RMR		71
Adjustments		
Weathering	None	100\%
Joint orientation	3 joints, 2 inclined	80\%
Mining-induced stresses	Stress difference in cave back	90\%
Blast effects	None	100\%
MRMR		51

As shown in Figure 19, the minimum hydraulic radius (HR) of the undercut that would be predicted to cave (based on empirical case studies) is approximately 28 m . This equates to an approximate area of 110 m by 110 m .

MITCHELL PRE-FEASIBILITY STUDY

Figure 19: Cavability assessment using Laubscher's method (Laubscher 1999).

Extended Mathews Stability Graph

The Mathews method of assessing cavability uses the stability number (N) to characterize the rock quality and stress conditions of the deposit. The estimated stability number (N) for Mitchell is 1.6. A summary of the parameters used to estimate N is contained in Table 15.

Table 15: Q' and N Rating Classification

Parameter	Description	Rating
Q'	$($ RQD/Jn $) \times(\mathrm{Jr} / \mathrm{Ja})$	20
${\text { Factor } \mathrm{A}^{1}}^{\text {Factor B }}{ }^{2}$	$\sigma_{\mathrm{c}} / \sigma_{1} \approx 1$	Dominant joint set dipping at approximately 60 degrees
Factor C	Horizontal cave back	0.1
\mathbf{N}	Q' $\times \mathrm{A} \times \mathrm{B} \times \mathrm{C}$	0.8

Notes: ${ }^{1}$ Average intact rock strength $\left(\sigma_{\mathrm{C}}\right)$ estimated from UCS testing of Mitchell rock core samples. Average maximum induced compressive stress $\left(\sigma_{1}\right)$ estimated from numerical modelling.
${ }^{2}$ Joint orientation estimated from stereographic projections produced from Mitchell televiewer and oriented core logging data.

MITCHELL PRE-FEASIBILITY STUDY

As shown in Figure 20, the minimum hydraulic radius (HR) of the undercut required to initiate caving based on the Extended Mathews analysis is approximately 55 m . This equates to an approximate area of 220 m by 220 m . This is somewhat larger than the area indicated by the Laubscher method, which is indicative to some degree of limited experience in caving good quality rock of this nature.

Figure 20: Cavability assessment using the Mathews extended stability graph (Trueman and Mawdesley 2003).

The cavability assessments made using Laubscher's and Mathews' methods indicate that the size (diameter) of the footprint required to initiate and propagate caving is between approximately 110 m and 220 m . These dimensions are significantly smaller than the size of the footprint of the deposit that can potentially be mined economically by caving. This fact, together with the general large-sized three-dimensional shape of the deposit, suggest that the Mitchell deposit is amenable to cave mining.

6.2 Fragmentation

The fragmentation of the rock mass as it caves and is drawn down to the drawpoints is a fundamental aspect of the design of a block cave mine. The resulting fragmentation size affects the diameter of the drawcone (Isolated Draw Zone, IDZ) that develops above a drawpoint as material is drawn down. Coarse fragmentation results in large diameter drawcones, while fine material results in narrow slender drawcones (Figure 21). Interaction and overlapping of neighbouring drawcones is required to ensure efficient ore extraction.

MITCHELL PRE-FEASIBILITY STUDY

Figure 21: Maximum/minimum spacing of drawzones based on isolated drawzone diameter (Laubscher 1994).

Drawpoint spacing is typically governed by the size of a drawcone. Large diameter drawcones allow the spacing between the drawpoints to be increased, thereby reducing the number of drawpoints and the capital cost of developing the draw level. Achieving a larger spacing between drawpoints also reduces the time required to develop a given footprint area, resulting in an increased production rate. However, large sized blocks reporting to the drawpoints also increase the potential for drawpoint blockages, requiring secondary rock breaking at the drawpoints. This can inhibit production significantly and increase mine operating costs.

The first step in assessing the fragmentation of the rock reporting to the drawpoints is to estimate the in situ size of the blocks formed by the intersection of discontinuities in the rock mass. There will be further attrition of these blocks as the rock is drawn towards the drawpoints. However, it is very difficult to estimate the attrition as a result of secondary breakage, and under the prevailing conditions, fragmentation estimates are typically based on an initial assessment of the pre-caving in situ block size.

An estimate of the range of in situ block sizes for the Mitchell deposit was developed based on a Discrete Fracture Network (DFN) model created using the Golder FracMan software (discussed in Section 5.6).

MITCHELL PRE-FEASIBILITY STUDY

The distribution of block sizes indicated by the DFN model was presented in Figure 18. The median block size is approximately $6 \mathrm{~m}^{3}$. This represents a very coarse block size for cave mining. A comparison between the Mitchell deposit and estimates of block sizes at some other block caving mines is shown in Figure 22 (Butcher and Thin 2007). A number of the mines that have comparably large block sizes experienced difficulties as a result of excessive secondary blasting requirements, and this adversely impacted the productivity at these mines to varying degrees.

Figure 22: Comparison between the estimated block size at the Mitchell deposit and existing block caving operations (Butcher and Thin 2007).

The factors that reduce the block size reporting to the drawpoints (from the in situ block size estimate) include the following:

- The degree to which the rock is further fractured and disturbed by the induced stresses in the back of the cave;
- The breakage of the rock as it displaces from the back of the cave; and
- The attrition that occurs as the rock is drawn towards the drawpoints.

Some preliminary numerical models have been developed to obtain an indication of the level of induced stress in the back of the cave at different stages of cave development. The 3D elastic models were constructed in Map3D ${ }^{T M}$. These analyses are discussed in Appendix C. The results indicate that stresses in the back of the

MITCHELL PRE-FEASIBILITY STUDY

cave may approach the intact strength of the rock. This suggests that there may be some stress-induced fracturing that develops, but more sophisticated analyses would be required to quantify this impact. For this reason, the potential impact of stress on fragmentation has been ignored in this present study. The results do suggest that the estimates of fragmentation discussed here (based on in situ block size estimates) may be somewhat conservative.

It is very difficult to quantify the effect of attrition as the rock is brought down except that experience has indicated that in caving mines operating under similar rock conditions to those at Mitchell, fragmentation of rock drawn down more than approximately 100 m is generally good. For this study, it was assumed that fragmentation of the initial 100 m of draw height is approximately equal to the estimated in situ block size and above this only limited secondary blasting would be required.

The common definition of oversize where secondary blasting is required is $2 \mathrm{~m}^{3}$. As shown in Figure 18, a significant proportion of the rock has block sizes greater than this. Without some remediation measure being adopted, such large sized blocks will require significant secondary blasting, and there will likely be a significant adverse impact on production and significant damage to the drawpoints that will require ongoing rehabilitation.

As a result of this, it is proposed to precondition the rock by hydrofracturing. The cost and schedule to do this have been incorporated into this study. However, there are a number of uncertainties associated with preconditioning due to the limited number of caving mines where it has been applied and tested. It is also difficult to obtain definitive field data that demonstrates the degree of improvement obtained. The results from these mines are encouraging however, and there is sufficient experience to indicate that such fragmentation concerns do not represent a fatal flaw at Mitchell. It is recognized that uncertainty in fragmentation and the effectiveness of preconditioning to enhance fragmentation needs to be addressed via production and cost risks (as discussed in Sections 7 and 11).

6.3 Drawpoint Geometry

Fragmentation of the rock is expected to be coarse, even with preconditioning being used. As indicated in Figure 21, this will result in relatively large isolated drawcone diameters of 13 m or more for a loading width of 5 m . The important objective is to maintain full interaction between individual neighbouring draw columns. The present experience in other operating mines is that a 15 m by 15 m drawpoint spacing performs well under these coarse fragmentation conditions. Some caving mines operating in good quality rock have successfully expanded the layout to approximately 17 m by 17 m , but it was considered prudent for this initial study to adopt the slightly more conservative 15 m by 15 m spacing. This aspect needs to be investigated further, and there may be an opportunity in the future to adopt an expanded layout.

6.4 Subsidence

A preliminary evaluation of the likely extent of surface subsidence associated with the proposed block cave has been undertaken. As part of future studies (e.g., feasibility study), it will likely be necessary to undertake some detailed numerical analysis studies of the subsidence and surface disturbance that might be precipitated by the caving mining at Mitchell. This would need to incorporate the direct disturbance of the caving, the response of the pit walls, and the response of the valley walls above and to the periphery of the pit. For the current pre-feasibility study, an empirical approach is considered satisfactory.

MITCHELL PRE-FEASIBILITY STUDY

This assessment has hypothetically assumed that the ground surface is flat and there is no pit. Under these circumstances, empirical evidence suggests that, for the type of geological/structural conditions at Mitchell, a crater typically develops on surface above and slightly laterally beyond the footprint of the production horizon of the caving mining. The top section of the crater is a relatively steep escarpment (60 to 70 degrees) that is marginally stable but comprised of nominally in place dilated rock. Beneath this is failed broken rock that has progressively sloughed from the rim of the crater. This rock rills down to the bottom of the crater at about 40 degrees. Beyond the rim/crest of the crater, significant surface cracking is evident that becomes progressively less pronounced as the distance from the crest increases. Based on the experience at other mines operating in similar geological conditions to those that exist at Mitchell, both for flat and moderately inclined ground surfaces, the potential width of the disturbed cracking zone (i.e., the distance to the last observable crack) is estimated to be approximately 100 m .

Starting with the footprint of the proposed caving mining at the production level elevation, this general model has been extrapolated up to the walls of the slopes of the open pit. As shown in Figure 23, the estimated limit of the surface subsidence lies within the outer boundary of the open pit. Cross-sections showing the estimated profiles depicting the angle of repose of failed rock, the steep escarpment just beneath the crest of the crater, the crest of the crater, and the disturbed zone of surface cracking beyond the crest are shown in Figure 24 and Figure 25.
MITCHELL PRE-FEASIBILITY STUDY

Figure 23: Estimated limit of surface subsidence.

MITCHELL PRE-FEASIBILITY STUDY

Figure 24: Schematic of subsidence profile - section 1.

Figure 25: Schematic of subsidence profile - section 2.

MITCHELL PRE-FEASIBILITY STUDY

Estimates of the extent of disturbance of the pit and natural stopes has been undertaken to assess whether the infrastructure on the surface is likely to be impacted in any way. This has taken into account the additional potential instability of the slopes beyond the disturbed cracking zone that the formation of the crater may precipitate. Based on these estimates, it is unlikely that any surface infrastructure will be impacted during the caving mining and after closure. In particular, there are no concerns regarding the proposed location of infrastructure to the west of the pit adjacent to the south portals of the Mitchell Teigan Tunnels (MTT), and to the excavations to the east of the pit required for the Mitchell Diversion Tunnels (MDT).

Further assessments of the possible impact of the caving mining and the formation of the crater on the stability of the adjacent slopes are presented in separate reports.

MITCHELL PRE-FEASIBILITY STUDY

7.0 MINE DESIGN

The Mitchell deposit is large in three dimensions and reasonably continuous, which makes it suitable for a high tonnage, low cost mining method. The current design includes mining the upper portion of the deposit by open pit and the lower portion as a block cave. This section refers to the underground block cave portion of the mine design. The open pit design was completed by MMTS.

The underground mine design was based on modelling from FF and PCBC software (FF was discussed in Section 4.0 and PCBC will be discussed in Section 10.0). FF modelling indicated that the optimum footprint for the Mitchell deposit is approximately 728 m wide in the north-south direction, $1,022 \mathrm{~m}$ wide in the east-west direction, and 500 m vertically with the footprint elevation at 235 m . PCBC modelling indicated that the block cave could produce 55,000 tonnes per day, requiring the development of 120 new drawpoints per year. The mine design involves approximately 145 km of drifts and raises, including a 5% equivalent contingency to account for the excavation of design items such as service bays, sumps, and electrical substations.

The mine design is composed of six main types of levels including preconditioning, undercut, extraction, secondary breakage, haulage, and conveying. In addition, there are two tunnels (access ramp and conveyor) from the various underground working levels to surface. This section will describe the function of each level. Detailed drawings of each level can be found in Appendix D. Figure 26 and Figure 27 show a plan view and section view of the proposed mine layout and major infrastructure, respectively.

Figure 26: Plan view of the proposed underground mine layout.

MITCHELL PRE-FEASIBILITY STUDY

Figure 27: Section of the Mitchell mine design (looking south) showing the position of each of main levels in the mine.

7.1 Underground Access

Personnel, material, and supplies will access the underground through a main access ramp which will be developed from a portal near the Ore Process Control (OPC) area at the 820 m elevation. The access ramp from the surface is graded at 15% with a total length of 6.3 km . It is designed to be 5.0 m by 5.0 m wide to allow all of the underground equipment, including crusher parts, to be transported underground (underground equipment is listed in Section 7.10).

A second ramp to the surface will be excavated to accommodate the conveyor. The conveyor tunnel portal is 100 m away from the main access ramp portal, and both ramps will be connected every 300 m to improve ventilation and development rates during construction and to provide a secondary egress during operation. The conveyor decline will transport all mined material to surface. It is separated into two arms, each approximately 2.0 km long and grading at approximately 17%. It is designed to be 5.5 m wide and 4.5 m high, with the belt on feet, on the floor. Figure 28 shows a plan view of the proposed access ramps and tunnels. The estimated length of the access ramp and conveyor tunnels is shown in Table 16.

A trade-off study was completed comparing the cost of moving material to surface through a shaft or through a conveyor. The study assumed that a ramp to the underground would be needed in both scenarios and that one 10 m shaft or two 7 m diameter shafts would be required to move $55,000 \mathrm{tpd}$. The results of the study indicated that a conveyor would be cheaper and more flexible than a shaft. More details concerning this trade-off study can be found in Appendix A.

Figure 28: Plan view of the proposed Mitchell mine access.

Table 16: Design Lengths of the Conveyor and Access Ramps

Item	Length (m)
Access ramp	6,300
Conveyor tunnels	4,600

MITCHELL PRE-FEASIBILITY STUDY

7.1.1 Emergency Egress

The Mitchell underground is designed with two portals, one each for the access ramp and conveyor drifts. These two tunnels will have opposite airflow (i.e., if one is blocked because of a fire, the other should contain clean air). Therefore, one of the tunnels will be the primary egress, while the other will be the emergency egress.

7.2 Preconditioning Level

A preconditioning (PC) level is planned to provide access for in situ fracturing of the rockmass prior to caving. A plan view of this level is shown in Figure 29. From this level, as well as from the bottom of the pit, a series of holes will be drilled and hydrofracturing will be used to generate cracks within the future cave zone.

The PC level design is based on one PC hole having a 25 m radius of influence. The drilling pattern consists of two 25 m deep, 64 mm diameter holes, drilled on 50 m centres. Both holes will be vertical, one through the back (uphole) and the other through the floor of the drift (downhole). Hydrofracturing of the rock will occur at 1 m intervals down each hole.

The PC drifts are spaced 50 m apart east-west to cover the majority of the cave footprint area. Each of the PC drifts is connected to the main drift at two points that will provide access and ventilation. The drifts on the PC level are designed to be 4 m wide by 4 m high to accommodate the drilling equipment necessary for the PC holes. It is located 60 m above the extraction level and is accessed via a ramp that connects to the perimeter drift and undercut level. A total of $11,700 \mathrm{~m}$ of PC drifts will be needed for the Mitchell mine. The part of the footprint area that is not covered by the PC drifts will be hydrofractured from the bottom of the pit.

Figure 29: A plan view of the preconditioning (PC) level showing the coverage of the footprint by both the PC level and the open pit.

MITCHELL PRE-FEASIBILITY STUDY

7.3 Undercut Level

Blasting from the undercut level (UC) initiates and propagates the cave. A plan view of this level is shown in Figure 30. Undercutting will be done using the drilling patterns shown in Figure 31, which consist of rings spaced 2 m apart, each containing twenty-one 64 mm diameter holes and approximately 140 m of drilling. Experience at other block caving operations, with rock mass qualities similar to what is expected in the Mitchell deposit, suggests that this drilling pattern is sufficient to start the caving process.

The proposed drilling pattern requires that the UC drifts are parallel to the extraction drifts. The UC drifts are 20 m above the extraction level and 15 m apart. Two crosscuts, 160 m apart, will provide access and ventilation to the UC drifts. Figure 30 shows the position of the UC drifts relative to the cave footprint. To accommodate the drilling equipment necessary, the drifts on the UC level are designed to be 4.0 m wide and 4.0 m high. The Mitchell block cave design includes approximately 20.7 km of UC drift.

Figure 30: Plan view of the undercut level.

MITCHELL PRE-FEASIBILITY STUDY

Figure 31: Schematic cross-section showing the relationship between the undercut and the extraction levels and drill pattern used to initiate the cave.

7.4 Extraction Level

The extraction level was designed to accommodate the estimated fragmentation of the Mitchell deposit cave and to be as productive as possible. To allow for the appropriate overlap between the drawcones (a complete definition of block caving terms can be found in Appendix E), the extraction drifts (positioned in the north-south direction) are spaced 30 m apart and the crosscuts (positioned in a northwest-southeast direction) are spaced 15 m apart as shown in Figure 32. The spacing is designed from drift centreline to centreline and creates a 15 m by 15 m drawpoint layout. The extraction level drifts have a typical cross-section of 5 m by 5 m , and the drawpoints have a typical cross-section of 4.5 m by 3.5 m .

The drawpoints are 60 degrees from the axis of the extraction drift and are offset 15 m from each other. This design is based on the El Teniente mine in Chile (a large and mature block cave operation). The access angle allows for efficient entrance and exit by the underground LHD machines and the offset reduces the impact of a mudrush. Figure 32 shows a diagram of the relationship between the extraction drifts, drawpoints, and drawbells. In addition, the floors of the extraction drift and drawpoints are designed to be concreted, which will increase the speed and productivity of the LHDs as well as reduce equipment maintenance.

The six levels of the mine design will be accessed through internal ramps beginning on the extraction level. These ramps are strategically positioned to maintain access to the levels during caving and for ventilation purposes.

MITCHELL PRE-FEASIBILITY STUDY

There are 34 extraction drifts on the extraction level and each drift is designed with three ore passes. The average LHD haul distance is approximately 100 m which provides for good productivity. Additional information concerning the design of the material movement system can be found in Section 7.9.

Figure 32: Diagram showing the relationship between the drawbells, drawpoints (extraction x-cut) and extraction drifts.

The majority of the main ventilation infrastructure is also located on the extraction level. It consists of two fresh air raises, two fresh air drifts, a fresh air ring drift, multiple internal ventilation raises, a return air drift, and two exhaust raises. The internal ventilation raises are located below and approximately in the middle of the footprint, which allows for multiple workplaces in one extraction drift. More information concerning the ventilation system can be found in Section 8.1. A breakdown of the horizontal and vertical lengths that make up the extraction level is shown in Table 17.

Table 17: Estimated Lengths of the Various Drift Types for the Mitchell Deposit

Item	Length (m)
Internal ramps	2,700
Extraction drifts	20,400
Drawpoints	43,000
Perimeter drift	3,100
Return air drifts	1,700
Fresh air drifts	4,900
Ventilation air raises	6,800
Ore passes	5,500

MITCHELL PRE-FEASIBILITY STUDY

7.4.1 Drawbell Excavation and Final Drawpoint Support

The drawbell excavation and drawpoint setup is based on the El Teniente design, which matches well with the undercut blasting design. The drill pattern for the proposed drawbell excavation is shown in Figure 33 and Figure 34 and contains approximately 95 holes and 500 m of drilling. The final support for the drawpoints includes steel sets and shotcrete, spaced 1 m apart and 5 m back from the brow. Additional information concerning ground support can be found in Section 7.8.

Figure 33: Plan view of the drilling pattern used for the drawbell excavation.

MITCHELL PRE-FEASIBILITY STUDY

Figure 34: Plan and section view of the proposed drilling and blasting pattern for the drawbells used in the El Teniente layout.

7.5 Secondary Breakage Level

The secondary breakage level (SBL), shown in Figure 35, is designed to provide access to stationary rockbreakers. This level is located between the extraction and haulage levels, and is required to reduce the size of the broken material so it can be hauled with a train on the haulage level. It is located approximately 40 m below the extraction level and designed to be 4 m wide by 4 m high to accommodate an LHD, which is expected to be the largest piece of equipment on the level. It will contain approximately 90 secondary breaker stations, which are designed to be 15 m wide by 10 m high to accommodate the rockbreaker and the incoming and outgoing ore passes, and it will be accessed through ramps located on the north end of the footprint. The current design requires 3.6 km of SBL and 800 m of rockbreaker stations. The SBL is an important part in the material movement system designed for Mitchell. A complete description of the use of this level can be found in Section 7.9.

MITCHELL PRE-FEASIBILITY STUDY

Figure 35: Plan view of the secondary breaking level, haulage level and extraction level designed for the Mitchell underground.

7.6 Haulage Level

The haulage level is designed to collect the broken material from ore passes and haul it to one of two gyratory crushers. It is designed for track haulage in three loops and it can be incrementally excavated and constructed as mining depletes one area and moves to the next. The haulage level is located 76 m (floor to floor) below the extraction level. A typical cross-section of the drift is 5 m wide by 5 m high to accommodate the loaded cars under the chutes. The haulage level has a total length of 5.5 km and will have place for approximately 90 chutes, but will only require approximately 30 at full production. It is envisioned that there will be recycling of the chutes as the cave front moves. There are two scroll-type dumps strategically positioned under the cave that will directly feed the gyratory crushers. A plan view of the haulage level is shown in Figure 36.

MITCHELL PRE-FEASIBILITY STUDY

Figure 36: Plan view of the conveying and the haulage levels.

7.7 Conveyor Drift

The conveying level starts beneath the cave and finishes on surface near to the portal in the OPC area. It is designed to accommodate both production and development material (Figure 36). There are two conveyors that are fed by two $107 \times 165 \mathrm{~cm}(42 " \times 65 ")$ gyratory crushers on the haulage level. The first conveyor is a 1.2 m wide, 450 m long belt which collects the broken material from under the haulage level and feeds a 1.4 m wide main conveyor that hauls the broken material, in two 2.1 km legs, to surface. On the surface there is a small trunk conveyor to bring the material to the OPC.

7.8 Ground Support Design

Ground support requirements for different development and infrastructure excavations have been estimated based on experience at other operations with similar rock quality and verified using empirical ground support design charts proposed by Grimstad and Barton (1993). The charts relate rock mass quality (Q), excavation span, and service use of excavation to ground support requirements.

The "equivalent dimension" of each excavation is used for support design and is defined as the ratio of the excavation span to the Excavation Support Ratio (ESR). The ESR is a factor of safety term dependent on the intended service use of the excavation. An ESR value of 1.6 has been used for the permanent ground support design, as recommended for permanent entry mining excavations (Grimstad and Barton 1993). Rock mass quality was estimated from core logging data collected in the central boreholes, as discussed in Section 5.1. Q-values were estimated using the Norwegian Geotechnical Institute's (NGI) Q-system of rock mass classification (Barton et al. 1974). The system develops a numerical estimate of the quality of the rock mass based on the following expression:

MITCHELL PRE-FEASIBILITY STUDY

$$
Q=\frac{R Q D}{J_{n}} \times \frac{J_{r}}{J_{a}} \times \frac{J_{w}}{S R F}
$$

Where: $R Q D=$ rock quality designation
$J_{n}=$ joint set number
$J_{r}=$ joint roughness number
$J_{a}=$ joint alteration number
$J_{w}=$ joint water reduction factor
SRF = stress reduction factor

The rock quality classes defined in the Q-system (Barton et al. 1974) are summarized in Table 18.
Table 18: Q-System (Barton et al. 1974)

Rating	Description
$0.001-0.01$	Exceptionally poor rock
$0.01-0.1$	Extremely poor rock
$0.1-1$	Very poor rock
$1-4$	Poor rock
$4-10$	Fair rock
$10-40$	Good rock
$40-100$	Very good rock
$100-400$	Extremely good rock
$400-1000$	Exceptionally good rock

Estimates of Q have been based on logged parameters from the 2011 field program. An SRF value of 2 was assumed (appropriate for high stress rock conditions) and a J_{w} of 1 (moist, low flow).

Several figures depicting the location of the access ramp relative to the MTF (and showing the available drillhole data) are contained in Appendix F. The majority of the ramp and other mine infrastructure at Mitchell is located below the MTF. The average Q-value for rock below the MTF was estimated to be approximately 10, indicating fair to good rock conditions.

The upper portion of the proposed access ramp is located above the MTF. The rock quality is anticipated to be slightly lower above the MTF, as discussed in Section 5.1 and in BGC's pre-feasibility report for the open pit (BGC 2010). A range of Q-values for rock above the MTF was estimated using the following relationship developed by Bieniawski (1989):

$$
R M R=9 \ln (Q)+44
$$

Average RMR values for rock above the MTF range from approximately 50 to 60, which correspond to a range in Q-values of approximately 2 to 6 . The rock conditions are classified as poor to fair, as per Table 18.

Figure 37 shows the approximate Q-values for rock above and below the MTF plotted on the empirical ground support chart for the different excavations that may require support.

MITCHELL PRE-FEASIBILITY STUDY

Figure 37: Empirical ground support design chart (Grimstad and Barton 1993).

The types of support recommended for the Mitchell mine infrastructure are summarized in Table 19. The excavations listed in the table below are shown in Figure 28.

MITCHELL PRE-FEASIBILITY STUDY

Table 19: Ground Support Recommended for Mitchell Mine Infrastructure

Description	Span (m)	Height (m)	Type of Support
Access ramp (above the MTF)	5.0	5.0	2.4 m bolts on a 1.2 m pattern, mesh. 50% of the ramp above the MTF will require 50 mm of mesh reinforced shotcrete.
Access ramp (below the MTF)			2.4 m bolts on a 1.2 m pattern, mesh.
Drive (secondary breakage level, perimeter drift)	5.0	5.0	2.4 m bolts on a 1.2 m pattern, mesh.
Drawpoints	4.5	3.5	1.8 m bolts on a 1.2 m pattern, installed to back and walls as close to sill as possible. 50 mm of mesh reinforced shotcrete. Secondary support will likely consist of welded steel H-beams encased in concrete.
Extraction drifts	5.0	5.0	2.4 m bolts on a 1.2 m pattern, installed to back and walls as close to sill as possible. 50 mm of mesh reinforced shotcrete.
Undercut and preconditioning drifts	4.0	4.0	1.8 m bolts on a 1.2 m pattern, mesh.
Conveyor drive	5.5	4.4	2.4 m bolts on a 1.2 m pattern, mesh.
Return air drive	7.5	7.5	2.4 m bolts on a 1.2 m pattern, mesh.
Crusher and rockbreaker rooms	10.0	10.0	3.0 m bolts on a 1.2 m pattern. 50 mm of mesh reinforced shotcrete.
Exhaust raise	5.2	-	
Intake raise	5.2	-	
Internal vent raise	2.5	-	

Note that these ground support recommendations are preliminary and are intended for pre-feasibility level costing purposes only. A more detailed evaluation of the requirements for each specific excavation should be undertaken as part of future studies.

7.9 Material Movement

It is estimated that the Mitchell deposit will be able to generate 55,000 tonnes of production material per day and 600 to 1,800 tonnes per day ore or waste from development (depending on the stage of development). The production material will be hauled from the drawpoint to one of three ore passes in the same extraction drift. The ore pass will be 4 m in diameter and equipped with a 1 m by 1 m grizzly. The ore passes from neighbouring extraction drifts will feed a stationary rockbreaker on the secondary breaking level, which will reduce the size of the material further by passing it through a 0.5 m by 0.5 m grizzly and feeding a 4 m diameter ore pass. This ore pass is equipped with a chute that will feed a train on the haulage level. The train will haul the material to one of two gyratory crushers, where it will be crushed and conveyed to the surface. Figure 38 shows a schematic of the material movement design.

MITCHELL PRE-FEASIBILITY STUDY

Broken material produced through development will follow a path similar to that of the material produced from the drawpoints. It will be trucked from the active development area to one of the ore passes and will be mixed with the production material. The grade of the development material at Mitchell is such that the majority is above NSR cut-off. The remaining quantity of waste (below NSR cut-off) is small enough relative to the production of the rest of the KSM complex that it should have a minimal impact on the mill feed grade. Separating the development waste from the ore stream is not practical in the proposed mine. Process flow diagrams of the material movement system can be found in Appendix G.

Figure 38: Schematic of the material movement system designed for Mitchell including the 4 m diameter ore passes that feed a secondary breaking level and haulage level.

7.10 Mobile Equipment

The mobile equipment in this design is typical of that used in underground mines and is outlined below in three categories: production, development, and service. The production equipment comprises those pieces directly related to moving ore to the crushers (LHDs, secondary rockbreakers, and the train). The development

MITCHELL PRE-FEASIBILITY STUDY

equipment includes LHDs and trucks as well as AnFo loaders and ground support machines. The service equipment is used for construction and mine maintenance. The quantity of each equipment type in each category will be discussed in Section 11.2.3.

The development equipment was chosen to efficiently excavate the variety of drift dimensions planned for the mine. The face drill is a two boom jumbo capable of drilling faces with a cross-sectional area ranging from $8 \mathrm{~m}^{2}$ to $60 \mathrm{~m}^{2}$, which can accommodate the small PC and UC drifts ($16 \mathrm{~m}^{2}$) as well as the large Return Air Drift (RAD) $\left(57 \mathrm{~m}^{2}\right)$. The development LHD is $4.6 \mathrm{~m}^{3}$ and has been matched with the $18 \mathrm{~m}^{3}$ (40 tonne) development truck to ensure efficient face cleaning and truck haulage for each round.

A variety of ground support equipment will be required to install the ground support. Bolters are required to bolt and screen the back and walls of the development headings, and a concrete mixer and shotcrete sprayer are required to supply concrete/shotcrete where needed. The final drawpoint support includes the application of shotcrete, and concrete will be placed on the floor of the extraction drifts and drawpoints.

An $8.6 \mathrm{~m}^{3}$ production LHD was chosen because it is the largest LHD that can fit within the 15 m by 15 m El Teniente drawpoint layout. With the proposed configuration there is approximately 11 m between the brow of the drawpoint and the centreline of the extraction drift, and this machine is sized appropriately. The production drills were chosen because they are the smallest drill that can drill the specified pattern required to blast the undercut and drawpoints (longest hole is 16 m).

Multiple secondary rockbreakers and block holers have been included in the design. The secondary rockbreakers consist of an LHD frame with a rockbreaker attachment in place of a bucket. These machines are flexible and quite mobile. The block holers are designed for rocks that are too big to move or hang-ups that develop in a drawpoint. These units can set up, drill and load remotely, keeping the operator in a safe location.

At peak operation, two 75 T locomotives pulling $27,15 \mathrm{~m}^{3}$ cars each will be required on the haulage level. These locomotives are larger than those typically found in Canadian mines, but are successfully employed at the Kiruna and El Teniente mines. This train system was chosen because it can easily be upgraded by adding additional cars as mine production ramps up, it can haul a large amount of material at low cost, and it can be automated.

Both large and small personnel carriers are included in the design. The mine is located 23 km from the proposed camp location. It is envisioned that the large personnel carriers will be used at shift change to transport the workforce to and from the mine. The small personnel carriers will be used by staff to access the mine. The remaining mobile equipment (AnFo loader, grader, scissor lift, and boom truck) will be used as service vehicles and to install and maintain mine services (e.g., air and water pipes, ventilation ducting, and pumps). The scissor lifts and boom trucks will also be used to help with the construction of the drawpoints.

At peak operation, Mitchell will require a fleet of approximately 60 pieces of mobile equipment (Table 20). The actual quantity of equipment underground at any one time will vary depending on development and production activities and on the equipment replacement schedule. This list of equipment was used in the design of the mine services as discussed in Section 8.0.

MITCHELL PRE-FEASIBILITY STUDY

Table 20: Peak Mobile Equipment Requirements for Mitchell Mine (Year 14)

Fleet	Equipment	Number
Production	Production drill	3
	Production LHD	10
	Production locomotive	3
	Raisebore machine	1
Development	Face drill	3
	Bolter	5
	LHD	3
	Truck	2
Service	AnFo loader	2
	Scissor lift	3
	Boom truck	2
	Block holer	2
	Mobile rockbreaker	4
	Shotcrete sprayer	2
	Concrete mixer	2
	Grader	2
	Small personnel carrier	7
	Large personnel carrier	4
TOTAL		60

7.11 Mine Workforce

The mine workforce includes both staff and labour positions and the size varies according to the stage of the mine life. Table 21 shows a list of the positions required at Mitchell and the peak labour quantity separated into five categories: management, technical, maintenance, development, and production. It is noted that peak labour requirements occur prior to peak production.

Table 21: Peak Labour Quantities by Job Title (Year 7)

Job Title	Peak Labour Quantity
Management	
Underground Superintendent	1
Technical Superintendent	1
Maintenance Superintendent	1
Clerical/Admin	8
Technical	
Senior Engineer	10
Engineer	18
Technologist	20
Trainers	8

MITCHELL PRE-FEASIBILITY STUDY

Job Title	Peak Labour Quantity
Geologists	8
Safety Technician	8
Maintenance	
Planner	4
Shop Foreman	4
Stores Person	8
Electrician (In-house)	32
Mechanics (In-house)	28
Development Crew	
Shift Captain	4
Shift Boss	4
Jumbo Operator	12
Bolter Operator	12
Loader Operator	12
Truck Operator	16
Crane Truck	8
Shotcrete Sprayer Operator	8
Agicar Operator	8
Grader	8
Construction	32
Labourer/Trainee	44
Production Crew	
Shift Captain	12
Shift Boss	12
Loader Operator	16
Train Operator	8
Secondary Breaker Operator	8
Block Holer Operator	8
Grader Operator	8
Crusher/Conveyor Operator	16
Production Driller	24
Anfo Loader	8
Construction	32
Labourer/Trainee	10
Total	489

MITCHELL PRE-FEASIBILITY STUDY

The labour estimate was based primarily on the requirements to operate the mobile equipment. One operator per shift was assumed for each piece of mobile equipment. Mechanics and electricians were estimated using a common factor of 0.4 mechanics/electricians per piece of major mobile equipment (such as LHDs and trucks). Additional electricians were included to account for the production drills and the large quantity of installed equipment (crushers and conveyors). Finally, an estimate of trainees/labourers was included for development and blasting helpers. The mine staff was estimated considering the amount of work that would be required to start and maintain a block cave mine of this size.

7.12 Contingencies

Table 22 contains a list of the different excavations, their dimensions and total estimated lengths over the life of the mine. A contingency length has been included to allow for openings that were not specifically included in the design such as sumps and electrical substations, and for the inefficiencies that result from overbreak as a result of poorly blasted rounds or poor surveying practices. Also included in the table are estimates of expected rehabilitation requirements.

Table 22: Summary of Mitchell Drift Dimensions

Drift Type	Width (m)	Height (m)	Length (m)
Fresh air drifts	5.0	5.0	4,900
Excavation level	5.0	5.0	20,400
Drawpoints	4.5	3.5	43,000
Perimeter drift	5.0	5.0	3,100
Haulage level	5.0	5.0	5,500
Secondary breaking level	4.0	4.0	3,600
Secondary breaking chambers	15	10	800
Undercut level	4.0	4.0	20,700
Preconditioning level	4.0	4.0	11,700
Return air drift	7.5	7.5	1,700
Internal ramps	5.0	5.0	2,700
Shops	5.5	7.5	1,400
Mine access	5.0	5.0	6,300
Conveyor level	5.5	4.4	4,600
Internal ventilation raises	$2.0-4.0$	---	4,200
Main ventilation raises	5.2	---100	
Ore passes and crusher chambers	$4(10)$		2,600
(crusher chamber dimension)		Rehabilitation (10%)	13,000
		Contingency (5%)	6,500
	Total vertical	12,300	
	Total lateral	130,400	

MITCHELL PRE-FEASIBILITY STUDY

8.0 MINE SERVICES

The mine services include ventilation, dewatering, power, and compressed air design. These topics are discussed in the following section.

8.1 Ventilation

The ventilation design was developed using the standard edition of Ventsim Visual, and according to best practices established in Malcolm J. McPherson's textbook, Subsurface Ventilation \& Environmental Engineering (McPherson 1993). The airflow requirements for the majority of the mine were determined based on an industry- accepted factor of $0.063 \mathrm{~m}^{3} / \mathrm{s}$ per engine kilowatt hour.

8.1.1 Design Parameters

The required airflow is $860 \mathrm{~m}^{3} / \mathrm{s}$ based upon the diesel equipment utilized, air velocity considerations, and a contingency of 20% per level. The ventilation system provides $0.015 \mathrm{~m}^{3} / \mathrm{s}$ air per tonne mined, which is slightly more than the $0.013 \mathrm{~m}^{3} / \mathrm{s}$ per tonne benchmark for a well-ventilated block cave operations (De Souza 2008). The total airflow requirement of $860 \mathrm{~m}^{3} / \mathrm{s}$ is sufficient to dilute all noxious gases, dust, and particulate matter produced by the mining equipment and activities in each mining area.

To achieve this airflow, two 2240 kW (3000 HP) and one 670 kW (900 HP) surface fans with variable frequency drives are required. These fans require approximately $5,160 \mathrm{kWh}$ to operate. The maximum estimated total fan pressure is $5,088 \mathrm{~Pa}$ and the total mine resistance is $0.00615 \mathrm{Ns}^{2} / \mathrm{m}^{8}$. The estimated network efficiency is approximately 85%.

The majority of air will be delivered into the mine through two 6.0 m diameter Fresh Air Raises (FARs); each FAR will have a fan providing $370 \mathrm{~m}^{3} / \mathrm{s}$ and a mine heater. The other $120 \mathrm{~m}^{3} / \mathrm{s}$ will be delivered by a fan directing air down the main ramp. The ventilation system is designed to operate as a positive pressure system to facilitate mine air heating during the winter months and to prevent any air being drawn into the mine through the caved material.

Heating of the mine air in the winter months is included in the design and cost estimates. Heating of the mine air will be done by mine heaters located at each of the three main fan installations. Based upon Environment Canada temperature data for Stewart, British Columbia, approximately 38 million BTU per hour (MMBTUH) will be required to heat $860 \mathrm{~m}^{3} / \mathrm{s}$ of air from a low of $-6^{\circ} \mathrm{C}$ (average January low) to $3^{\circ} \mathrm{C}$. In developing this estimate, no consideration was given to the heat produced during auto compression as air descends down the intake raises, heat transferred from the strata, or heat generated by mining equipment.

The total airflow requirements were based upon air quantities of $0.063 \mathrm{~m}^{3} / \mathrm{s}$ per kilowatt of diesel equipment (i.e., $100 \mathrm{cfm} / \mathrm{bhp}$), equipment utilization, and engine utilization. Equipment utilization was calculated based upon production requirements and availability. A minimum air velocity of $1 \mathrm{~m} / \mathrm{s}$ was used in areas of comminution and haulage. Additional information about the ventilation calculations can be found in Appendix H . The quantity of air required on the various levels ranged from a low of $62 \mathrm{~m}^{3} / \mathrm{s}$ on the PC level to a high of $389 \mathrm{~m}^{3} / \mathrm{s}$ on the extraction level.

MITCHELL PRE-FEASIBILITY STUDY

A pie chart indicating the total breakdown of air quantities, including air leakage to surface, is presented in Figure 39. Air leakage to surface accounted for approximately $46 \mathrm{~m}^{3} / \mathrm{s}$, of which $33 \mathrm{~m}^{3} / \mathrm{s}$ was lost through the caved material. This is approximately 4% of the total airflow, which is close to the 5% leakage reported at the Henderson block cave operation in Colorado (Nelson 2011, pers. comm.).

Figure 39: Mitchell ventilation breakdown based upon $860 \mathrm{m3} / \mathrm{s}$ of total airflow.

Friction factors were assumed to be typical for hard rock mining applications and are presented in Table 23. Airway shock losses were as assigned automatically by Ventsim. These values were reviewed and set manually where deemed necessary. The calculated air velocities and design criteria are presented in Table 24.

Table 23: Mitchell Ventilation Model - Friction Factors

Drift Type	Friction Factor $\left(\mathbf{k g} / \mathbf{m}^{\mathbf{3}} \mathbf{)}\right.$	Comments
Typical drifts	0.0120	Average blasted
Ventilation raises	0.0050	Raise bored airways
Conveyor drifts	0.0208	Due to conveyor in drift
Haulage drifts	0.0208	Due to undulations in back from ore passes

MITCHELL PRE-FEASIBILITY STUDY

Table 24: Mitchell Ventilation Model - Air Velocities

Area		Design Criteria		Model	
		Max.	Min.	Max.	
Working faces	0.5	4.0	0.6	1.0	
Conveyor drifts	1.0	5.0	1.0	4.1	
Main haulage drifts	1.0	6.0	1.0	3.3	
Main return drifts	1.0	15.0	1.0	12.3	
Ventilation raises	2.5	20.0	3.5	13.3	

The ventilation of development drifts during excavation will be done using axial mine fans of various sizes. Large 112 kW fans provide the required $26 \mathrm{~m}^{3} / \mathrm{s}$ approximately of air to an active mining faces up to 800 m away. Rigid and flexible duct of 1.5 m diameter is proposed to cover the air requirements for one LHD and one truck.

8.1.2 Airflow Design

The general airflow of the proposed ventilation system model is outlined in Figure 40.
The majority of fresh air ($740 \mathrm{~m}^{3} / \mathrm{s}$) is forced into the mine though the two Fresh Air Raises (FAR). The FAR transports the air down approximately 650 m to two drifts that lead to the perimeter ventilation drift which surrounds the extraction level. The Fresh Air Drifts (FAD) are located on the 235 Level. The FAD feed fresh air to each mine level though drifts, ramps, and ventilation raises.

An additional $120 \mathrm{~m}^{3} / \mathrm{s}$ of fresh air is forced down the main ramp. This air is mainly used to ventilate the access and conveyor ramps and the crushing level. It exhausts out of the Return Air Drift (RAD) on 129 Level and the conveyor ramp.

The airflow in the access and conveyor ramps is separate from the airflow in the production area for safety reasons.

MITCHELL PRE-FEASIBILITY STUDY

Figure 40: Mitchell ventilation flowchart; red indicates leakage to surface, blue indicates leakage across ventilation doors, and orange indicates leakage through ore passes.

8.2 Dewatering

The mine water handling system needs to be designed to handle the water that originates from the groundwater and surface inflows, and water that is introduced to the mine for operational purposes.

It was previously proposed to mine the Mitchell deposit by open pit mining as discussed in the PFU (Seabridge 2011). As part of the studies for this, BGC estimated the natural groundwater inflows to the pit and the quantities of water that would be generated from the surface wells and horizontal drains required to meet the depressurization requirements to ensure the stability of the pit slopes. This also provides an approximate estimate of the groundwater flows that will potentially report to the underground workings. The maximum estimated groundwater inflow is $13,200 \mathrm{~m}^{3} / \mathrm{d}$.

MITCHELL PRE-FEASIBILITY STUDY

The surface water flows generated by precipitation and snow melt within the catchment area that if interception and diversion initiatives are not implemented will flow into the crater and down into the underground workings, will be significantly higher than this. At the time of completing this pre-feasibility assessment, estimates by others of these surface inflows into the crater at Mitchell were not available. The surface flows that are not intercepted and diverted will report to the drawpoints and an appropriate underground water management system will be developed to handle the flows and convey the water to surface. The design of this water management system will be completed at a later date once estimates of the surface water inflows are available.

8.3 Mine Water

It is estimated that the mine will require $30 \mathrm{~m}^{3} / \mathrm{hr}$ of process water for the bolters and the development and production drills. In addition, $114 \mathrm{~m}^{3} / \mathrm{hr}$ is estimated to be required by the conveyor fire suppression systems. This water will be supplied through the main access decline by gravity. The water will be delivered to the working face through 0.2 m steel pipe with 10 mm wall thickness.

8.4 Mine Power

The mine power design was completed by Neil Brazier of WN Brazier Associates Inc. It is estimated that the Mitchell mine will require approximately $17,400 \mathrm{kWh}$ of electricity at peak operation. The main contributors to this total are the crushers, conveyor belts, and ventilation fans as shown in Table 25. The underground communications will be provided through a combination of Leaky-Feeder and Personal Electronic Device (PED) emergency warning system. The complete report can be found in Appendix I.

MITCHELL PRE-FEASIBILITY STUDY

Table 25: A Summary of the Major Contributors to the Peak Electrical Load at Mitchell

	Capacity (kW)	Quantity	Total Capacity (kW)	Efficiency	Demand Factor	Utilization (\%)	Running Load (kW)
Jumbo	150	4	600	93\%	0.8	75\%	335
Bolter	56	5	280	93\%	0.8	75\%	156
Drills	56	8	448	93\%	0.8	75\%	250
Train + Trolley	1000	2	2000	100\%	0.85	75\%	1275
Raisebore	242	1	242	91\%	0.75	75\%	124
Rockbreaker	37	20	740	92\%	0.8	65\%	354
Shotcrete	56	2	112	91\%	0.7	50\%	36
Pumps	56	6	336	92\%	0.75	80\%	185
Surface fans	5150	1	5150	93\%	0.95	100\%	4550
U/G fans	56	15	840	92\%	0.9	75\%	522
Air compressors	130	2	260	100\%	0.9	50\%	117
Heating	200	1	200	100\%	1	50\%	100
Surface miscellaneous	60	1	60	100\%	0.4	100\%	24
Conveyor 1	323	1	323	96\%	78\%	90\%	218
Conveyor 2	5172	1	5172	95\%	80\%	90\%	3538
Conveyor 3	4962	1	4962	95\%	90\%	90\%	3818
Crusher	556	2	1112	95\%	85\%	75\%	673
Lighting and small power	250	6	1500	100\%	1	50\%	750
Heat tracing	500	1	500	100\%	1	35\%	175
Refuge stations	30	7	210	100\%	0.6	100\%	126
U/G Shop	150	1	150	100\%	0.5	100\%	75
Misc. monorails	3.7	6	22.2	91\%	0.85	5\%	1
Misc. sumps	18.7	6	112.2	91\%	0.85	15\%	13
Total							17,415

MITCHELL PRE-FEASIBILITY STUDY

8.5 Compressed Air

It is estimated that the Mitchell mine will require $360 \mathrm{~m}^{3} / \mathrm{hr}$ of compressed air. This will be supplied by two compressors located underground, but outside the active working area. One compressor has been sized to handle the estimated requirements and the second compressor will act as a backup.

Compressed air will be piped to the working face through 0.15 m steel pipe with a 10 mm wall thickness.

8.6 Support Infrastructure

The support infrastructure for the Mitchell mine includes surface buildings and underground excavations that support the mine operations. The surface buildings, including the change house, mine offices and warehouses, will be part of the greater KSM complex located in the Teigan valley and were not part of the scope of this report. Underground, a small warehouse will be established next to the shop (located off of the main access tunnel). The underground workings will also be equipped with portable refuge stations located close to where the majority of the active mining will be occurring, and small permanent refuge stations located at each of the crushers and at the shop. These refuge stations will also act as underground offices.

MITCHELL PRE-FEASIBILITY STUDY

9.0 MINE DEVELOPMENT SCHEDULE

The mine development schedule was created using Surpac's Minesched software package. The development schedule was separated into three phases. The first is the pre-production phase which involves developing the primary access ramp and conveyor drift. The second phase, ore production, involves creating enough openings to start and ramp-up production from the cave. The third and final phase begins once the mine has reached steady-state production and the development fleet is only required to create enough openings to maintain production. A breakdown of the yearly advance per heading can be found in Appendix K.

The underground mine will be operating 24 hours a day, 7 days a week, 365 days a year. The start of Phase 1 is scheduled according to the KSM site production plan. Phase 1 development rates of one round per day per heading were assumed. Once the extraction level is reached and a large amount of headings are available, the development rate is increased to eight rounds per day in Phase 2. Phase 3 begins after enough development has been completed to start the cave. At this time the development crews are reduced to excavate one round per day so that openings are excavated with a "just-in-time" philosophy. Each round is 5 m long. The mine development schedule is shown in Figure 41. The schedule indicates that the first set of drawpoints will be ready in Year 6; therefore, production cannot start until Year 7.

Rehabilitation of the lateral and vertical development was also estimated and is shown Figure 41. The amount of rehabilitation required is estimated to be equivalent to approximately 10% of the lateral development. The rehabilitation has been scheduled for after the start of steady state production when the majority of the degradation of the drifts will occur as a result of secondary blasting and changes in the stress field. The time scale in Figure 41 is shown in "Mitchell project years" and is not related to the overall site schedule.

It is estimated that Phase 1 development will produce an average of 275,000 tonnes per year (for 8 years) and this rock will be hauled to a waste dump in either Mitchell or Teigan valley. Waste generated after Year 8 will be sent to the mill as part of the ore stream.

Figure 41: Chart showing the advance of lateral and vertical development and the quantity of rehabilitation estimated to be required.

MITCHELL PRE-FEASIBILITY STUDY

9.1 Mine Development Workforce

The development workforce was estimated based on the quantity of work required to construct and produce from the underground mine on an annual basis. Figure 42 shows the development and rehabilitation per year and the corresponding development labour. The development workforce includes all site personnel up to the start of production in Year 7. After Year 7, only the labour and staff directly involved in the development of the mine are considered part of the development workforce (e.g., the jumbo operator, development truck driver, the development shift boss, and development planning engineer); the remainder are accounted for in the production workforce discussed in Section 10.3.

Figure 42: Chart showing the yearly development labour and the amount of vertical and horizontal development, and rehabilitation required per year.

MITCHELL PRE-FEASIBILITY STUDY

10.0 MINE PRODUCTION SCHEDULE

The mine production schedule was developed using Gemcom's PCBC software (information concerning the development and calibration of PCBC can be found at the following internet site www.gemcomsoftware.com). PCBC is industry-recognized software that has been used for over 20 years to estimate production and grade profiles from different block cave mines around the world.

10.1 PCBC Input Parameters

PCBC requires certain input parameters which govern the rate at which mine production ramps up, the maximum production rate, and when a drawpoint is no longer profitable. The input includes the draw rate curve (more information on the draw rate curve can be found in Section 10.1.1), drawpoint construction rate, maximum production target and the drawpoint spacing. Additional input parameters required include a cave material mixing algorithm, the drawcone layout, and the minimum and maximum height of draw. PCBC also requires the block model (with an NSR attribute), surface topography for the area and certain financial parameters to determine when a drawpoint is no longer profitable.

The key PCBC input parameters are detailed in Table 26. The mining and development costs were developed from first principles and are discussed in Section 11.3. The discount rate, milling, and General and Administration costs were obtained from the PFS (Seabridge 2011).

Table 26: Key PCBC Input Parameters

Item	Value	Unit
Mining cost	6	dollars per tonne
Processing and G\&A costs	7.09	dollars per tonne
Development cost	1,075	$\$$ per m^{2}
Discount rate	5	$\%$
Drawpoint construction rate	120	drawpoints per year
Yearly production rate	$20,000,000$	tonnes per year
Maximum height of draw	500	m
Drawpoint spacing	15×15	m
Drawpoint layout	El Teniente	

The ramp-up and maximum yearly mine production rates are controlled by the drawpoint construction rate, and the initial and maximum drawpoint production rate. The drawpoint production rate, also known as the draw rate, is inputted in PCBC as the production rate curve (PRC). The values chosen for these items are based on industry averages adjusted to suit the expected situation at Mitchell. In particular, the initial and maximum drawpoint production rates were reduced to simulate a production environment with coarse fragmentation. The draw rate and PRC are discussed in more detail later.

MITCHELL PRE-FEASIBILITY STUDY

These input parameters were used in PCBC to evaluate the potential maximum yearly mine production rate, and based on this, a slightly conservative production rate of 20 million tonnes per year was selected.

The maximum height of draw governs the tallest column that PCBC assumes can be drawn if the drawpoint material is still profitable. This parameter relates to the wear that develops at a drawpoint and the associated drawpoint stability. At a certain height, the drawpoint becomes so damaged as a result of stress and the quantity of material that has passed through it that it must be closed. Currently, 500 m is an accepted industry value, but the industry is trending to taller columns as more competent rock masses are caved and improved ground support techniques are developed.

A 15 m by 15 m drawpoint layout was used to accommodate the expected larger fragmentation from Mitchell. This is based on empirical evidence collected by Laubscher (Laubscher 1994). This spacing influences capital costs as well as production rates and material mixing. As discussed in Section 6.3, future studies need to include more detailed assessments of the estimates of fragmentation and the selected drawpoint spacing. Such studies may lead to the conclusion that good interaction between draw zones can be still established and maintained with an expanded (and therefore more economical) drawpoint spacing.

It was assumed that sloughing of peripheral waste rock would occur into the crater and cover the upper surface of the material being drawn down. This was modelled in PCBC by adding an infinite supply of waste material on top of the mineralized material. As material is drawn from the drawpoints, the waste mixes with mineralized material as dilution with zero grade (unplanned dilution) and the combined material reports to the drawpoint. The PCBC analyses account for this unplanned dilution.

10.1.1 Draw Rate

The overall draw rate expressed in millimetres per day is a useful reference indicator that allows a comparison to be made between production rates at various caving mines. Figure 43 shows the production and draw rate from a selection of active and historic block cave mines. Due to the large fragmentation that is estimated to report to the drawpoints at Mitchell, particularly during the early stages of mining, a draw rate of $200 \mathrm{~mm} /$ day was chosen as a maximum cap in the PCBC analysis. As will be discussed in Section 10.2, an average draw rate of $108 \mathrm{~mm} /$ day is required to reach production targets at Mitchell.

MITCHELL PRE-FEASIBILITY STUDY

Figure 43: Draw and production rates of a selection of block and panel cave mines (after Woo, Eberhart and van As, 2009).

10.1.2 Production Rate Curve (PRC)

The time required to reach the theoretical maximum production rate of one drawpoint is another influential parameter in PCBC. This rate is defined by the graph in Figure 44. It shows that, initially, it is assumed at Mitchell that a drawpoint can produce $60 \mathrm{~mm} /$ day and that this can steadily increase until 50% of the column is mined. Then the drawpoint can produce up to the set maximum of $200 \mathrm{~mm} /$ day. This PRC matches actual production achievements at large fragmentation block cave mines such as Palabora, where the amount of secondary breaking that is required decreases after approximately the first 100 m of a column is drawn (Ngidi 2007).

MITCHELL PRE-FEASIBILITY STUDY

Percentage of column drawn
Figure 44: Production Rate Curve used to describe the rate of change of the draw rate of one drawpoint.

10.1.3 Cave Start Location

Two cave start locations were evaluated in PCBC. The first is directly underneath the pit bottom. It was considered because block cave operators have found that the rock mass "behaves better" once breakthrough to the pit/surface occurs. However, the column heights directly under the Mitchell pit bottom are short (relative to the columns on the edge of the pit) and the PCBC analysis showed that the mine would have trouble reaching maximum production targets because drawpoints were being closed faster than others could be brought online.

The second start location was considered based on the columns with the highest value. Starting the cave at this location is similar to mining the high grade material first, which is financially beneficial for a low-grade deposit. The columns around the second start location are also taller than under the Mitchell pit, and the PCBC analysis showed that the mine would be more likely to reach production targets. The analysis presented in this report used the second start location.

10.2 Results of PCBC Analysis

The production schedule determined from PCBC for Mitchell is shown in Figure 45. Mitchell is estimated to have a production ramp-up period of 6 years, steady state production at 20 million tonnes per year for 16 years and ramp down production for another 8 years. A breakdown of the production and average grade schedule can be found in Appendix K. The period prior to production in Year 7 is considered pre-production. The total production and average grade of the life of the mine is shown in Table 27.

Table 27: Total Production and Average Grades for the Proposed Mitchell Underground Mine

Total Production	AU (gpt)	CU (\%)	MO(ppm)	AG (g/t)
$437,966,000$	0.53	0.16	34	3.48

MITCHELL PRE-FEASIBILITY STUDY

Figure 45: Yearly PCBC production schedule showing gold and copper grades.

Drawpoint construction, maintenance and utilization will be important factors governing the ability of the mine to reach production targets. The PCBC production schedule discussed above was developed assuming a construction rate of 120 drawpoints per year. As shown in Figure 46, the rate of increase in the number of active drawpoints mirrors the production ramp-up rate until a year after the production targets are met. After this point, the rate at which drawpoints become active is reduced as more drawpoints are closed than are constructed (as discussed in Section 10.1, a drawpoint is closed when the value of the material being mined does not exceed the NSR cut-off).

MITCHELL PRE-FEASIBILITY STUDY

Figure 46: The number of active drawpoints and production per year.

The draw rate per drawpoint is another design parameter used to reduce the impact of the coarse fragmentation. Figure 47 shows that the maximum draw rate from the Mitchell deposit does not exceed $165 \mathrm{~mm} /$ day, which is lower than the accepted value of $200 \mathrm{~mm} /$ day. The average draw rate is $108 \mathrm{~mm} /$ day, which means that there are roughly twice as many drawpoints available as are required to meet production targets.

Figure 47: Average yearly draw rate ($\mathrm{mm} / \mathrm{day}$) and production (tonnes/year).

MITCHELL PRE-FEASIBILITY STUDY

10.3 Mine Production Workforce

The production workforce includes equipment operators, mechanics, electricians, and all staff required to plan the mining processes, including engineers, technicians, and geologists after the mine starts production in Year 7. The production workforce also includes a construction crew, trainees and/or unskilled labour. The size of the production workforce is dependent on the quantity of mobile equipment and the stage of the mine life. This is shown in Figure 48. The sharp increase in the initial workforce represents the staff and labour that is planning the mine, and the maintenance and drilling labour that form part of the development workforce required to prepare the cave (drilling and blasting from the UC and PC levels). The separation of the production and development workforce has a significant influence on the split between the mine operating cost and capital cost discussed in Section 11.3. The workforce starts to ramp down before production starts to ramp down because certain positions are mainly required early in the mine life (e.g., secondary breaker operators, production drillers, and construction workers). More details concerning the workforce breakdown can be found in Appendix J.

Figure 48: Yearly production workforce distribution.

MITCHELL PRE-FEASIBILITY STUDY

11.0 MINE COSTS

This section contains a description of the mine capital (CAPEX) and mine operating (OPEX) costs. Labour cost contributes to both the CAPEX and OPEX and therefore, it is discussed as a separate section.

11.1 Labour

The labour costs are based on estimated KSM project rates as provided by Wardrop (Wong 2011, pers. comm.). Where necessary, the rates were adjusted to reflect underground mining experience. For example, an additional category called "underground premium" was created, and the "bonus" category was increased for underground workers. Different rates were applied to staff and labour. Table 28 shows the relevant mark-ups that were used to account for burdens, bonus, and remote and underground premiums.

Table 29 contains a list of the major labour categories showing annual base rates and "all-in" costs. The positions are separated into staff and labour. The staff category consists mainly of technical, supervisory and administration roles, while the labour category consists of the underground workers, including equipment operators, miners, mechanics, and electricians. There is provision for a construction crew that will be responsible for constructing the drawpoints. The mine will operate 365 days per year with mine labour (including the underground staff) working a 2 week in and 2 week out schedule and some surface staff (including engineers and geologists) working a 4 days in and 3 days out schedule. It was assumed that all major installations (e.g., crushers, conveyors, main ventilation fans, and other mine infrastructure) will be constructed by contractors.

Table 28: Breakdown of the Various Labour Mark-Ups

	Staff	Labour
Burden	35%	35%
Remote premium	10%	10%
Bonus	20%	40%
Underground premium	0%	10%

MITCHELL PRE-FEASIBILITY STUDY

Table 29: Yearly Base Rate and All-In Rate for the Different Mine Positions

	Level	Base Rate (per year)	All-In Rate (per year)
	Mine Manager	$\$ 180,000$	$\$ 297,000$
	Chief Engineer	$\$ 180,000$	$\$ 297,000$
	Senior Engineer	$\$ 140,000$	$\$ 231,000$
	Mine Engineer	$\$ 115,000$	$\$ 190,000$
	Administration	$\$ 55,000$	$\$ 91,000$
	Mining Technologist	$\$ 75,000$	$\$ 124,000$
	Shift Captain	$\$ 120,000$	$\$ 190,000$
	Production Supervisor	$\$ 110,000$	$\$ 182,000$
	Shop Foreman	$\$ 110,000$	$\$ 182,000$
Labour	Operators	$\$ 84,000$	$\$ 164,000$
	Labourer	$\$ 65,000$	$\$ 126,000$
	Construction	$\$ 78,000$	$\$ 152,000$
	Mechanics	$\$ 92,000$	$\$ 180,000$
	Electricians	$\$ 99,000$	$\$ 192,000$
	Contract Labour	n / a	$\$ 200,000$

The distribution of the combined development and production workforce is shown in Figure 49. The workforce ramps up as development headings become available and production starts, and it reaches a maximum of 489 employees for Year 7. After this the initial development is substantially completed and the crews are reduced. The size of the workforce parallels the mine production between Years 8 and 22, after which the sustaining development is completed and workforce is reduced to a skeleton crew. After year 22, the total workforce is directly influenced by the mine production ramp down.

Figure 49: Yearly distribution of development, production and total workforces, and development advance and production rate per shift.

MITCHELL PRE-FEASIBILITY STUDY

11.2 Mine Capital Costs

The mine capital costs include all equipment and excavations required to prepare, initiate, and maintain the cave. The cost includes excavation and hydrofracturing from the PC level, excavation and construction of the drawpoints, blasting of the undercut, and the associated infrastructure required to move mined material to surface.

The costs were developed from first principles using a detailed cost model. The costs for mine equipment and consumables were obtained from supplier quotations in 2011, Golder's database, or from Wardrop. Mine contractor quotes were obtained in January 2012 and used to confirm derived cost estimates for all mine development work including lateral and vertical excavations. Wardrop estimated the equipment and installation costs for the major equipment used in the material handling system.

The discussion below describes each of the different openings that are in the design and describes the associated costs. Unless otherwise indicated, the costs presented here do not include labour costs, which were discussed in Section 11.1.

11.2.1 Mine Development

As described in Section 7, the proposed Mitchell underground design has various sized openings with different purposes. Table 30 shows each of the different openings and the associated cost per meter. These rates include the cost of materials and equipment to create the opening. The costs of ongoing activities once the initial development is created (i.e., the cost to blast the undercut after it has been excavated or the cost to drill, blast, and excavate a drawbell) are described in a separate section of this report. The development costs include standard ground support (bolt and mesh) in the back and walls, and concrete floors on the extraction drift and drawpoints. An example of the detailed cost calculation for a meter of development can be found in Appendix L.

An estimated rehabilitation cost of $\$ 1,200$ per metre was used in this study. The actual cost of rehabilitating a drift will vary greatly depending on the extent of the damage and on the timing of the rehabilitation.

MITCHELL PRE-FEASIBILITY STUDY

Table 30: Summary of the Unit Cost of the Various Development Sizes Proposed for the Mitchell Mine

Description	Unit of measure	Unit Cost (ex. Labour)	Unit Cost (incl. Labour)
$5.0 \mathrm{~m} \times 5.0 \mathrm{~m}$ Drive ${ }^{(1)}$	m	$\$ 2,000$	$\$ 4,200$
$3.5 \mathrm{~m} \times 4.5 \mathrm{~m}$ Drawpoint	m	$\$ 2,700$	$\$ 5,000$
$5.5 \mathrm{~m} \times 5.5 \mathrm{~m}$ Extraction drifts	m	$\$ 4,200$	$\$ 6,500$
$4.0 \mathrm{~m} \times 4.0 \mathrm{~m}$ Undercut and preconditioning	m	$\$ 1,200$	$\$ 3,500$
$5.5 \mathrm{~m} \times 4.4 \mathrm{~m}$ Conveyor drive	m	$\$ 2,600$	$\$ 4,900$
$7.5 \mathrm{~m} \times 7.5 \mathrm{~m}$ Return air drive	m	$\$ 3,400$	$\$ 5,600$
Rehabilitation	m	$\$ 1,200$	$\$ 3,500$
Internal vent raise	m	$\$ 5,500$	$\$ 7,900$
Main ventilation raise	m	$\$ 9,100$	$\$ 11,400$

Note: ${ }^{1}$ This item refers to the majority of underground excavations, such as the perimeter drifts, the underground access, and the internal ramps.

11.2.2 Block Cave Infrastructure

The block cave infrastructure includes the cost of the ongoing activity in a drift once the excavation is completed including preconditioning the rockmass, drilling and blasting the undercut, and drilling, blasting and supporting the drawpoints and drawbells. Cost estimates for the designs are shown in Table 31. These costs do not include labour

Table 31: Summary of the Block Cave Infrastructure Capital Cost

Item	Unit	Cost (\$)
Preconditioning	$\$ / \mathrm{m}$ of PC drift	$\$ 8$
Undercut blasting	$\$ / \mathrm{m}$ of UC drift	$\$ 1,250$
Drawbell excavation and drawpoint support	\$ per set of drawpoints (2 drawpoints)	$\$ 78,000$

11.2.3 Mobile Equipment

Table 32 shows the list and unit cost of the mobile equipment required for the Mitchell mine. A five year replacement schedule has been included in the life of mine capital cost estimates. It is estimated that over the 37 year underground mine life, a total of $\$ 48$ million will be required for development equipment, $\$ 140$ million for production equipment, and $\$ 45$ million for support equipment.

MITCHELL PRE-FEASIBILITY STUDY

Table 32: A List of the Mobile Equipment Required and Unit Costs

Equipment	Unit Cost	
Jumbo drill rig	$\$$	986,000
Development haul truck	$\$$	948,000
Development LHD	$\$$	$1,150,000$
Bolter	$\$$	800,000
ANFO loader	$\$$	400,000
Scissor lift	$\$$	382,000
Production LHD	$\$$	$1,150,000$
Raisebore machine	$\$$	$4,100,000$
Production drill rig	$\$$	997,000
Production locomotive	$\$$	$2,500,000$
Production rail car	$\$$	130,000
Grader	$\$$	235,000
Big personnel carrier	$\$$	295,000
Small personnel carrier	$\$$	145,000
Mobile rockbreaker	$\$$	224,000
Block holer	$\$$	577,000
Shotcrete sprayer	$\$$	627,000
Concrete mixer	$\$$	442,000
Boom truck	$\$$	329,000

11.2.4 Stationary Equipment

Table 33 shows the quantity and unit costs of the major stationary equipment required for the Mitchell mine. For cost estimating purposes the replacement/refit of the conveyors and crushers is done every ten years. It is estimated that the Mitchell underground will require $\$ 543 \mathrm{M}$ of stationary equipment over the life of the mine. Accessories include structural steel and concrete to support the equipment, ore pass chains, etc.

MITCHELL PRE-FEASIBILITY STUDY

Table 33: Mitchell Stationary Equipment Costs

Equipment	Quantity	Unit Cost (\$M)	
Crusher (incl. installation)	2	$\$$	4.5
Crusher accessories	2	$\$$	9.0
Conveyor \#1 (incl. installation)	1	$\$$	3.5
Conveyor \#2 (incl. installation)	1	$\$$	18.0
Conveyor \#3 (incl. installation)	1	$\$$	16.4
Conveyor accessories	1	$\$$	6.7
Dumps and chutes	34	$\$$	0.4
Stationary rockbreakers (incl. installation)	30	$\$$	0.25
Stationary rockbreakers accessories	90	$\$$	2.9
Underground fans	15	$\$$	0.021
Dewatering system	2	$\$$	0.26
Air compressor	$\$$	0.4	

11.2.5 Surface Equipment

Table 34 shows a list of unit and installation costs of the surface equipment required for the Mitchell mine. The electrical distribution system estimate was developed by WN Brazier Associates (details can be found in Appendix I).
Table 34: Surface Infrastructure Cost

Equipment	Quantity	Unit Cost (\$M)	
Surface fans	4	$\$$	1.0
Ventilation bulkheads	1	$\$$	1.6
Electrical distribution system	1	$\$$	46.0
Heaters	1	$\$$	5.0
Propane tank farm	1	$\$$	1.3
Portals	3	$\$$	0.3

11.2.6 Closure

The closure costs were included as a one-time $\$ 10$ million expense at the end of the mine life and it excludes any benefit that may be realized by selling stationary equipment (crushers, fans, conveyor belts), mobile equipment (LHDs, trucks or jumbos) or services (electrical wiring). The proposed closure activities and relevant cost items incorporate the following:

- Remove the mobile equipment from the mine by driving it out and either salvaging it or placing it in a landfill or designated dump site;

MITCHELL PRE-FEASIBILITY STUDY

- Leave the major infrastructure such as crusher, rockbreakers and conveyors (including belting) in the mine. All oils would be drained from the motors and gears;
- Leave all electrical cable and piping in the mine;
- Remove all extraneous oils and lubricants, such as those in electrical gear (transformers etc.), and any explosives and chemicals;
- Remove the surface ventilation fans and either salvage or dispose of them in landfill; and
- Seal all openings to surface with cement plugs or barricades.

11.2.7 Life of Mine Capital Cost Schedule

Capital costs include the purchase and installation of all equipment and the excavation of all the underground workings. Figure 50 shows the life of mine capital cost for the Mitchell mine, which is estimated to be $\$ 3.1$ billion. This includes approximately $\$ 800$ million in pre-production capital expense over the first 6 years of the mine life and an average sustaining capital cost of $\$ 74$ million over the remaining 31 years. The life of mine capital cost is shown in a table in Appendix L.

Figure 50: Yearly capital cost estimate and the quantity of lateral and vertical development.

MITCHELL PRE-FEASIBILITY STUDY

11.3 Mine Operating Costs

A preliminary cost estimate of $\$ 6 /$ tonne was used in the PCBC analyse to produce a tonne and grade production schedule for Mitchell. This schedule was then input to the whole KSM complex production schedule developed by others. The mine operating cost presented in this section differs slightly from the preliminary one used because additional refinements were made. However, the differences did not warrant additional modelling to develop revised schedules.

The mine operating cost (OPEX) consists of the equipment and labour that is required to move material from the drawpoint to the surface conveyor portal and the fixed costs to operate the mine. This includes the use of the LHDs, secondary breakers, crushers and conveyors, and the labour required to plan and execute the mining plan (mine labour comprises approximately 52% of the total Mitchell underground mine OPEX). Included in the fixed costs are items that are not affected by the quantity of production, such as the ventilation fans, pumps, and the general mine expenses such as office supplies. Table 35 shows a breakdown of the average life of mine OPEX which is estimated at $\$ 5.00$ /tonne. Appendix M contains the detailed cost model and breakdown of the mine operating expenses.

Table 35: Summary of the Mine Operation Cost

Equipment	Mitchell OPEX (\$/tonne)	Mitchell OPEX (\%)
Production LHD	$\$ 0.56$	11%
Production locomotive	$\$ 0.02$	0%
Crusher	$\$ 0.27$	5%
Conveyor 1 and 2	$\$ 0.27$	5%
Conveyor 3	$\$ 0.26$	5%
Block holer	$\$ 0.13$	3%
Stationary rockbreaker	$\$ 0.29$	6%
Mobile rockbreaker	$\$ 0.19$	4%
Labour	$\$ 2.60$	52%
Fixed costs	$\$ 0.36$	7%
Rehabilitation	$\$ 0.04$	1%
Total	$\$ 5.00$	

MITCHELL PRE-FEASIBILITY STUDY

Figure 51 shows the distribution of the OPEX over the life of the mine. The OPEX is higher in the first years due to the relatively high number of personnel on site producing at a comparatively low production rate. This is typical for an underground mine and even more applicable to block caving because of the significant amount of development required before production can commence and the long ramp-up period to achieve the planned production rate. The workforce component of the OPEX ranges from approximately 75% in the early years to approximately 35% in the later years.

Figure 51: Chart showing the variability of the estimated OPEX over the life of the mine compared to the mine production.

The impact of varying the labour cost by $+/-25 \%$ is shown in Table 36. A 25% increase in the labour cost will result in a $\$ 0.35 /$ tonne (7%) increase in the OPEX.

Table 36: Influence of Increasing or Decreasing the Labour Cost on the OPEX

Item	Labour at $\mathbf{- 2 5 \%}$	Labour at Base Case	Labour at $\mathbf{+ 2 5 \%}$
OPEX	4.64	5.00	5.35

MITCHELL PRE-FEASIBILITY STUDY

11.3.1 OPEX Sensitivity

The mine OPEX is a key parameter used in PCBC to determine the profitability of individual drawpoints. The influence of increasing or decreasing the OPEX by 25% on the available block cave resources was investigated with additional PCBC runs, and the results are presented in Table 37. The block cave resources are not overly sensitive to OPEX as a 25% change to OPEX only changes the block cave resources by less than 5%. Note this comparison was completed early in the study and the preliminary OPEX of $\$ 5.84 /$ tonne was used.
Table 37: Influence of Mine OPEX on Block Cave Resources

OPEX (\$/tonne)	Tons	$\mathbf{A u}$ (g/t)	$\mathbf{C u}$ $(\%)$	Mo $(\mathbf{p p m})$	$\mathbf{A g}$ (g/t)
5.84	$421,182,784$	0.524	0.165	34.408	3.548
$4.38(-25 \%)$	$431,319,744$	0.519	0.164	34.188	3.514
$7.30(+25 \%)$	$409,480,544$	0.530	0.167	34.470	3.583

11.4 Contingencies

Contingencies were applied to each cost item in the database and were calculated for the project based on a weighted average. The contingencies range from a low of 10% for fuel and power costs to a high of 25% for labour rates. A contingency of 20% was applied to the capital purchase of equipment and 15% on the maintenance cost of the equipment. Overall project contingency is estimated to be 23%.

MITCHELL PRE-FEASIBILITY STUDY

12.0 PROJECT OPPORTUNITIES AND RISKS

The following bullet points summarize the main opportunities and risks to block caving the Mitchell deposit.

12.1 Project Opportunities

- A pre-feasibility study permits the use of Measure and Indicated resources only, which is approximately 421 million tonnes within the zone that is proposed to be mined. T here is also approximately 376 million tonnes of Inferred material inside this zone (grades and tonnages are shown in Table 38) that were not included in the study but would improve project economics. The results presented in Table 38 are from the Footprint Finder program and differ from the Block Cave Resources stated in Table 5.

Table 38: Summary of the Footprint Finder results.

Categories	Tonnage (Mtonnes)	$\mathbf{A u}(\mathbf{g} / \mathbf{t})$	$\mathbf{C u}(\%)$	$\mathbf{A g}(\mathbf{g} / \mathbf{t})$	Mo (ppm)
Measured and Indicated	421	0.52	0.17	3.55	34.41
Measured, Indicated, and Inferred	797	0.55	0.17	3.70	41.26

- It may be possible to cave the Mitchell deposit as two individual mining zones, one vertically offset from the other, with each zone using a system of LHD's hauling directly to crushers (similar to the smaller Iron Cap mine design). The Iron Cap design is similar to the design used at Palabora and may be better suited to handling the expected coarse fragmentation. The current design of using ore passes, grizzlies and secondary rockbreakers could prove to be a bottleneck in the material movement system.

The potential cost saving of this design concept should be investigated further. It is likely to incur larger crushing and conveying costs as more crushers and conveyors would be required. However there is likely to be less mine development (no need for the secondary breaking or haulage levels) and lower equipment costs (the stationary rockbreaker stations, chutes, and chain gates would be eliminated). The current design requires an estimated $\$ 330$ million dollars of infrastructure and equipment to handle the coarse fragmentation and significant additional lead time is needed to develop the secondary breaker and haulage levels prior to the start of extraction.

- The current design is based on a conservative drawpoint layout of 15 m by 15 m . More detailed assessments of the fracture orientation and spacing information may indicate that this layout can be expanded to a 17 m by 17 m layout or some equivalent expanded layout. This will result in a significant economic benefit and should be investigated further.
- Approximately 80% of the air exiting the mine will do so via the RAD and RAR. The dimensions of the RAD are 7.5 m by 7.5 m which, due to the high velocity of the air, is a bottleneck in the system. A detailed trade-off study between the cost of the additional development and the fan capital and operating costs by year may indicate that it would be more cost-effective to widen the RAD to a larger size with smaller fans on surface.

MITCHELL PRE-FEASIBILITY STUDY

12.2 Project Risks

- The ore pass and grizzly system may not achieve the planned production rate, particularly if the muck that is transported to the passes is coarser and requires more breakage than is currently estimated.
- The rock fracture information that has been collected at Mitchell indicates that the size of the rock blocks in-situ will be significantly greater than $2 \mathrm{~m}^{3}$; in effect, very large. The mine design was developed with full recognition of this by using conservative estimates of factors such as the availability of drawpoints, the amount of secondary blasting required, requirements to rehabilitate damaged drawpoints, material handling delays, etc. In addition, pre-conditioning of the rock mass is also proposed using hydraulic fracturing. However, there is still a degree of uncertainty as to the possible impact of the expected coarse fragmentation at least until a mature height of individual column draw has been established. Further assessments of this uncertainty should be undertaken.
- The current ventilation design has the return air portal located downwind of the fresh air portals. However, 30% of the time, the wind is blowing the other direction. If the exhaust air is not properly dispersed by the time it reaches the fresh air intakes, then a recirculation problem may occur.

■ There are inherent risks associated with block caving. These include the following:

- If there is not good a good understanding of the caving profile both of the uncaved back and the thickness of the caved rock, and/or there is not good production draw control, voids may develop above the drawpoints. Under some circumstances this can result in air blasts, and significant safety hazards and damage to the underground infrastructure. Good operating practices will be implemented to mitigate such concerns, along with good monitoring practices such as microseismic monitoring and borehole caving propagation monitoring.
- Mudrushes at the drawpoints are a risk once the cave breaks through to surface. This is particularly important during the annual spring thaw, when melt-water from snow and ice that accumulates on the broken material at surface can migrate through to the underground drawpoints. The current drawpoint design has attempted to mitigate some of this risk by offsetting the drawpoints, and remote monitoring practices will be introduced on an as-needed basis until such risks are no longer present.
- Excessive rehabilitation of the drifts may have a significant impact on the profitability of the mine. The nature of a block cave causes the stress field to change in magnitude and direction, which could result in damage to the existing drifts. In addition, it is anticipated that there will be a significant amount of secondary blasting of oversize which could damage drift infrastructure (piping and wiring in the drift). Rehabilitating these drifts will be expensive, not only because of the cost to complete the repairs, but also because of the potential lost productivity. The current design attempts to mitigate these risks by assigning a rehabilitation cost to the OPEX and by having approximately twice as many drawpoints available than are needed to meet production targets.

MITCHELL PRE-FEASIBILITY STUDY

13.0 CONCLUSIONS

The Mitchell deposit is a large, massive deposit making it suitable for block caving. Analyses using FF and PCBC indicate that an economical block cave operation can be developed with a caving footprint approximately $577,000 \mathrm{~m}^{2}$ in size.

The mine design is based on a drawpoint layout 15 m by 15 m . Further detailed assessments of the fracture information and the estimated fragmentation may indicate that slightly expanded layout can be adopted. This aspect needs to be investigated further.

Even with the proposed pre-conditioning of the rock mass by hydraulic fracturing the fragmentation is expected to be relatively coarse. This has been accounted for in establishing the production rate of $55,000 \mathrm{tpd}$. As well, the cost of block holers and mobile and stationary secondary rockbreakers have been included in the cost estimate.

The Measured and Indicated resources are approximately 438 million tonnes with an average grade of $3.5 \mathrm{~g} / \mathrm{Ag}$, $0.53 \mathrm{~g} / \mathrm{Au}, 0.16 \% \mathrm{Cu}$ and 34 ppm Mo . The mining operation will require approximately 142 km of openings to be excavated.

Detailed production, development, and capital and operating cost schedules have been established. The costs were developed from first principles and vendor quotes, and are considered accurate to $+/-25 \%$.

The mining operating cost is estimated to be $\$ 5.00$ per tonne and the total mining cost including a 23% contingency is estimated to be $\$ 12.09$ per tonne.

The pre-production capital expense is approximately $\$ 800 \mathrm{M}$ and the yearly capital expense is $\$ 74 \mathrm{M}$ per year for the remaining 31 years. The total mine life of Mitchell is expected to be 37 years, including 6 years of pre-production development, 6 years of ramp-up, 16 years of steady state, and 8 years of ramp down production. The pre-production development period is 6 years.

MITCHELL PRE-FEASIBILITY STUDY

14.0 CLOSURE

If you have any questions regarding the above, please contact the undersigned.

GOLDER ASSOCIATES LTD.

ORIGINAL SIGNED

Donald Tolfree, P.Eng.
Mining Engineer

ORIGINAL SIGNED

Johnny Canosa, P.Eng.
Senior Mining Engineer

ORIGINAL SIGNED

David Sprott, P.Eng.
Principal, Senior Mining Engineer

ORIGINAL SIGNED

Karen Moffitt, P.Eng.
Associate, Senior Geotechnical Engineer

ORIGINAL SIGNED

Ross Hammett, P.Eng.
Principal, Senior Civil/Mining Engineer

DT/DS/aw/dp

MITCHELL PRE-FEASIBILITY STUDY

15.0 REFERENCES

Barton, N., R. Lien and J. Lunde. 1974. Engineering Classification of Rock Masses for Design of Tunnel Support. Rock Mechanics, 6, p. 189-236.

BGC (Bruce Geotechnical Consultants). 2010. KSM Project: Mitchell Zone - Open Pit Slope Design - FINAL. Prepared for Seabridge Gold Inc. Submitted April 16, 2010.

Bieniawski, Z.T. 1976. Rock Mass Classification in Rock Engineering. In: Exploration for Rock Engineering, Proceeding of the Symposium (Edited by Bieniawski, Z.T.) 1, 97-10. Cape Town, Balkema.

Bieniawski, Z.T. 1989. Engineering Rock Mass Classifications. Wiley, New York.
Butcher, R.J. and I.G.T. Thin. 2007. The Input of Choices for Predicting Fragmentation in Block Cave Projects. 1st International Symposium on Block and Sub Level Caving Cave Mining. Cape Town, South Africa, p. 35-50.

De Souza, E.M. 2008. Mine Ventilation Course Notes. Queen's University.
Golder Associates Ltd. 2011a. Block Cave Mine Study. Report Number REP 0516_11. Submitted May 17, 2011.
Golder Associates Ltd. 2011b. Block Panel Caving Conceptual Study for the KSM project. Report Number REP 0414_11. Submitted 14 April 2011.

Golder Associates Ltd. 2012a. 2011 Geotechnical and Hydrogeological Field Investigations - Mitchell Project. Prepared for Seabridge Gold Inc. Submitted February 15, 2012.

Golder Associates Ltd. 2012b. Mitchell Deposit - Geotechnical Characterization. Prepared for Seabridge Gold Inc. Submitted February 2012.

Grimstad, E. and N. Barton. 1993. Updating of the Q-system for NMT. Proceedings of the International Symposium on Sprayed Concrete. Norwegian Concrete Association, Oslo, p. 46-66.

ISRM (International Society of Rock Mechanics). 1981. Rock Characterization, Testing and Monitoring. In: Brown, E.T., ISRM Suggested Methods. Pergamon Press. Oxford, p. 211.

Laubscher, D.H. 1994. Cave Mining - The State of the Art. Journal of the South African Institute of Mining and Metallurgy, 94, p. 279-293.

Laubscher, D.H. 1999. A Practical Manual on Block Caving. Section 6 - Cavability. International Caving Study, Julius Kruttschnitt Mineral Research Centre, University of Queensland, Australia, p. 323.

McPherson, M.J. 1993. Subsurface Ventilation and Environmental Engineering. Available at: http://www.mvsengineering.com/index.cfm?fuseaction=menu\&menu_id=5004. Accessed January 17, 2012.

Nelson, Brad. 2011. Senior Engineer at Climax Molybdenum- Henderson Mine. Site visit with Donald Tolfree in March, 2011

Seabridge. 2010. Kerr-Sulphurets-Mitchell (KSM) Prefeasibility Study. March 31, 2010.
Seabridge. 2011. Kerr-Sulphurets-Mitchell (KSM) Prefeasibility Study Update, NI43-101 Report,

MITCHELL PRE-FEASIBILITY STUDY

Trueman, R. and C. Mawdesley. 2003. Predicting Cave Initiation and Propagation. CIM Bulletin 96(1071):54-59.
Wong, Wing. 2011. Senior Cost Estimator for Wardrop, meeting with Donald Tolfree (Golder), September 2011.
Woo K., E. Eberhardt and A. van As. 2009. Characterization and empirical analysis of block caving induced surface subsidence and macro deformations, Proceedings of the $3^{\text {rd }}$ CANUS Rock Mechanics Symposium, Toronto, Ontario, Canada.

APPENDIX A Trade-off Studies

MEMORANDUM

TO File

CC David Sprott, Johnny Canosa, Donald Tolfree
FROM Andrew Lyon

DATE November 2, 2011

PROJECT No. 11-1439-0002

SEABRIDGE HAULAGE EQUIPMENT TRADE-OFF STUDY

Introduction

The Mitchell block cave is part Seabridge Gold's KSM project, located in Northwestern British Columbia, near the Eskay Creek Mine. The mineralized material is roughly $1,500 \mathrm{~m}$ wide by 600 m long and the development is located approximately 600 m below surface. A block caving study estimated the production rate to be 65,000 tonnes per day or 24 million tonnes per annum for the 42 year life of the mine. Material excavated from the extraction level is dumped into ore passes by Load Haul Dumps (LHDs), loaded on the haulage level, then dumped into a crusher and conveyed to surface. This trade-off study will focus on the type of equipment required on the haulage level. The options evaluated include:

- conventional diesel haul truck;
- electric haul truck;
- large capacity truck and trailer combination; and
- train.

Methods

The study is based on the mine parameters described above and the assumptions listed below. It was completed to a scoping level of detail and used the following equipment for each type of haulage:

- Sandvik TH680 diesel truck - 80 tonnes
- Kiruna K1050ED electric truck - 50 tonnes
- Powertrans Underground truck consisting of 1 powertruck, 2 tow trailers and 1 powertrailer - 125 tonnes
- Schalke 75T Locomotive with rail cars - 32 tonnes/car

A spreadsheet was created to list all the assumptions and common factors used for the trade-off study in order to compare them. The assumptions included diesel and electrical cost, utilization and availability, hours per day and days per year, fuel burn and haul speeds. These inputs were then used to calculate material movement per hour in the form of cycle times, which dictates the quantity of each type of equipment needed in order to move the specified 65,000 tonnes per day. These numbers, along with capital and operating costs, were then used to create a cash flow for the entirety of the mine life in order to calculate a net present cost (NPC) for each haulage option. The NPC allows for a relative comparison between each haulage option, thereby assisting in the selection of the most appropriate fleet. The cost inputs were obtained from supplier quotes and from Golder's database of costs for the Seabridge project.

Assumptions:

MEMORANDUM

- Discount Factor: 5%
- Diesel cost: 1 \$/L
- Electrical cost: $0.04 \$ \mathrm{~kW} / \mathrm{h}$
- Loaded labour cost: $46.69 \$ / \mathrm{hr}$
- Utilization: 85%
- Availability: 85%
- Replacement:
- TH680 \& Powertrans: every 10 years
- Train Locomotive \& Kiruna: every 15 years
- Haul Speeds: $15 \mathrm{~km} / \mathrm{h}$ except electric Kiruna's - $19 \mathrm{~km} / \mathrm{h}$
- Sustaining Capital*:
- Electrical \& rail infrastructure: 1/10 total CAPEX in Operating cost per year
- Rail cars: 1/15 total CAPEX in Operating cost per year
*The sustaining capital assumptions are for replacement costs of components as they wear out. In regards to the rail cars that equates to 4 replacements a year, and for the infrastructure its 10% of the capital per year.

Unit Capital Costs:

Sandvik Kiruna	$\$$	$2,000,000$
Powertrans	$\$$	$3,000,000$
\quad Powertruck (x1)	$\$$	$1,050,000$
\quad Powertrailer (x1)	$\$$	750,000
\quad Tow Trailer (x2)	$\$$	525,000
\quad Total	$\$$	$2,325,000$
Train		
\quad Schalke Locomotive	$\$$	$2,500,000$
\quad Rail Car	$\$$	130,000
\quad Total	$\$$	$2,630,000$

Infrastructure Capital Costs:

All options will use the excavated haulage drifts but the conventional trucks and powertrucks do not require additional infrastructure. The electric trucks and trains would require the following:

Electric Trucks

Trolley line	$\$$	800	$\$ / \mathrm{m}$
Trolley substation*	$\$$	125,000	$\$ / 1000 \mathrm{~m}$

*Approximately $6,300 \mathrm{~m}$ of trolley line are required
Rail

MEMORANDUM

100 lb rail cost	$\$$	1,742	$\$ / m$
Power rail cost	$\$$	364	$\$ / \mathrm{m}$
Scroll dump cost	$\$$	600,000	$\$$

The four different haulage methods were compared based on the following categories:

- Equipment capital cost (LOM) - Capital cost of all the pieces of equipment over the life of the mine (LOM)
- Infrastructure capital cost (LOM) - only applicable for electric trucks and train. For the electric trucks this includes the trolley line and substations to boost power. For the trains this includes the rail cost, the power rail, and 2 scroll dumps.
- Operating cost - Fuel or electricity cost, maintenance, lube and labour.
- Ventilation capital cost - cost of raise boring shaft for ventilation. Specific fan prices not included.
- Ventilation operating cost - estimated using Ventsim software using the mine design and expected airflow requirements for the four methods.
- Operability and manoeuvrability - compares the flexibility of each system, based on a literature search.
- Ability to handle oversize - subjective comparison of each option's ability to handle oversize, based on a literature search.

Results

A comparison of the advantages and disadvantages of each haulage option is presented in Table 1. In the table, each of the options is ranked in each category ranging from 1 (best/highest) to 4 (lowest/worst). Based on this comparison, the preferred option would be the Kiruna electric haul trucks.

Table 1: Summary of advantages and disadvantages of various equipment types (1 is lowest/best, 4 is highest/worst).

Category	Powertrans	Sandvik TH680	Kiruna K1050ED	Schalke 75T
Ventilation requirements	4	3	1	2
Equipment unit capital cost	2	1	3	4
Equipment capital cost LOM	2	2	2	1
Infrastructure capital cost	1	1	3	4
Noise	4	3	1	1
Operating and maintenance cost	3	3	2	1
Operability \& flexibility*	3	1	1	4
Ability to handle oversize*	good	poor	good	poor

*subjective ranking

MEMORANDUM

Table 2 contains a summary of the net present cost comparisons of the four options and Figure 1 contains a graph of these results.
Table 2: Comparison of total net present costs for the different options.

	Powertrans	Sandvik TH680	Kiruna K1050ED	Schalke 75T
Payload	125 tonnes	80 tonnes	50 tonnes	32 tonnes/car
Number of units	20	27	35	2 trolleys +54 cars
Engine size per unit (kW)	640	317		91
Equipment capital cost LOM	$\$ 222,300,000$	$\$ 212,000,000$	$\$ 201,000,000$	$\$ 34,656,000$
Infrastructure capital cost LOM	$\$$	-	$\$$	-

Figure 1: Yearly operating and capital expense for each of the four haulage options over the life of the mine
The results of the cost comparison show that the least expensive option over the LOM, by a significant margin, is the train. Both the LOM capital costs and annual operating costs for this option are lowest.

MEMORANDUM

Discussion

Due to the relatively large ratio of engine size-to-tonnage, the Powertrans require the highest volume of ventilation air and consume the most fuel as seen in the average yearly operating cost (\$19M). The larger engine size also increases the ventilation capital cost ($\$ 4.4 \mathrm{M}$) and yearly operating cost ($\$ 5.5 \mathrm{M}$). The Powertrans option requires fewer units (20) than conventional diesel trucks due to their larger payload.but because of their higher unit capital cost the overall Powertrans capital cost (\$222M) over the LOM is the highest. The NPC of the Powertrans is approximately 557 M .

The Sandvik diesel haul truck has similar but slightly lower capital cost over the life of the mine (\$212M) than the Powertrans. The yearly operating cost is lower ($\$ 16 \mathrm{M}$) due to the smaller engine size, and ventilation capital costs are slightly lower ($\$ 3.9 \mathrm{M}$). The yearly ventilation costs are more than halved ($\$ 1.9 \mathrm{M}$) because of the smaller engine. However, more vehicles (27) are required due to the reduced payload. The estimated NPC of the diesel trucks is $\$ 434 \mathrm{M}$.

Since the Kiruna has the smallest payload, this option requires the most units among the wheeled equipment (35). Even with the highest price per unit, the Kiruna has the lowest equipment capital cost (\$201M) due to a longer equipment life of 15 years (vs. the 10 years for the diesel trucks). In order to run the Kiruna's, overhead power lines, substations and control panels need to be installed along all the haulage drifts. This infrastructure amounts to an extra $\$ 26 \mathrm{M}$ over the LOM compared to the diesel trucks. On the other hand, the Kiruna has the lowest yearly operating cost, ventilation capital cost and ventilation operating cost per year. These values are $\$ 10 \mathrm{M}, \$ 3.3 \mathrm{M}$ and $\$ 0.7 \mathrm{M}$, respectively. The estimated NPC of the electric trucks is $\$ 369 \mathrm{M}$ and it ranks as the second least expensive alternative.

Lastly, the Schalke train has the largest engine, but because only 2 locomotives are needed, the ventilation requirements are as low as that of the Kiruna trucks. As with the Kiruna trucks, the Schalke train needs infrastructure installed. The train has the highest infrastructure capital cost of all the options, totalling $\$ 61 \mathrm{M}$ over the LOM, with much of this cost incurred at the start of the mine life. Conversely, the train option has the lowest equipment capital cost since only 2 locomotives and 54 rail cars are needed. Over the LOM, this amounts to $\$ 34 \mathrm{M}$, with a yearly operating cost of only $\$ 1.3 \mathrm{M}$, due to the relatively low cost of electricity and the need for such a small number of locomotives. Of the four options, the trains have the lowest estimated NPC of \$111M.

Conclusion

Of the four options considered for material haulage at the Mitchell mine, the trains have the lowest NPC. Their inflexibility is not a concern because the block cave mining method is inherently inflexible and the size of the material feeding the train can be controlled through grizzlies and rockbreakers. The biggest benefit of the train is the low equipment capital cost over the LOM. Even though the locomotives are expensive, and many rail cars would have to be purchased, these expenses amount to less overall capital than the three other options. In addition, the LOM operating cost of the train is very low, mostly due to the low cost of electricity and the need for only 2 operators. The main drawback to the train option is that it has the highest initial capital expense of all the options presented in this study.

O:\Active $\backslash 2011 \backslash 1439 \backslash 11-1439-0002$ Seabridge PFSI2_Trade-Off Studies\1_Trucks vs Trains\Trade-off_Haulage_Study.docx

CC Dave Sprott, Donald Tolfree

FROM Johnny Canosa
PROJECT No. 111439002

MITCHELL BLOCK CAVE STUDY - DIESEL VS ELECTRIC LHD TRADE-OFF STUDY

Introduction

The Mitchell block cave is part Seabridge Gold's KSM project, located in Northwestern British Columbia, near the Eskay Creek Mine. The mineralized material is roughly $1,500 \mathrm{~m}$ wide by 600 m long and the development is located approximately 600 m below surface. A block caving study estimated the production rate to be 65,000 tonnes per day or 24 million tonnes per annum for the 42 year life of the mine. Material excavated from the extraction level is dumped into ore passes by Load Haul Dumps (LHDs), loaded into rail cars on the haulage level, then dumped into a crusher and conveyed to surface. Because of the quantity of LHDs required to meet production targets (12) and the relatively inexpensive electrical power at the project site, this trade-off study will compare the economics of using electric and diesel powered LHDs.

LHDs are commonly used in block cave mines and diesel LHDs have historically been the equipment of choice. However, diesel equipment has two major drawbacks including potential for poorer underground air quality due to diesel emissions and particulates and the rising cost of diesel fuel. In some regions the cost of electric power is relatively low and the use of electric LHDs is becoming more popular. Table 1 lists some high tonnage underground block cave mines and the type of LHD that they are using or are planning on using.
Table 1: A list of mines using either Diesel or Electric LHD's

Diesel LHD	Electric LHD
Codelco-El Teniente	Rio Tinto -NorthParkes
Palabora	NewCrest - Cadia East, Ridgeway2.
Finsch Mine- De Beers	
Freeport-Indonesia	

Methods

The study is completed to a scoping level of detail and is based on the mine parameters described above and the assumptions listed below. Cost inputs were obtained from the Costmine Database and were used to estimate the yearly operating cost of each type of equipment. In addition, a ventilation capital cost was estimated for each option. The yearly operating costs and capital costs were combined into a Net Present Cost value to account for discounting over the LOM.

The LH621 and LH625E were used in this study. These machines have similar capacities (approximately 22 tonnes) and productivity estimates indicate that a total of 12 units are required to reach the daily tonnage.

- Discount Factor: 5\%
- Diesel cost: 1 \$/L

MEMORANDUM

- Electrical cost: 0.04 \$kW/h
- Loaded labour cost: $31.38 \$ / \mathrm{hr}$
- Utilization: 85%
- Availability: 85%
- Replacement (same for both pieces):
- Overhaul every 5 years
- Replace every 10 years
- Speed: same for both types

Results and Discussion

A summary of the input values and the NPC results are shown in Table 2. Additional detail concerning the cost inputs can be found in the tables attached to this document.

Table 2: Cash Flow Analysis Summary

	Diesel LHD's	Electric LHD's
Equipment Capital Cost	$\$ 19,200,000$	$\$ 26,760,000$
Number of Units Operating	12	12
Average Yearly Ops Costs	$\$ 12,885,000$	$\$ 12,873,000$
Ventilation Capital Costs	$\$ 3,790,000$	$\$ 3,028,000$
Years	20	20
Net Present Cost @5\%	$\$ 174,400,000$	$\$ 176,863,000$

The electric LHDs have a higher initial capital cost because the unit cost of the equipment is higher. However, they have a smaller ventilation capital cost because electric LHDs do not need as much airflow to dilute emissions. The yearly operating cost is similar for both types of equipment. According to this study, the diesel LHD has a slightly lower NPC than the electric LHD. However, the difference between the results is well within the level of accuracy of this study and so the NPC's are considered the same.

To help determine which type of equipment to use in the Mitchell pre-feasibility block cave design, a list of the pros and cons of each piece of equipment is also listed below in Tables 3 and 4.
Table 3: Pros and cons of using diesel powered LHDs

Pros	Cons	
$■$The anticipated maximum one-way tramming distances for LHD's on the extraction level will be	$\boxed{ } \quad$ More emission of gas and heat	
890 m. The average haul distance will be less,	■	Higher noise levels
approximately 200 m . However, part of the large		
fragmentation risk mitigation includes multiple ore		
passes in one extraction drift. It is conceivable		
that an LHD will have to haul across the footprint		

MEMORANDUM

Pros	Cons
$(890 \mathrm{~m})$ during the mine life, although it may be infrequent. Recent developments in water-cooled diesel engine technology has resulted in much higher fuel efficiencies over air-cooled diesel LHD's (28.7 L/hr versus 34L/hr). Lower initial capital costs	

Table 4: Pros and cons of using electric powered LHDs

Pros	Cons
- Emit very low noise and no exhaust fumes, thus ensuring a better work environment Lower ventilation capital cost	Experience at Northparkes Mine indicates that the electric LHD can have a maximum cable reel length of 336 m . This would limit flexibility on the extraction level and would not allow the machine to take advantage of some of the large fragmentation risk mitigation measures. High initial capital costs - The electric LHD costs do not include back-up power battery packs to enable mobility when a power transmission outlet is not available or when there is a power outage, again limiting flexibility.

Conclusions:

It was decided that the diesel LHDs should be used in the Mitchell pre-feasibility block cave design. The decision is based on the increased flexibility of the diesel LHD and the fact that the electric LHD would not be able to take full advantage of the fragmentation risk mitigation factors included in the overall mine design (the cable reel on an electric LHD has a maximum range of approximately 350 m). This decision is based on the logistics of using the equipment underground and not on the NPC. The NPC's for both options were the same. If the mine design were modified to eliminate the drawbacks of using an electric LHD (i.e. shorter maximum tram distances), it is recommended that this study be revisited.

DATE January 16, 2012
TO Project File 11-1439-0002 Phase 2000
CC D.Tolfree, D. Sprott
FROM Clyde Cooper
EMAIL clyde.cooper@gmail.com

SEABRIDGE GOLD MITCHELL PROJECT - SHAFT VERSUS CONVEYOR TRADE-OFF STUDY

Introduction

The Mitchell block cave is part Seabridge Gold's KSM project, located in Northwestern British Columbia, near the Eskay Creek Mine. The mineralized material is roughly $1,500 \mathrm{~m}$ wide by 600 m long and the development is located approximately 600 m below surface. A block caving study estimated the production rate to be 65,000 tonnes per day or 24 million tonnes per annum for the 42 year life of the mine. Material excavated from the extraction level is dumped into ore passes by Load Haul Dumps (LHDs), loaded onto rail cars on the haulage level, then dumped into a crusher and conveyed to surface.

A scoping level trade-off study was conducted to determine whether shaft or conveyor haulage would be most cost effective for the Mitchell mine. The study evaluated three options: a conveyor decline, one ten meter diameter shaft, and two seven meter diameter shafts. The three options were evaluated based upon their respective development, infrastructure purchase, and construction costs. (The operating costs for each item were not considered because they are similar enough that it would not impact the results of the study.) These costs were then discounted over each construction period to create a Net Present Cost (NPC) for each option. The results of the study can be found in Table 1.

Table 1: Trade-Off Study Results

Option	NPC @ 5\%	
Conveyor	$\$$	$61,014,000$
10 m Shaft	$\$$	$104,761,000$
$2 \times 7 \mathrm{~m}$ Shafts	$\$$	$118,340,000$

Conveyor production rates were based upon having a 54 " belt deliver up to 3,000 tonnes per hour in order to meet the peak production requirement of 65,000 tpd. Conveyor ramp development costs were based upon the Mitchell cost model created by Golder. Conveyor purchase costs were based upon a 2011 quote from Sandvik obtained for the Iron Cap cost model. Conveyor installation costs were assumed to be equal to the excavation cost as a timely quote was unable to be obtained for the trade-off study.

It was assumed that a 10 meter diameter shaft would be able to meet or exceed peak production requirements based upon other mining projects such as Oyu Tolgoi's Shaft No. 3 (10 m diameter) which is designed to provide a total capacity of 55,606 tpd (AMEC Minproc, 2010). It was assumed that the 7 meter diameter shafts would be able to provide at least 27,500 tpd each as mines such as Palabora in South Africa can hoist 30,000 tpd from a 7.4 m diameter shaft (Taljaard and Stephenson, 2000). Shaft infrastructure and installation costs were based upon a quote from Thyssen Mining, Costmine, and the Mitchell cost model.

The shaft options included a smaller conveyor from the footprint to the shaft bottom. A preliminary subsidence evaluation was completed to provide the expected subsidence crater boundary location. The shafts were positioned outside this boundary and a conveyor was used to transport the material to the shaft pocket.

Mine hoists and shaft loading stations were not included in the shaft cost estimate. The goal of this trade-off study was to determine the most cost effective method of moving broken material to surface. The addition of these items would only penalize the shafts further and would not change the outcome.

The conclusion of the study was that developing and installing a conveyor from surface to the underground crushers would be the cheapest option to achieve the required production targets. The NPC for the conveyor option was just over 40% less than the ten meter shaft option which had the next lowest NPC. The conveyor option was much cheaper due to the lower cost of development. Further studies should include a detailed installation quote for the conveyor and the annual operating costs for each system over the life of the project.

AMEC Minproc (2010). Oyu Tolgoi Project Technical Report. Retrieved January 16, 2012, from http://www.ivanhoemines.com/i/pdf/IDP10_June062010.PDF

Taljaard, J.J. and Stephenson, J.D. (2000). State-of-art shaft system as applied to Palabora underground mining project. The Journal of The South African Institute of Mining and Metallurgy, November/December 2000, 427436. Retrieved January 16, 2012, from http://www.saimm.co.za/Journal/v100n07p427.pdf

Clyde Cooper	Donald Tolfree
Mining Engineer	Mining Engineer

Design Details

Conveyor Item	Length (m)		Unit cost (\$/m)	Total Cost (\$)	Unit Construction	
Drift		4,150	5,000	20,750,000	3.70	3.07
Connection Tunnels		1,140	5,000	5,700,000	3.70	0.84
Conveyor Installation		4,150	5,000	20,750,000	5.00	2.27
Conveyor Purchase		4,150	4,375	18,156,250		
Shaft ($1 \times 10 \mathrm{~m}$)						
Shaft \#1 (10m)		631	132,335	83,503,436	225.14	2.80
Permenant Headframe				8,700,000		
Shaft Stations		316	5,000	1,577,500	3.70	0.23
Conveyor Drifts		1,065	5,000	5,325,000	3.70	0.79
Conveyor Installation		1,065	5,000	5,325,000		
Conveyor Purchase		1,065	4,375	4,659,375		
Shaft ($2 \times 7 \mathrm{~m}$)						
Shaft \#1 (7m)		631	79,730	50,309,449	266.26	2.37
Shaft \#2 (7m)		631	79,730	50,309,449	266.26	2.37
Permenant Headframe				8,700,000		
Shaft Stations		631	5,000	3,155,000	3.70	0.47
Conveyor Dritts		1,065	5,000	5,325,000	5.00	0.58
Conveyor Installation		1,065	5,000	5,325,000		
Conveyor Purchase		1,065	4,375	4,659,375		

		Construction Time							
Conveyor	Total Cost (\$)	Year1	Year2	Year3	Year4	Year5	Year6	Year7	Year8
Drift	\$20,257,500	\$6,752,500	\$6,752,500	\$6,752,500					
Connection Tunnels	\$5,700,000	\$2,850,000	\$2,850,000						
Conveyor Installation			\$6,916,667	\$6,916,667					
Conveyor Purchase	\$18,156,250		\$9,078,125	\$9,078,125					

Discount Rate
Conveyor NPC $\$ \quad 61,013,654$

$\begin{array}{lr}\text { Discount Rate } & 5 \% \\ \text { Om Shaft NPC } \$ & 104,760,448\end{array}$

Shaft		Total Cost (\$)		Year1		Year2		Year3		Year4			Year5		Year6		Year7		Year8
Shaft \#1 (7m)		\$50,309,449		\$21,129,969		\$21,129,969		\$8,049,512											
Shaft \#2 (7m)		\$50,309,449											\$21,129,969		\$21,129,969		\$8,049,512		
Permenant Headframe		\$17,400,000									\$8,700,000								\$8,700,000
Shaft Stations		\$3,155,000				\$1,577,500		\$1,577,500											
Conveyor Dritts		\$5,325,000									\$5,325,000								
Conveyor Installation		\$5,325,000											\$5,325,000						
Conveyor Purchase		\$4,659,375						\$4,659,375											
Total	\$	136,483,273	\$	21,129,969	\$	22,707,469	\$	14,286,387	\$		14,025,000	\$	26,454,969	\$	21,129,969	\$	8,049,512	\$	8,700,000
Discount Rate Two 7m Shafts NPC	\$	$\begin{array}{r} 5 \% \\ 118,339,674 \end{array}$																	

APPENDIX B
 Geotech - G1

APPENDIX B
 RMR Classification Criteria

Table B-1: Rock Mass Rating (RMR_{76}) System

	Parameter			Ranges of Values						
	Strength of intact rock material	Point load strength index		> 8 MPa	4-8 MPa	2-4 MPa	1-2 MPa	For this low range uniaxial		
1		Uniaxial compressive strength		> 200 MPa	$\begin{gathered} 100-200 \\ \mathrm{MPa} \end{gathered}$	$\begin{gathered} \text { 50-100 } \\ \mathrm{MPa} \end{gathered}$	25-50 MPa	$\begin{gathered} 10- \\ 25 \\ \mathrm{MPa} \end{gathered}$	$\begin{aligned} & 3-10 \\ & \mathrm{MPa} \end{aligned}$	$\begin{gathered} 1-3 \\ \mathrm{MPa} \end{gathered}$
	Rating			15	12	7	4	2	1	0
2	Drill core quality RQD			$\begin{aligned} & 90 \%- \\ & 100 \% \end{aligned}$	$\begin{gathered} 75 \%- \\ 90 \% \end{gathered}$	$\begin{gathered} 50 \%- \\ 75 \% \end{gathered}$	25\% - 50\%	<25\%		
	Rating			20	17	13	8	3		
3	Spacing of joints			>3 m	1-3 m	0.3-1 m	$\begin{gathered} 50-300 \\ \mathrm{~mm} \end{gathered}$	$<50 \mathrm{~mm}$		
	Rating			30	25	20	10	5		
4	Condition of joints			Very rough surfaces Not continuous No Separation Hard joint wall rock	Slightly rough surfaces Separation $<1 \mathrm{~mm}$ Hard joint wall rock	Slightly rough surfaces Separation $<1 \mathrm{~mm}$ Soft joint wall rock	Slickensided surfaces OR Gouge $<5 \mathrm{~mm}$ thick OR joint	Soft gouge $>5 \mathrm{~mm}$ thick OR Joints open $>5 \mathrm{~mm}$ continuous joints		
	Rating			25	20	12	6		0	
	Groundwater		Inflow per 10 m per tunnel length	None		$\begin{gathered} <25 \text { litres } / \\ \min \end{gathered}$	$\begin{gathered} \text { 25-125 litres } \\ \quad / \mathrm{min} \end{gathered}$	>125 litres / min		
5			Raito joint water pressure / major principal stress	0		0.0-0.2	0.2-0.5	>0.5		
			General conditions	Completely dry		Moist only (interstitial water)	Water under moderate pressure	Server water problems		
	Rating			10		7	4	0		

VERY POOR ROCK (RMR = 0-20)

M-11-125: 705.07-705.58 m

POOR ROCK (RMR = 20-40)

M-11-125: 76.70 - 78.50 m

SEABRIDGE GOLD INC. KSM CONCEPTUAL STUDY MITCHELL PROJECT, BRITISH COLUMBIA					
EXAMPLE CORE PHOTOGRAPHS OF VERY POOR AND POOR ROCK					
	$\frac{\text { Project }}{\text { DESGINN }}$	No.1-1/	1095 EB12	PHASE No. 1000	Rev.-
	CADO	mv	10FEB12		
	$\frac{\text { CHECK }}{\text { ReVEW }}$	KMM		B-1	

FAIR ROCK (RMR = 40-60)
M-11-125: 188.25 - 190.88 m

GOOD ROCK (RMR = 60-80)

M-11-125: 297.00 - 299.01 m

$\left.\begin{array}{|l|l|l|l|}\hline \text { PROECT } & \begin{array}{c}\text { SEABRIDGE GOLD INC. } \\ \text { KSM CONCEPTUAL STUDY }\end{array} \\ & \text { MITCHELL PROJECT, BRITISH COLUMBIA }\end{array}\right]$

O:|Active_2011\1439111-1439-0002 Seabridge PFS\10_ReportinglMitchell Report|Appendices

VERY GOOD ROCK (RMR = 80-100)

M-11-124: 341.50 - 350.47 m

APPENDIX C
 Geotech - G2

SEABRIDGE GOLD INC KSM CONCEPTUAL STUDY BRITISH COLUMBIA					
TTLE MITCH	MITCHELL MAP3D MODEL STEP 1				
Golder Associates	$\frac{\text { Project }}{\text { DEESGN }}$	N0.11-1	2690002 12	PrASENO. 10000	REV.-
	${ }_{\text {cold }}^{\text {CADD }}$	Cr	26JAN12	FIGURE C-1	
		KMM			

PROJECT	SEABRIDGE GOLD INC.
	KSM CONCEPTUAL STUDY
	BRITISH COL UMBIA

O:\Active_2011\1439\11-1439-0002 Seabridge PFS\10_Reporting\Mitchell Stress Analysis TM\Appendices

(ACtivel 201111439111-1439-0002 Seabridge PFSI10, Reporting1Mitchell Stress Analysis TMAAppendices

Map3D Fault-Slip 58 [ISBur1-s-filesiv1\data\Active_2011\1439\11-1439-0002 Seabridge PFS\4_Geotechnical\Modelling\MitchelliMap3D Models\Cave Model\Pit with Cave\z1200\Mitchell_Cav

SEABRIDGE GOLD INC. KSM CONCEPTUAL STUDY BRITISH COLUMBIA					
MITCHELL MAP3D MODEL RESULTS RESULTS - SIGMA1 - STEP 4					
	Project	V0.11-1	39.0002	PrASENO. 10	
	$\frac{\text { design }}{\text { Cado }}$	Cr	${ }^{27 \mathrm{JJAN} 12}$	Scale nts	
58 Associates		KMM		FIGU	C-13

Map3D Fault-Slip 58 IWBur1-s-filesiv1\data\Activel_2011\1439\11-1439-0002 Seabridge PFS\4_Geotechnical\Modelling\Mitchell\Map3D Models\Cave Model\Pit with Cave\z1200\Mitchell_Cav

SEABRIDGE GOLD INC. KSM CONCEPTUAL STUDY BRITISH COLUMBIA					
MITCHELL MAP3D MODEL RESULTS RESULTS - SIGMA1 - STEP 5					
	Project	V0.11-1	39.0002	PHASENO. 100	
	DEAGN	Cr		Scale NTS	
58 Associates	$\frac{\text { CHECK }}{\text { Cobew }}$	${ }_{\text {KMM }}$		FIGU	C-14

O:|Activel_2011\1439|11-1439-0002 Seabridge PFS\10_Reporting|Mitchell Stress Analysis TMIAppendices

Mstep $=1$

SEABRIDGE GOLD INC. KSM CONCEPTUAL STUDY BRITISH COLUMBIA				
MITCHELL MAP3D MODEL RESULTS RESULTS - SIGMA2 - STEP 1				
Golder Associates	${ }^{\text {PROJECT }}$	No.11-1	439-0002	PRASEN No. 10000
	DESIGN	Cr	$2{ }^{27 J A N 12}$	ScAle NTS
	${ }_{\text {Cla }}$ CHECK	KMM	27JAN12	FIGURE C-16
	Revew	Roh		

O:|Activel_2011\1439|11-1439-0002 Seabridge PFS\10_Reporting|Mitchell Stress Analysis TMIAppendices

O:|Activel_2011\1439|11-1439-0002 Seabridge PFS\10_Reporting|Mitchell Stress Analysis TMIAppendices

Mstep $=1$

SEABRIDGE GOLD INC. KSM CONCEPTUAL STUDY BRITISH COLUMBIA					
MITCHELL MAP3D MODEL RESULTS RESULTS - SIGMA3 - STEP 1					
	PROJECCTN.11-1439-0002			PrASEEN0. 10000	
	DESIISN	Cr	27JAN12	FIGURE C-22	
	${ }^{\text {CAOD }}$	CY	27JAN12		
	REVEW	RDH			

O:|Active_2011\1439\11-1439-0002 Seabridge PFS\10_Reporting|Mitchell Stress Analysis TM\Appendices

\square

Mstep $=2$

SEABRIDGE GOLD INC. KSM CONCEPTUAL STUDY BRITISH COLUMBIA					
MITCHELL MAP3D MODEL RESULTS RESULTS - SIGMA $\mathbf{-}$ STEP 2					
	PROJECT	N0.11-1	39.0002	PAASENO.	
	${ }^{\text {DESIGN }}$	Cr	${ }^{27 \mathrm{JAN} 12}$	SCALE NTS	REV.--
	${ }^{\text {CHECK }}$	KMM		FIGU	C-23

APPENDIX D
 Detailed Level Drawings

APPENDIX E
 Definition of Block Cave Terms

DATE February 20, 2012
TO File

PROJECT No. 11-1439-0002

EMAIL dtolfree@golder.ca

BLOCK CAVING DEFINITION

Block cave mining is a low cost bulk underground mining method in which the block of ore to be mined is undercut by drilling and blasting, and some of the blasted material is progressively removed to create a void. This causes the rock mass above the undercut to fail, and the failed material displaces and dilates into the void created by the undercut. Drawbells excavated beneath the undercut are used to extract the broken ore, precipitating further failure of the intact rock, and displacement and dilation of the ore. Continued extraction of the ore over a sufficiently large area allows the failure of the rock mass to propagate upward to ground surface as a block cave. The vast majority of the ore block is not directly accessed or fragmented by drilling and blasting, making this a low cost bulk mining method.

The three main horizons in a block cave mine are the undercut level, the extraction or production level, and the haulage level. A fourth level, the "pre-conditioning" level, may also be developed if geotechnical assessments indicate that the natural cavability of the mineralized material will produce material at the drawpoints that is too large to handle. Typically, this level is located above the undercut. Figure 1 is a schematic that shows the relationship between the different underground horizons used in a block cave mine. Some common block caving terms that will be used throughout the report are:

- Drawcone - theoretical zone of influence of one drawbell inside the caved material;
- Drawbell - the blasted area between the undercut level and the extraction level. The drawbell guides the broken ore to the individual drawpoints; and
- Drawpoint - the drawpoint is located in an extraction drift and provides access to the caved material to allow for removal with mechanised equipment.

Figure 1: A schematic showing the relationship between the extraction drift (production drift), the drawpoints, drawbells and the undercut level. (Flores, 2004).

The use of the term "block cave" in this study is a generic term for the mining method described above. There are variations within block caving, such as panel caving. Block caving is used to refer to a mining method where all the drawbells are blasted within a relatively short time period relative to the mine life. The material is then extracted from all the drawbells to draw the cave down evenly over the entire footprint. Panel caving is applied when a strip or panel of drawbells is developed and ore is produced from these drawbells. As this producing unit is drawn down, another producing unit is brought into production and the earlier drawbells are closed. Panel caving is normally applied where there is a large available footprint, which is the case for the Mitchell deposit.

GOLDER ASSOCIATES LTD.

Donald Tolfree, P.Eng.
Intermediate Geotechnical Engineer

David Sprott, P.Eng.
Associate, Senior Mining Engineer

DT/DS/aw

APPENDIX F
 Geotech - G3

APPENDIX G
 Material Movement Process Flow Diagram

APPENDIX H
 Ventilation Design - Airflow Calculations for Each Level

```
APPENDIX H
Ventilation Requirement Calculations
```


1.0 VENTILATION DESIGN

The preconditioning (PC) level (305 Level) is ventilated by fresh air from one of the ramps that also ventilates the undercut (UC) level. The west undercut ramp enables air from the FAD to travel up to the UC level and then continue on to the PC level. Air from the PC level then circulates around the level and down a 2 m round ventilation raise to the extraction level (235 Level). The ventilation raise requires a fan installed to pull air up the preconditioning ramp, through the level, and down the raise to the extraction level.

Air from the FAD travels to the UC level (255 Level) via three ramps which are collared-off crosscuts between the FAD and the extraction level. The ramp collars are located on the crosscuts so that mine personnel do not have to enter into the FAD, where air speeds are as high as $6.4 \mathrm{~m} / \mathrm{s}$, to access the undercut. The air flows through the UC level and down a 5.0 m round ventilation raise to the RAD.

The extraction level is ventilated through the ventilation raise from the PC level and thirteen crosscut drifts that connect the fresh air ring to the extraction level. In order to ensure that the air flowing through each drift on the extraction level is well-balanced to meet production needs, it is important that air inlets to the level are strategically located. The thirteen crosscuts are regulated to ensure the appropriate amount of air enters the extraction level. The quantity of airflow required for the extraction level was calculated according to Table $\mathrm{H}-3$ (The calculations for all levels, including the workshop and conveyors, can be found between Table H-1 and H$9)$.

In the current ventilation model, 15% of the air on the extraction level is second pass air from the PC level. This was deemed acceptable because the PC level will have minimal activity by the time production begins. When production commences, the air that was being drawn up to the PC level will go directly to the extraction level through the thirteen crosscuts connecting the fresh air ring to the extraction level. The estimated recirculation on the extraction level will be approximately 7% due to air leakage through ore passes.

Air within the extraction level travels through the extraction drifts past the many draw points (which are not in the model) and then down 3.0 m ventilation raises to the RAD. Each extraction drift has an associated ventilation raise; there are currently 34 ventilation raises from the level to the RAD. It was assumed that a minimum of seven extraction drifts must have sufficient airflow for two LHDs per drift to meet production requirements (14 workplaces). The used air from the extraction level moves to the RAD and then to the Return Air Raises (RAR), which exhaust to surface.

Air movement through the extraction level will be controlled by regulators, located on the top of the 34 ventilation raises, which will have to be sealed very tightly when not open. To obtain the airflow necessary in the model, the resistance of the closed regulators was modelled with a resistance of $100 \mathrm{Ns}^{2} / \mathrm{m}^{8}$, which is ten times the resistance value of one ventilation door.

Fresh air to the secondary breakage level (189 Level) is provided through a 3 m raise from the FAD. The air flows eastward across the level and exhausts to the RAD through a 2.4 m raise and the ramp to the haulage level on the east side of the level. Air speeds were maintained at a minimum of $1 \mathrm{~m} / \mathrm{s}$ to dilute dust generated by the rockbreakers.

```
APPENDIX H
Ventilation Requirement Calculations
```

The haulage level (159 Level) is ventilated by three raises connecting to the FAD. Air flows eastward across the level and exhausts through three raises and one ramp down to the RAD. Air speeds were also maintained at a minimum of $1.0 \mathrm{~m} / \mathrm{s}$ to help lower dust concentrations on the level generated by haulage level activities.

The underground mechanics shop is also located on the 159 Level. It is ventilated by a split of air from one of the three raises connecting the FAD to the 159 Level. The used air is exhausted to the conveyor ramp.

The crushing level (119 Level) is ventilated with air from the main and access ramps. The air from the ramps flows through the level and then exhausts out of the conveyor ramp and the RAD. Air speeds were maintained at a minimum of $1 \mathrm{~m} / \mathrm{s}$ to dilute dust generated by the crushers. Also, each crusher will have its own split of air to ensure that the dust produced by one crusher will not affect the quality of air ventilating the second crusher.

1.1.1 Recommendations

Consideration should be given to widening the RAD to lower the overall mine resistance. Approximately 80% of the air exiting the mine will do so via the RAD and RAR. The dimensions of the RAD are 7.5 m by 7.5 m which, due to the high velocity of the air, is a bottleneck in the system. A detailed trade-off study between the cost of the additional development and the fan capital and operating costs by year may indicate that it would be more cost-effective to widen the RAD to a larger size with smaller fans on the surface.

The RAR and FAR collar locations will work well with the predominant southeasterly wind to ensure that return air does not enter back into the mine. However, the main ramp and conveyor ramp portal locations and proximity with regards to return air dispersion should be looked at in more detail. Southeasterly winds will pose a problem for the quality of the air entering the mine if some of the return air is recirculated back through the mine.

Staging of the ventilation system will be an important factor governing mine development priorities. For example, it will be necessary to use ore passes and crusher raise excavations as temporary ventilation raises to ensure development headings have appropriate airflow.

1.1.1.1 Future Work

There are a number of items in the Mitchell ventilation model which will require further modelling, consideration and review for a feasibility level study. These items include:

- the staging of the ventilation system with regards to the development schedule and time phases;
- a more in-depth review of transient air losses throughout the mine;
- further study into dust generation and concentrations in each mining area;

■ a review of the current portal locations with regard to possible air recirculation; and

- a detailed trade-off study of RAD development costs vs. main fan costs.

Ventilation requirements are predominantly dependent on the mobile equipment fleet employed. Therefore, any changes to mining production rates and equipment feet will also require a review of the current ventilation model.

Airflow in ventilation shafts of a depth greater than 500 m should be modelled as compressible fluids. The Mitchell mine model is limited because it assumes air is an incompressible fluid with a constant density. Although compressible fluid modelling was not done, the current model is sufficient for pre-feasibility purposes. Further modelling using thermodynamic environment simulation for compressible air flows and for the effects of auto compression and heat transfer from the rock strata on the temperature underground is recommended.

Table H-1: 305 Preconditioning Level Ventilation Requirements

Diesel Equipment	Quantity	Engine Size (kW)	Shift Utilization	Diesel Utilization	Total Airflow ($\mathrm{m}^{3} / \mathrm{s}$)
Production drill	2	74	79\%	25\%	2
Face drill	1	120	71\%	25\%	1
Bolter	2	115	76\%	25\%	3
LHD	1	352	58\%	75\%	10
Truck	2	405	65\%	75\%	25
Anfo loader	1	111	55\%	75\%	3
Scissor lift	1	95	83\%	50\%	2
Toyota	1	96	75\%	75\%	3
Subtotal					50
Contingency					20\%
Total required for equipment					60
Total modelled					62
Modelled leakage through cave					2
Recirculated air					-

Table H-2: 255 Undercut Level Ventilation Requirements

Diesel Equipment	Quantity	Engine Size (kW)	Shift Utilization	Diesel Utilization	Total Airflow $\left(\mathbf{m}^{3 / \mathbf{/ s})}\right.$
Production drill	2	74	79%	25%	2
Face drill	1	120	71%	25%	1
Bolter	2	115	76%	25%	3
LHD	1	352	58%	75%	10
Truck	3	405	65%	75%	37
Anfo loader	1	111	55%	75%	3
Scissor lift	1	95	83%	50%	2
Crane truck	1	95	63%	50%	2
Toyota	2	96	75%	75%	7
Subtotal					

	APPENDIX H Ventilation Requirement Calculations				
Diesel Equipment	Quantity	Engine Size (kW)	Shift Utilization	Diesel Utilization	Total Airflow ($\mathrm{m}^{3} / \mathrm{s}$)
Contingency					20\%
Total required for equipment					81
Total modelled					87
Modelled leakage through cave					8
Recirculated air					-

Table H-3: 235 Extraction Level Ventilation Requirements

Diesel Equipment	Quantity	$\begin{aligned} & \text { Engine } \\ & \text { Size (kW) } \end{aligned}$	Shift Utilization	Diesel Utilization	Total Airflow ($\mathrm{m}^{3} / \mathrm{s}$)
Production drill	2	74	79\%	25\%	2
LHD	14	352	76\%	75\%	176
Face drill	1	120	71\%	25\%	1
Bolter	2	115	76\%	25\%	3
Truck	3	405	65\%	75\%	37
Anfo loader	1	111	55\%	75\%	3
Scissor lift	1	95	83\%	50\%	2
Crane truck	1	95	63\%	50\%	2
Mobile rockbreaker	2	95	63\%	75\%	6
Secondary rockbreaker	4	75	31\%	75\%	4
Shotcrete sprayer	2	96	63\%	75\%	6
Concrete mixer	2	155	63\%	75\%	9
Grader	2	114	63\%	100\%	9
Toyota	3	96	75\%	75\%	10
Personnel carrier	3	130	25\%	50\%	3
Subtotal					273
Contingency					20\%
Total required for equipment					328
Total modelled					389
Modelled leakage through cave					23
Recirculated air*					86

* $60 \mathrm{~m}^{3} / \mathrm{s}$ of this recirculated air is from the Preconditioning Level which will not be operating during production.
APPENDIX H
Ventilation Requirement Calculations

Table H-4: 189 Secondary Breakage Level Ventilation Requirements

Diesel Equipment	Quantity	Engine Size (kW)	Shift Utilization	Diesel Utilization	Total Airflow $\left(\mathbf{m}^{\mathbf{3} / \mathbf{s})}\right.$
LHD	1	352	76%	75%	13
Scissor lift	1	95	83%	50%	2
Crane truck	1	95	63%	50%	2
Toyota	2	96	75%	75%	7
Subtotal					
Contingency					
Total required for equipment					
Total modelled					
Modelled leakage through cave	24				
Recirculated air					

*The modelled quantity for this level was dictated by minimum air speeds, not diesel equipment requirements.

Table H-5: 159 Haulage Level Ventilation Requirements

Diesel Equipment	Quantity	Engine Size (kW)	Shift Utilization	Diesel Utilization	Total Airflow $\left(\mathbf{m}^{\mathbf{3} / \mathbf{s})}\right.$
LHD	1	352	76%	75%	13
Scissor lift	1	95	83%	50%	2
Crane truck	1	95	63%	50%	2
Toyota	2	96	75%	75%	7
Subtotal					
Contingency	24				
Total required for equipment					
Total modelled*					
Modelled leakage through cave	20%				
Recirculated air					

*The modelled quantity for this level was dictated by minimum air speeds, not diesel equipment requirements.

APPENDIX H
 Ventilation Requirement Calculations

Table H-6: 119 Crushing Level Ventilation Requirements

Diesel Equipment	Quantity	Engine Size (kW)	Shift Utilization	Diesel Utilization	Total Airflow ($\mathrm{m}^{3} / \mathrm{s}$)
LHD	1	352	76\%	75\%	13
Truck	1	405	65\%	75\%	12
Toyota	1	96	75\%	75\%	3
Subtotal					29
Contingency					20\%
Total required for equipment					35
Total modelled*					75
Modelled leakage through cave					-
Recirculated air					-

*The modelled quantity for this level was dictated by minimum air speeds, not diesel equipment requirements.

Table H-7: Main Ramp Ventilation Requirements

Diesel Equipment	Quantity	Engine Size (kW)	Shift Utilization	Diesel Utilization	Total Airflow $\left(\mathbf{m}^{3} / \mathbf{s}\right)$
LHD	2	352	76%	75%	25
Bolter	1	115	76%	25%	1
Truck	1	405	65%	75%	12
Scissor lift	1	95	83%	50%	2
Crane truck	1	95	63%	50%	2
Grader	1	114	63%	100%	4
Toyota	3	96	75%	75%	10
Personnel carrier	1	130	25%	50%	1
Subtotal					
Contingency					
Total required for equipment					
Total modelled*					
Modelled leakage through mine portal ventilation doors					60
Recirculated air					

[^1]APPENDIX H
Ventilation Requirement Calculations

Table H-8: Access Ramp Ventilation Requirements

Diesel Equipment	Quantity	Engine Size (kW)	Shift Utilization	Diesel Utilization	Total Airflow $\left(\mathbf{m}^{\mathbf{3} / \mathbf{s})}\right.$
LHD	1	352	76%	75%	13
Truck	1	405	65%	75%	12
Toyota	1	96	75%	75%	3
Personnel carrier	1	130	25%	50%	1
Subtotal					
Contingency					
Total required for equipment					
Total modelled*					
Modelled leakage through cave	30				
Recirculated air					

*The modelled quantity for this ramp was dictated by overall vent design and minimum airspeeds.

Table H-9: 159 Workshop Ventilation Requirements

Diesel Equipment	Quantity	Engine Size (kW)	Shift Utilization	Diesel Utilization	Total Airflow $(\mathbf{m 3 / s})$
LHD	1	352	76%	75%	13
Toyota	1	96	75%	75%	3
Subtotal					
Contingency					
Total required for equipment	17				
Total modelled	20%				
Modelled leakage through cave	$\mathbf{2 1}$				
Recirculated Air	$\mathbf{2 1}$				

[^2]
APPENDIXI

Electrical Design - WN Brazier Associates Ltd.

WN BRAZIER ASSOCIATES INC

SEABRIDGE GOLD INC.
 KSM PROJECT

MITCHELL BLOCK CAVE ELECTRICAL ESTIMATE - 2012 PFS

Rev. A - March, 2011
Rev. B - 11 April, 2011
Rev. 0 - March 2012
Rev. 1 - 28 March 2012

TABLE OF CONTENTS

1.0 INTRODUCTION 3
1.1 General 3
2.0 BASIS OF ESTIMATE 3
2.1 Golder Associates Ltd. 3
2.2 Items Included 3
2.3 Items Not Included 3
3.0 POWER SYSTEM DESCRIPTION 4
3.1 General 4
3.2 Mine Main Power Distribution Cable 7
3.3 Service Ramp 8
3.4 Pre-Conditioning Level (El 305) 9
3.5 Undercut Level (EL. 255) 10
3.6 Extraction Level (EL. 235) 10
3.7 Secondary Extraction (Breaker) Level (EL 189) 12
3.8 Haulage Level (EL 159) 13
3.9 Conveyor Level (Starting At EL 119) Power And Control 14
3.10 Crusher Station Power And Control 16
3.11 Mine Communications 17
3.12 Pumping 17
3.13 Mine Ventilation Fans 17
3.14 Engineering 17
3.15 Construction Management, Purchasing, QA/QC and Commissioning 17
4.0 POWER CONSUMPTION 18
4.1 General 18
4.2 Load Calculations 18
4.3 Annual Energy Consumption 18
4.4 Mitchell Block Cave Load List 19
5.0 ESTIMATE SUMMARY 20
5.1 General 20
5.2 Main Power Distribution Into Mine 20
5.3 Service Ramp 20
5.4 Pre-Conditioning Level Electrical Costs 20
5.5 Undercut Level 20
5.6 Extraction (Production) Level 20
5.7 Secondary Breaker Level 20
5.8 Haulage Level Electrical Costs 20
5.9 Conveyor Electrical Costs 20
5.10 Crusher Station Electrical Costs 21
5.11 Mine Communications Costs. 21
5.12 Fire Pump Electrical 21
5.13 Mine Ventilation \& Air Heating Electrical 21
5.14 Refuge Stations 21
5.15 Mine Air Compressor Power Supply 22
5.16 Engineering And Construction Management (Electrical) 22
5.17 Grand Total (Electrical, instrumentation \& Communications) 22
6.0 APPENDIX 1 - PROJECT ESTIMATE SPREADSHEET 23

1.0 INTRODUCTION

1.1 General

This pre-feasibility level report covers the electrical, communication and instrumentation capital costs for the proposed Mitchell Block cave installation and has been prepared for Golder Associates Ltd. as requested and directed by Seabridge Gold Inc.

The cost of the initial development stage power distribution system, to run mining equipment and vent fans for drift excavation, etc. is not included in this budget and is assumed to be included in mine development costs.

2.0 BASIS OF ESTIMATE

2.1 Golder Associates Ltd.

Golder Associates provided basic information on the proposed block-caving alternative. This included an electrical load list and basic mine plans.

Harold Bosche, of Bosche Ventures, provided drawings and additional information on the conveyor and crusher system.

All costs are in first quarter 2012 Canadian dollars. The costs associated with the 7% provincial sales tax (PST) that is being reinstated are included in costs where appropriate, but note this only applies to lighting and other non-process equipment and does not apply to construction labour, so the impact is small.

2.2 Items Included

The estimated costs include:

- Underground mine power supply cables.
- Ring main (circuit breaker) units.
- Underground mine switchgear and unit substations (transformers).
- Power supply cables, transformers and switchgear for conveyors and crusher drives.
- Ring main units and unit substations for mine electrical equipment, vent fans, pumps, etc.
- Power supply for surface vent fans and air heaters.
- Communication system.
- Power supply to trolley system.
- Sustaining capital for Crusher Station 2.

2.3 Items Not Included

The cost estimate does not include:

- Electrical for the initial construction (drift excavation) phase.
- The equipment trailing cables, etc. as used in the actual operating phase mining (assumed to be in the mining cost).
- The per kilowatt hour cost of electric power as used in mining operations. (This is assumed to be factored into the mining costs.)
- The cost of the general site power distribution. (A 25 kV power line would be built to the area of the mine from the KSM Substation No. 2, at the Mitchell plant site, as part of the overall site development cost.)
- Surface facilities including any required emergency generators, etc. (These are being estimated by Wardrop).
- Any electrical costs associated with mine water, after its pumped from the mine.

3.0 POWER SYSTEM DESCRIPTION

3.1 General

The proposed block cave operation would be a large-scale operation, and as such a ring main style power distribution system is planned, rather than a simple radial distribution as one often sees in small underground mines.

Although the study has been based on a large amount of diesel equipment, the included power supply system will support a much higher use of electrically powered equipment. As this proposed mine has access to utility power currently costing in the range of 5 cents per kilowatt hour, additional electrically powered equipment may be cost effective compared to diesel powered machines. It is probable that future plans would include a higher electric power demand.

Figure 3.1-1 Block Cave General Layout (As Per Golder)

Figure 3.1-2 Overall View (From Golder)

Figure 3.1-3 Mitchell Mine Design (From Golder)

Figure 3.1-4 Mitchell Plan View (From Golder)

Figure 3.1-5 Mitchell Mine Cross Section (From Golder)

Figure 3.1-6 Mitchell Mine Design (From Golder)

Figure 3.1-7 Distances

Item	Length, metres
	6,342
Access ramp (surface), Length	4,600
	3,100
Conveyor tunnels (surface)	
Perimeter Drift, Length	2,100
	2,300
Undercut	
	5,500
Secondary Breaking Level	2,400
Haulage Level	
Preconditioning Level	

3.2 Mine Main Power Distribution Cable

The main underground power distribution would be sourced from the mine site overhead 25 kV power lines (as included by Wardrop in the plant site area electrical cost estimates). The underground mine power supply would have circuit breaker and surge arrester protection at the entry points.

As the plant site distribution is 25 kV , the underground mine cables and switchgear will be 25 kV , thus saving the cost of a step-down substation, and reducing cable sizes and voltage drops for the large underground mine (due to a higher voltage). Underground dry type unit substations will step the voltage down to 4160 volts for conveyor and crusher drives and 600 volts for mining equipment and auxiliaries.

As a large-scale mining operation is planned, a ring main power distribution system is appropriate, rather than a simple radial supply. With a ring main system there are two main underground power feeders and all major loads can receive power from either, being supplied by ring main 3 breaker units. If a fault develops in any portion of the loop system, the fault is automatically isolated and there is no interruption of power supply to the rest of the mine loads. Essentially, all major loads are served by a loop and they can receive power from either side.

The 25 kV power supply system will be resistance grounded with rapid tripping to eliminate high earth potentials caused by line to ground faults in the power supply system. There will be a total of three separate 25 kV feeders to the Mitchell block cave operation. The conveyors and crushers will be fed from a separate radial feeder running down the conveyor drift. As the total mine running load is in the range of 20 MW , this exceeds the practical capacity of one ring main system so the mine electrical power including the vent fans will be on a ring main while the crushers and conveyors will be on a separate radial feed. However, in the event of power system problems alternate power connections could easily be made.

The two 25 kV ring main feeders for the supply to mining equipment and ventilation fans will be fed direct to the underground mine from an overhead line running to Mitchell Substation No. 2, which is much shorter than running cables down the access ramp or conveyor tunnel. Cables would be run down bore holes as necessary. Refer to Bosche Ventures drawing No. 10-10-1611.

600 volt systems would be resistance grounded with rapid tripping to eliminate equipment shock hazard. In addition, all trailing cables would have pilot check wires and tripping.

It is understood that current estimates have more diesel powered production equipment than might be in the final mine development case, given that electric power is around 5 cents per kW.h while diesel fuel is approaching a dollar per litre. The electrical system that has been included for would support a future shift to more electrical loads.

The entire installation would be in accordance with the BC Mines Act and Regulations and Parts 1 and 5 of the of the Canadian Electrical Code.

For a detailed listing of included cable and power distribution equipment please refer to the detailed cost estimate spreadsheets.

3.3 Service Ramp

For the operations phase no power has been included for the service ramp. However, a ring main power cable does run down the adjacent conveyor tunnel.

3.4 Pre-Conditioning Level (El 305)

This level will require power during development. During this period it is understood that electro-hydraulic long-hole pre-conditioning drills that will be used to drill preconditioning bores. Portable substations and main $0.6 / 1 \mathrm{kV}$ Teck power supply cables and end boxes are all included for use in this area during initial operations. Local 600 volt trailing cables from the unit substations or end boxes are assumed to be included in the mining costs with the equipment.

In summary, for drilling and fracturing operations power supply cables and substations are allowed for in this study. The basic estimate includes cable and unit substations for two drifts as part of the basic costs. It is assumed this equipment and cable will be re-used as successive areas are fractured. The cost to re-use and repair/replace the cable and equipment during these successive operations is assumed to be included either in mining costs or sustaining capital and is not in this estimate.

The electrical equipment used in pre-conditioning could very possibly be re-used after preconditioning is complete. However, due to the nature of mining, the re-use of this electrical equipment has not been considered in the estimates.

Note, the 600 volt trailing cable to the equipment is assumed to be in the mining costs with the equipment.

Figure 3.4-1 Preconditioning Level (From Golder)

3.5 Undercut Level (EL. 255)

Unit substations, 25 kV to 600 volts and end boxes are provided to power the drills on the undercut level.

Figure 3.5-1 Undercut Level (From Golder)

3.6 Extraction Level (EL. 235)

It is understood that for the extraction level that diesel LHD's will be used for dumping muck down the ore passes. (In Figure 3.7-1 this is called the "Production Level.")

Main power supply cables, several ring main units, unit substations, $0.6 / 1 \mathrm{kV}$ Teck cable and end boxes have been allowed for on this level. Refer to the detailed estimates.

A perimeter 25 kV ring main has been allowed for around extraction level, with ring main units feeding cables up/down boreholes to the other levels.

Mobile electrical equipment trailing cables are by others (part of mining cost).

Figure 3.6-1 Extraction Level (From Golder)

3.7 Secondary Extraction (Breaker) Level (EL 189)

Figure 3.7-1 Ore Pass With Rock Breakers (From Bosche Ventures Drawing)

There will be 20 rock-breakers operational at once and these will be moved around. Each Rock-breaker is 37 kW . Six skid mount, $500 \mathrm{kVA}, 25 \mathrm{kV}$ to 600 volt unit substations have been allowed for area power supply.

As the mechanical equipment is installed over time, as the ore body is mined, the electrical equipment can be re-used.

Figure 3.7-2 Rock Breaker Locations (From Golder)

3.8 Haulage Level (EL 159)

Trolley type trains will be running on the haulage level.

- Schalke trains -1300 HP
- Haulage level is 5.5 km long

Power supply has been included in the electrical estimate for the trolley system as has the supply and installation of the trolley wire. The cost of the power rail has already been included with the cost of the locos, track, etc., by others.

The ore passes are designed with electric controls (rather than just manual air valves) in case the mine wants to move to an automated system in the future (this is an ideal case of an automated system).

Refer to mine cross section Figures 3.1 -5, 3.7-1, and 3.8-1.

Figure 3.8-1 Haulage Level

3.9 Conveyor Level (Starting At EL 119) Power And Control

Refer to Bosche Ventures drawings 10-10-1611 "Overall Site Plan" and 99-10-007 and 007 "Flow Sheet 1" and "Flow Sheet 2" respectively.

Power Supply
Separate feeders and portable unit substations are provided for the conveying equipment that presents a large load. As noted, these cables would be separate from the mine ring power system, with the cables being run down the conveyor drifts.

Figure 3.9-1 Conveyors \& Shop (From Golder)

Ancillary Loads

At each conveyor drive station a dry type step-down transformer and MCC, all underground mine type skid mounted, are provided for ancillary loads. In addition, lighting transformers and circuit breaker panels are included.

Power and Control Wiring

The supply and installation of local power and control wiring, cable tray, etc. is included.

Conveyor Lighting
An allowance is made for lighting at drive stations and at transfer points, but not along the entire length of the conveyor system.

Control System

The cost for a conveyor PLC control system including cables, pilot devices, PLC hardware and programming is included.

Conveyor Drives

Skid mounted unit substations and motor VFDs, auxiliary MCCs, etc. are included as detailed in the estimate.

Commissioning

The electrical costs associated with conveyor commissioning are included in the estimate.

3.10 Crusher Station Power And Control

General

There are two crushers. The two crusher stations will be separated approximately 400 metres. One will go in a few years later as production ramps up over about 5 years. The cost of the electrics for the second station is shown as sustaining capital in year 5 .

Power Supply

The crusher stations would be fed off of the conveyor power radial system. A 1500 kVA, 25 kV to 4160 volt unit sub would be provided to run each of the crushers with a $1000 \mathrm{kVA}, 600$ volt unit sub to run the apron feeders, crusher auxiliaries, etc.

An electrical room is not required for the switchgear, as it's all underground mine type skid mount equipment.

Power and Control Wiring
The supply and installation of local crusher power and control wiring, cable tray, etc. is included.

Crusher Area Lighting

An allowance is made for local area lighting.

Control System

The cost for a crusher PLC control system including a local control station, cables, pilot devices, PLC hardware and programming is included.

Crusher Drives

Drive motors are assumed to be included with the crusher equipment.

Control House

A pre-fabricated local control house, suitable for underground installation, is included in the estimates.

3.11 Mine Communications

The estimates include a leaky feeder system and a PED (through the earth) system.

A fibre-optic control interconnection is also allowed between the crusher and conveyor control systems and the surface installation. This would also provide telephone (Voip) and internet/email communications links at these locations.

3.12 Pumping

The Mitchell operation will be designed to have the mine water flow to a central collection point underground, then be pumped to surface.

Local mine pumps would be powered from the 600 volt unit substations, the pumps are by mechanical, this cost code covers local wiring only.

3.13 Mine Ventilation Fans

There are three surface fans. Refer to Figure 3.1-4.
It is assumed that the fan motors are included with the fans by others, but this estimate includes the VFDs (variable speed drives) and a local substation (25 kV to 4160 volts) and E-house.

It is understood that mine air heating will likely be done with propane burners. Power supply from the vent fan E-house is included for this, but the remainder of this (substantial) installation is assumed to be by others.

The cost estimate includes bringing power from the mine ring main system to the vent fans and mine air heaters.

3.14 Engineering

The electrical estimate includes the cost of electrical design.

3.15 Construction Management, Purchasing, QA/QC and Commissioning

The electrical estimate includes the cost of construction management, purchasing, QA/QC and commissioning.

4.0 POWER CONSUMPTION

4.1 General

The plant load calculations are based on the load list provided by Golder.

4.2 Load Calculations

The below Excel spreadsheet includes an estimate of the total project running load. This includes all conveyors \#1, 2, 3 and 4. It also includes the second crusher which comes on line 5 years after the start or production. Thus, for the first 5 years the load will be slightly less, by the amount of one crusher system. It is possible that the conveyor loads could also be different.

4.3 Annual Energy Consumption

The Load List (Figure 4.2-1) shows the total annual GW.h energy requirement for the mine. The cost of this power is to be included in the mine OPEX, using the per kilowatt hour power cost as per the published memo for the 2012 PFS update.

4.4 Mitchell Block Cave Load List

The estimated Mitchell electrical load is shown below.

Figure 4.4-1 Mitchell Load List And Calculations												
LOAD NAME	HP	KW	VOLTS	$\begin{array}{\|c\|} \hline \text { AMPS } \\ \mathrm{X} \\ 1.25 \end{array}$	$\begin{aligned} & \hline \text { CABLE } \\ & \text { "S" } \\ & S=\text { Spac } \\ & R=\text { Rand } \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \text { CABLE } \\ \text { "R } \\ \text { ced Fill } \\ \text { dom Fill } \\ \hline \end{array}$	QTY	$\begin{array}{\|c\|} \hline \text { TOTAL } \\ \text { KW } \end{array}$	EFFICIENCY \%	DEMAND FACTOR	UTILIZA TION \%	$\begin{aligned} & \text { RUNNING } \\ & \text { LOAD } \\ & \text { KW } \end{aligned}$
JUMBO		150					4	600	93\%	0.8	75\%	387
BOLTER		56					5	280	92\%	0.8	70\%	170
DRILLS		56					8	448	100\%	0.8	70\%	251
TRAIN - TROLLEY		1000					2	2000	100\%	0.85	75\%	1,275
RAISEBORE MACHINE		242					1	242	91\%	0.75	75\%	150
ROCKBREAKER		37					20	740	92\%	0.8	65\%	418
SHOTCRETER		56					2	112	91\%	0.7	50\%	43
PUMPS		56					6	336	92\%	0.75	80\%	219
SURFACE FANS	6903	5150	4160	1088	1/0		1	5150	94\%	0.9	100\%	4,931
U/G FANS	75	56	600	86.0	2		15	840	92\%	0.9	75\%	616
MAIN COMPRESS.	500	130	4160	27	2		2	260	100\%	0.9	50\%	117
MISC. HEATING		200	600				1	200	100\%	1	50\%	100
SURFACE BUULDIINGS		60	600				1	60	100\%	0.6	100\%	36
APRON FEEDER (FROM CRUSH)	150	112	600				1	112	94\%	0.75	90\%	80
CONVEYOR 1		120	4160	24	2		1	120	94\%	0.8	90\%	92
CONVEYOR 1 DUST COLL. FAN	50	37.3	600				1	37	92\%	0.95	90\%	35
CONVEYOR 1 DUST COLL. SEAL	2	1.5	600				1	1	90\%	0.9	90\%	1
CV1 MAG	20	14.92	600	18.0		8	2	30	94\%	0.8	90\%	23
CV 1 SPILL FEEDERS	50	37.3	600	57.3	6	2	2	75	100\%	0.7	10\%	5
CONVEYOR 2		5025	4160	1097	2		1	5025	94\%	0.8	90\%	3,849
CV2 DUST COLLECOR	50	37.3	600	57.3	6	2	1	37	94\%	0.9	90\%	32
SEAL MOTOR	2	1.5	600				1	2	90\%	0.9	90\%	1
CV 2 SPIIL FEEDERS	75	56	600	84.9	4		1	56	100\%	0.7	10\%	4
CV 2 BELT MAGNET	20	15	600	22.9	10	8	1	15	93\%	0.9	90\%	13
CV2 SPILL FEEDER	50	37	600				1	37	93\%	0.85	10\%	3
CONVEYOR 3		4600	4166	971	250		2	9200	100\%	0.8	90\%	6,624
CV3 DISCH FEEDER	150	111.9	600	166.2	2/0		1	112	100\%	0.8	90\%	81
CV3 DUST COLLECT.	50	37.3	600	57.3	6		1	37	100\%	0.9	90\%	30
CV 3 APRON FEEDER	200	152.8	600	221.5	250		1	153	100\%	0.9	90\%	124
CV3 AIR COMP	10	7.46	600	11.7		10	2	15	100\%	0.9	90\%	12
CV 3 BELT MAGNET	20	14.92	600	23.4		8	1	15	93\%	0.9	90\%	13
CV 3 SPILL FEDER	50	37.3	600	57.3	6		1	37	93\%	0.9	70\%	25
U/G CRUSHER NO. 1	550	410.3	4160	87	2		1	410	93\%	0.9	70\%	278
U/G CRUSH\# 1 LUBE TOTAL	50	37.3	600	57.3	6		1	37	91\%	0.86	70\%	25
CRUSHER\#1 CRANES	30	22.5	600	35.4		6	1	23	100\%	0.5	10\%	1
CRUSH\# 1 DUPL X COMP	15	11.19	600	17.6		10	2	22	93\%	0.95	50\%	11
CRUSH ROCK BREAKER	100	74.6	600	113.3	2		1	75	100\%	0.7	5\%	3
U/G CRUSHER NO. 2	550	410.3	600	630.0	6		1	410	100\%	0.8	10\%	33
U/G CRUSH\# 2 LUBE TOTAL	50	37.3	600	57.3	6		1	37	100\%	0.8	10\%	3
CRUSHER \#1 CRANES	30	22.38	600	34.4	6		1	22	100\%	0.8	10\%	2
CRUSH\#2 DUPLX COMP	15	11.19	600	17.2	6		1	11	100\%	0.8	10\%	1
CRUSH \#2 ROCK BREAKER	100	74.6	600	114.5	6		1	75	100\%	0.8	10\%	6
LTG \& SMAL POWER		250					6	1500	100\%	1	50\%	750
HEAT TRACING		500					1	500	100\%	1	35\%	175
REFUGE STATIONS		30					7	210	100\%	0.6	100\%	126
U/G SHOP		150					1	150	100\%	0.5	100\%	75
MISC. MONO RAILS	5	3.7					6	22	91\%	0.85	1\%	0
MISC. SUMP PUMPS	25	18.7					6	112	91\%	0.85	15\%	16
									100\%			
TOTALS								30,001				21,266
								(connec ted)				RUNNING LOAD, KW
ANNUAL GW.H = RUNNING LOAD X 8760 HRS/YR X PLANT AVAILABILITY (94\%)										ENERGY USEAGE ANNUAL GW.h $=175.11$ MITCHELL BLOCK CAVE		

5.0 ESTIMATE SUMMARY

5.1 General

A PFS level cost estimate was carried out and is summarized below. All sums are in first quarter 2012 Canadian dollars. Refer to the estimating spreadsheet for details including man-hours, etc.

The estimate sums below includes material, equipment and labour.

5.2 Main Power Distribution Into Mine

The main power supply estimate is:
Supply and install, labour, material and equipment:
\$4,100,767

5.3 Service Ramp

No operations phase electrical installation.

5.4 Pre-Conditioning Level Electrical Costs

Supply and install, labour, material and equipment: $\$ 1,954,000$

5.5 Undercut Level

Supply and install, labour, material and equipment: \square
\$1,499,400

5.6 Extraction (Production) Level

Supply and install, labour, material and equipment: $\$ 3,619,700$

5.7 Secondary Breaker Level

Supply and install, labour, material and equipment: \$1,889,425

5.8 Haulage Level Electrical Costs

Supply and install, labour, material and equipment: \$1,801,550

5.9 Conveyor Electrical Costs

Includes for supply and installation of power supply cables, switchgear, motor starters, grounding, lighting, instrumentation, and PLC controls, etc. for Conveyors 1 to 4 inclusive.

Supply and install, labour, material and equipment:
\$10,711,041

5.10 Crusher Station Electrical Costs

Includes for supply and installation of motor starters, switchgear, lighting, instrumentation, and controls, local pre-fab control room, etc.

Crusher Station 1 - Initial Crusher Installation

Supply and install, labour, material and equipment: $\$ \mathbf{\$ 2 , 5 5 4 , 8 7 9}$
Crusher Station 2 - Sustaining Capital, Future Crusher Installation (Not included in Total Initial capital cost)

Supply and install, labour, material and equipment: $\$ 2,554,879$

5.11 Mine Communications Costs

Leaky Feeder and PED system.
Supply and install, labour, material and equipment: \$3,914,868

5.12 Fire Pump Electrical

Supply and install, labour, material and equipment: $\$ 220,000$

5.13 Mine Ventilation \& Air Heating Electrical

Includes for supply and installation of motor starters, switchgear, lighting, instrumentation, and controls, E-house, etc.

Supply and install, labour, material and equipment: $\$ 2,304,105$

5.14 Refuge Stations

Supply and install, labour, material and equipment:
Refuge Station No. 1: $\quad \$ 103,790$
Refuge Station No. 2: $\$ 103,790$
Refuge Station No. 3: $\quad \$ 103,790$

Refuge Station No. 4: $\quad \$ 103,790$

Refuge Station No. 5: \$103,790

Refuge Station No. 6:
\$103,790

Refuge Station No. 7: $\quad \$ 103,790$

5.15 Mine Air Compressor Power Supply

Supply and install, labour, material and equipment: \$513,035

5.16 Engineering And Construction Management (Electrical)

Engineering, construction management and commissioning:

5.17 Grand Total (Electrical, instrumentation \& Communications)

 Initial Direct Installation CostSupply and install, labour, material and equipment: \qquad
\$35,809,299
Initial Indirect Installation Cost

Indirect costs, Electrical:
\$7,588,500
(From above.)
Grand Total, Electrical, Instrumentation And Communications
Total Electrical: $\$ 43,397,799$
Sustaining Capital Total Cost
Crusher Station 2, sustaining capital, 5 years after startup:

28 March 2012

6.0 APPENDIX 1 - PROJECT ESTIMATE SPREADSHEET

The following spreadsheet includes all details of the estimate.

1) COSTS IN 1 ST QUATER 2012 CANADIAN DOLLARS.
2) THE MAIN MINE POWER SUPPLY IS A 25 KV (MATCHES SITE DISTRIBUTION) RING MAIN SYSTEM.

KSM PROJECT-IRON CAP

KSM PROJECT - IRON CAP

KSM PRoject-IRON CAP

KSM PROJECT - IRON CAP

APPENDIX J
 Workforce Breakdown by Year

ur Rate Accuracy	25\%				Promet lear	${ }_{0}^{1}$	${ }_{0}^{2}$	${ }^{3}$	${ }^{4}$	${ }_{0}^{5}$	${ }_{6}$	$?$	$\stackrel{8}{8}$?	${ }_{0}^{10}$	${ }_{0}^{11}$	${ }_{0}^{12}$	${ }_{0}^{13}$	${ }_{0}^{14}$	${ }_{0}^{15}$	${ }_{0}^{16}$		
Oeviomment lasur	Peakt laburu Cuantity		Corracted?	Ammal Coss																			
	1	A	${ }_{\text {No }}^{\text {No }}$		(${ }^{500}$																		
Trechical superierenent	1	$\stackrel{r}{\square}$	${ }_{\text {No }}$		S5,900,000																		
	8	$\stackrel{\square}{\square}$	${ }_{\text {No }}$		S52,24, 5000				8		8			${ }_{8}$	${ }_{8}$	${ }_{8}$	8						
	8	B	No		S15,246,000	2			${ }^{6}$	${ }^{6}$	6			${ }^{2}$			2						
Enginer	${ }^{12}$	$\stackrel{\square}{\square}$	No		S36,811,500																		
	${ }_{8}^{10}$	$\stackrel{+}{\text { ¢ }}$	¢		Sti,				${ }^{10}$	${ }_{8}^{10}$	${ }_{8}^{10}$	${ }^{10}$	${ }_{4}^{10}$	${ }^{10} 4$	4	${ }_{4}$	$\stackrel{10}{4}$	- ${ }_{4}^{10}$	$\stackrel{10}{4}$				
Geologist	\bigcirc	\square°			- ${ }^{\text {sol }}$		4			8	8												
						4			${ }_{8}$		${ }_{8}$		${ }^{8}$	${ }^{8}$	${ }_{8}$	${ }_{8}$	8	${ }^{1}$					
	1	F ${ }_{\text {F }}$	${ }_{\text {No }}^{\text {No }}$	$\$ 123,750$$\$ 181,500$ \$152,100	5742.500	1	1																
Storese erson	8	T	No			4	4		8		${ }^{8}$												
${ }^{\text {Eleatricaia (inhouse) }}$	${ }_{0}^{32}$	$\stackrel{1}{+}$	${ }_{\text {No }}^{\substack{\text { No }}}$	$\begin{aligned} & \$ 193,050 \\ & \$ 193,050 \\ & \$ 193,050 \end{aligned}$	${ }_{528.957,500}^{50}$	${ }^{18}$	${ }^{18}$		${ }^{32}$	${ }^{32}$	${ }_{32}$												
	${ }_{28}$	L	$\stackrel{\text { No }}{\text { No }}$		S24,324,300	${ }^{14}$	19	${ }^{19}$	28	${ }^{28}$	28												
		$\stackrel{L}{4}$	No																				
Shiticepatin	4	${ }^{\text {R }}$	N_{0}	$\begin{aligned} & \$ 198,000 \\ & \$ 181,500 \\ & \$ 163,800 \\ & \$ 163,800 \end{aligned}$	${ }_{\text {S15 S40,000 }}$				${ }^{4}$	4	${ }_{4}^{4}$			${ }^{4}$	4	${ }^{4}$	${ }^{4}$	${ }^{4}$					
	${ }_{12}^{12}$	$\stackrel{\circ}{\circ}$	$\stackrel{\text { No }}{\text { No }}$		Stile					${ }_{12}^{12}$	${ }_{12}$					${ }_{8}^{8}$			8				
	12	$\stackrel{\text { H }}{+}$	${ }_{\text {No }}$							${ }_{12}^{12}$													
Truck opeatar	${ }_{16}^{12}$	$\stackrel{\text { H }}{+}$	$\stackrel{\text { No }}{ }$	$\begin{aligned} & \$ 163,800 \\ & \$ 163,800 \\ & \$ 163,800 \end{aligned}$	S43, 98.40000	4	8		${ }_{12}^{12}$	${ }^{16}$	16	16	${ }^{16}$	12	${ }^{12}$	${ }_{12}$	${ }_{12}$	${ }_{12}$	12				
	${ }_{8}^{8}$	${ }_{-}$	$\stackrel{\text { No }}{\text { No }}$						8		8					${ }_{8}^{8}$	8		8				
${ }^{\text {Asicaro opeator }}$	8	J									8			${ }^{8}$		8							
		${ }^{+}$	$\stackrel{\text { No }}{\text { No }}$		¢						${ }_{32}^{83}$												
						${ }_{10}^{32}$	${ }^{36}$	${ }_{20} 20$	${ }_{28}^{48}$	${ }_{24}^{49}$	${ }_{29}^{44}$	${ }_{\text {cia }}^{4}$	${ }_{169}{ }^{36}$	${ }_{15}^{36}$	${ }_{15}^{36}$	${ }^{365}$	${ }_{15}^{36}$	${ }_{15}^{36}$	${ }_{15}^{36}$	${ }^{36}$	${ }_{1}^{365}$		
									,	,													
					S $5191,168,2000$		${ }_{\text {S24,014, }}^{500}$	${ }_{53,553,350} 5$	${ }_{\text {S46, } 82.3500}^{50}$	${ }_{\text {S48, } 12,7 \text {, } 50}^{50}$	${ }_{548,162,780}^{50}$	S35,519,700	S27,309,900	S23,378,7000	S23,378,7800	${ }_{523,388,700}^{50}$	${ }_{503,387,300}^{50}$	${ }_{523,378,700}^{50}$	S23,378,780		${ }_{523,378,700}^{50}$		
					${ }_{\text {S154,720.50 }}^{\text {so }}$		S6,003.600 50	${ }_{58,388388}^{50}$	S11,713,988	S12,000, 588	S12000.6880	58,879,925				${ }_{\text {s, } 844,6,55^{50}}^{50}$					${ }_{5}^{5,844,655}$		
															${ }^{\text {so }}$	sol		So					
	1	$\stackrel{\text { a }}{ }$	$\frac{\mathrm{No}}{\mathrm{No}}$		cis										1			1					
		$\stackrel{\text { a }}{ }+$	$\xrightarrow{\text { No }}$ No	cos	(3,564,000								1	1	1	1	1	,	1				
	${ }_{5}^{2}$	${ }_{\square}^{8}$	$\frac{\mathrm{No}}{\mathrm{No}}$		$\begin{aligned} & \$ 231,000 \\ & \$ 189,750 \\ & \$ 123,750 \end{aligned}$	${ }_{\text {S }}^{512.993,750}$									2	${ }^{2}$		2					
Tectuologit	${ }_{10}$	$\stackrel{\text { F }}{ }$	$\stackrel{\text { No }}{\text { No }}$										${ }^{5}$	${ }_{10} 10$	10	10	10	10	${ }^{10}$				
		$\stackrel{\mathrm{F}}{\square}$	$\frac{\mathrm{No}}{\mathrm{No}}$		${ }_{514,55,520}$								8	8	${ }^{8}$	${ }^{8}$	8	8	8				
	${ }_{4}^{4}$	\bigcirc	$\stackrel{\text { No }}{\text { No }}$												4	4	4	${ }_{4}^{4}$		${ }_{4}^{4}$			
Shatitapain		R	${ }_{\text {No }}$	$\begin{aligned} & \$ 198,000 \\ & \$ 181,500 \\ & \$ 163,800 \end{aligned}$								${ }_{\text {12 }}^{12}$	$\frac{12}{12}$	${ }_{12}^{12}$	$\frac{12}{12}$	${ }^{12}$	${ }^{12}$	${ }^{12}$	${ }^{12}$				
Losetrosperator	${ }_{40}^{12}$	${ }_{+}{ }^{\text {H }}$	${ }_{\text {No }}$									16	${ }_{16}^{16}$	${ }^{24}$	${ }_{32}$	${ }_{40}^{12}$	${ }_{40}^{12}$	${ }_{40}^{40}$	${ }_{40}^{12}$	${ }^{40}$			
	${ }_{8}^{8}$	$\stackrel{H}{+}$	$\stackrel{\text { No }}{\text { No }}$											${ }_{8}^{8}$		${ }^{8}$	${ }_{8}^{8}$		${ }_{8}^{8}$				
Block Holer opeatar	8	${ }_{+}^{+}$		cisicisio										8									
Cusurerc Conevero operator	${ }_{20}$	${ }_{-}{ }^{\text {H }}$	No									16	${ }^{16}$	${ }^{16}$	${ }^{16}$	${ }^{16}$	${ }^{16}$	${ }^{16}$	${ }^{16}$	${ }_{20}$			
Production ofiler	${ }_{8}^{24}$	$\stackrel{\text { H }}{+}$	$\xrightarrow{\text { No }}$ No	$\begin{aligned} & \$ 163,800 \\ & \$ 126,750 \\ & \$ 152,100 \end{aligned}$									${ }_{8}^{24}$	${ }^{\frac{24}{84}}$	${ }_{8}^{24}$	${ }_{8}^{24}$	${ }_{8}^{24}$	${ }_{8}^{24}$	${ }_{8}^{24}$	${ }_{8}^{24}$			
Contserion	32 10												${ }^{10}$	${ }^{32}$	${ }^{32}$	${ }^{32}$	$\underset{ }{32}$		${ }^{32}$	${ }_{12}{ }^{12}$			
(1)																							
Subtotal Cost (Contractor)Subtotal Contingency (Inhouse)Subtotal Contingency (Contractor)						${ }_{5255,136,613}^{50}$																	
						sol	${ }_{50}$		¢0					S1,04, ${ }_{\text {so }}$	${ }_{\text {sin }}$		Sil, 8,480			${ }^{51,853,250}$	${ }_{51}^{51,36.263}$		
$\begin{aligned} & \text { TOTAL IN-HOUSE EMPLOYEES } \\ & \text { TOTAL CONTRACTOR EMPLOYEES } \\ & \text { TOTAL EMPLOYEES } \end{aligned}$					${ }_{489}$	${ }^{110}$	${ }^{142}$	200	284	${ }^{292}$	${ }^{292}$	489	${ }^{434}$	418	426	${ }^{434}$	434	434	${ }^{134}$	438	${ }^{422}$		
						110	122	200	289	292	292		${ }^{434}$	418	426	434	434	434	${ }^{434}$	${ }_{488}$			
TOTAL COST (INHOUSE) TOTAL LABOUR COST					$\cos _{25 \times}^{25 \times}$	S18,941,4000	S24,014,4000	${ }_{53,553,350}^{500}$	546.852 .350	548,162,730	$588,162,500$	578,364,3.30	50,136,50.50	S66,515,580	S68882, 1.150	S70,136,550	50,136,5501	57.13 .550	570,136,550	500,99,7,700	${ }_{568,763,750} 50$		
					S1, 75, 714,4,50]	S18,991,400	S24,014,400		$546.852,350$	548,162,750	S88, 162,750	578,36,5,30	50,13,5.501	S67,515,500	S66,826,150	50,13,5,501	570,136,500	570,136,500	50,0136,501	50,991,7501	S68,73,3,50		
TOTAL CONTINGENCY (INHOUSE)TOTAL CONTINGENCY (CONTRACTOR)TOTAL CONTINGENCY					S639,928,683	$54,75,530$	56003,600]	58.888,3880	511,71,3088	S12,000,688	S12000, 588	\$19,586.588	\$17,54.1.188	S16.877.9988	S17,206,588	S17,54.1.188	S17,54.4.138	S17,54, 1.188	S17,54.1788	S17,697,988	[$517,190,988$		
					\$339,928,683	S4,735,300	56,03,6000	58,388,388	511,71,088	512,000,888	\$12,000.688	519,566,588	S17,54,138]	51,687,988	S17,206,588]	S17,584,188]	S17,543,138	S11, 33,138	517,53, 188	S17,98,988]	[17,10,988		

APPENDIX K
 Development and Production Schedules by Year

DEvELOPMENT SCHEDULE	Project Year		33	34	35	360	37	380	39	400	${ }_{41}^{4}$	42	430	440	450	
Development Name																
Conveyors																
Conveyors		4,644														
Subtotal (Inhouse)	0\%	so	so	50	50	50	50	50	so	50	50	50	50	50	50	
Subtotal (Contractor)Capital Contingency (Inhouse)		\$28,675,842	S0	S0	50	50	50	50	So	50	50	50	50	So	50	
			so	50	50	50	50	50	50	50	50	50	50	50	50	50
Capital Contingency (Contractor)		\$7,168,960	S0	50	S0	S0)	50	S0	S0	sol	S0	50	S0	50	50	
		6,342														
Subtotal (Inhouse)subtoal (Contractor)		so	so	50	S0	50	50	50	so	50	50	50	50	S0	50	
		\$39,164,888	so	so	50	so	50	50	so	50	50	50	so	so	50	
Capital Contingency (Inhouse)		so	S0	50	50	50	50	50	S0	50	50	50	50	50	50	
Capital Contingency (Contractor)		\$9,791,222	S0	50	S0	50	50	50	S0	S0)	50	50	S0	50	50	
Drawpoints																
Drawpoints		42,957														
Subtotal (Inhouse)Subtoal (Contractor)		\$114,222,711	S0	50	50	50	50	50	S0	50	50	50	50	S0	50	
		so	S0	50	50	50	50	50	S0	50	50	50	so	S0	50	
Capital Contingency (Inhouse) Capital Contingency (Contractor)		\$19,146,169	so	50	so	50	so	50	so	so	so	50	so	so	50	
		sol	sol	sol	sol	sol	50	50	sol	sol	so	sol	sol	sol	so	
Extraction Drits																
Extraction Difits ${ }^{\text {a }}$ 20,36																
Subtotal (Inhouse)Subtotal (Contractor)		\$84,333,363	Sol	so	50	50	50	50	S0	50	S0	50	S0	S0	S0	
		so	so	50	50	50	50	50	so	50	50	50	S0	50	50	
Capital Contingency (Inhouse) Capital Contingency (Contractor)		\$13,870,322	S0	50	50	S0	50	50	S0	50	50	S0	so	S0	50	
		sol	S0	sol	sol	S0)	50	S0]	S0	50	S0	S0	S0	S0	50	
Secondary Breakege Level																
Level Access		3,584														
$\frac{\text { Rockbreaker Chambers }}{\text { Subtoal (Inhouse) }}$		784	0	0	0	0										
		\$9,104,923	Sol	so	S0	50	50	50	So	50	50	50	50	S0	50	
Subtotal (Contractor)		so	so	so	so	so	50	50	so	50	so	so	so	so	so	
Capital Contingency (Inhouse) Capital Contingency (Contractor)		\$1,634,359	so	50	s0	50	50	\$0	so	50	50	\$0	so	\$0	50	
		sol	sol	sol	sol	s0)	50	S0	sol	sol	s0)	sol	sol	sol	so	
Ventilation infrastructure																
Exhaust Tunnels		1,717														
		4,908														
Subtotal (Inhouse)Subtotal (Contractor)		\$14,014,367	S0	50	50	50	50	50	50	50	50	50	50	50	50	
Capital Contingency (Inhouse)		So	so	so	50	50	50	50	S0	50	S0	50	So	S0	S0	
		\$2,214,662	so	so	so	50	50	so	50	50	so	50	so	so	50	
Capital Contingency ((ontractor)		Sol	sol	Sol	S0	S0)	50	50	so	sol	S0	S0	S0	S0	S0	
Undercut Excavation																
Undercut Excavation		20,691	0	0	0											
Subtotal (Inhouse) 19%		\$24,764,987	So	so	50	S0	50	50	so	50	50	50	so	so	50	
Subtotal (Contractor) 0		50	S0	50	50	50	50	50	50	50	50	50	50	50	50	
Capital Contingency (Inhouse) Capital Contingency (Contractor)		\$4,681,045	so	50	s0	50	50	\$0	50	50	\$0	50	so	50	50	
		sol	S0	50]	So	50	S0	So)	So	S0)	50	S0	S0	S0	50	
Haulage Level																
Haulage Level		5,493	0	0	0											
Subtotal (Inhouse) 15%		\$9,252,894	S0	So	50	50	50	50	50	50	${ }_{50}$	50	So	S0	$\stackrel{50}{50}$	
Subtotal (Contractor) Capital Contingency (Inhouse)		so	so	50	50	50	50	50	50	50	50	50	so	S0	50	
		\$1,387,934	S0	50	50	50	50	50	S0	50	50	50	50	50	50	
Capital Contingency (Contractor)		sol	sol	50\|	50	S0	50	50	sol	50	50	50	50	S0	50	
Maintenance Area (a...a. the shop)																
Maintenance Area (a.k.a. the shop)		1,361	0	0	\bigcirc											
Subtotal (Inhouse)		\$8,357,625	sol	50	so	S0	S0	so	S0	so	So	S0	so	S0	50	
		50	S0	so	S0	50	50	50	50	50	S0	50	S0	S0	${ }_{50}$	
		\$1,429,363	S0	S0	50	50	50	so	50 50	S0	50	50	S0	so	$\stackrel{50}{50}$	
Capital Contingency (Contractor)		sol	S0	50	50	50	50	50	S0	S0)	50	50	S0	S0	50	
Preconditioning Level																
Preconditioning Level		11,754	0	0	0											
Subtotal (Inhouse)Subtoal (Contractor)		\$14,067,977	so	so	so	so	50	50	so	so	So	S0	so	so	so	
		so	so	50	so	50	50	50	so	50	50	50	50	S0	50	
Capital Contingency (Inhouse) Capital Contingency (Contractor)		\$2,659,111	S0	50	50 50	50 50	50	50	S0	S0	50	50	50	S0	S0	
		sol	S0	501	S0)	S01	50	50	S0	S0)	\$0	50	sol	so)	so	
Perimeter																

Mitchell Production Schedule - April 4, 2012

Period	Current tons	To date	Dil \%	AUIDW	CUIDW	AGIDW	MOIDW	NSR	AUREC	AGREC	CUREC	MOREC	AUEQ
Yr1	909,991	909,991	0.0	1.00	0.32	6.18	16.54	52.5	78.74	75.53	86.86	1.96	1.831788
Yr2	3,056,765	3,966,757	0.0	0.81	0.26	6.35	15.57	42.4	77.43	73.88	85.13	1.77	1.470158
Yr3	5,825,580	9,792,336	0.0	0.68	0.22	5.88	14.99	35.6	76.26	70.82	83.73	1.54	1.241112
Yr4	9,408,546	19,200,882	0.1	0.63	0.20	5.26	15.67	32.5	75.44	67.90	82.75	2.03	1.145608
Yr5	13,992,188	33,193,070	1.7	0.62	0.20	4.64	16.62	31.4	73.76	64.85	80.86	2.76	1.11697
Yr6	18,827,016	52,020,088	7.2	0.58	0.18	4.09	16.53	29.2	68.95	59.96	75.51	3.00	1.047027
Yr7	20,000,000	72,020,088	9.7	0.54	0.18	3.83	16.53	27.6	66.56	57.54	72.74	3.00	0.992201
Yr8	20,000,000	92,020,088	9.5	0.53	0.17	3.73	17.04	26.7	65.70	56.61	71.68	3.32	0.964716
Yr9	20,000,000	112,020,088	9.3	0.52	0.17	3.61	17.79	26.0	64.50	55.46	70.28	3.89	0.940427
Yr10	20,000,000	132,020,080	9.4	0.51	0.16	3.45	19.07	25.5	63.49	54.40	69.07	4.63	0.920918
Yr11	20,000,000	152,020,080	8.6	0.50	0.16	3.29	21.58	25.1	63.15	53.89	68.64	5.82	0.908372
Yr12	20,000,000	172,020,080	8.5	0.50	0.16	3.15	24.66	25.1	63.69	53.94	69.23	7.16	0.911902
Yr13	20,000,000	192,020,080	8.4	0.51	0.16	3.07	27.43	25.2	64.42	54.24	69.98	8.56	0.917992
Yr14	20,000,000	212,020,080	9.0	0.50	0.16	3.03	28.87	25.0	64.81	54.30	70.36	9.66	0.914255
Yr15	20,000,000	232,020,080	8.2	0.50	0.16	3.09	31.35	25.2	65.76	55.12	71.35	11.29	0.918923
Yr16	20,000,000	252,020,080	9.4	0.51	0.16	3.15	33.03	25.3	65.58	55.16	71.18	12.43	0.921307
Yr17	20,000,000	272,020,064	10.0	0.50	0.16	3.29	37.22	25.4	65.08	55.50	70.65	14.45	0.918051
Yr18	20,000,000	292,020,064	11.2	0.50	0.16	3.40	41.98	25.2	64.28	55.51	69.86	16.36	0.907595
Yr19	20,000,000	312,020,064	10.4	0.50	0.16	3.53	49.62	25.3	64.82	56.41	70.47	19.21	0.905653
Yr20	19,999,998	332,020,064	11.0	0.49	0.16	3.56	53.24	25.0	64.39	55.99	70.04	20.83	0.893442
Yr21	20,000,000	352,020,064	8.8	0.51	0.16	3.83	56.17	26.0	65.90	57.64	71.83	22.53	0.922734
Yr22	20,000,000	372,020,064	7.6	0.53	0.16	3.78	55.39	26.5	66.15	57.64	72.33	23.67	0.939893
Yr23	19,029,696	391,049,760	8.2	0.54	0.16	3.38	49.80	26.5	64.91	55.41	71.25	23.33	0.946459
Yr24	16,919,538	407,969,312	10.0	0.54	0.16	2.88	45.02	26.0	64.44	53.20	70.55	22.46	0.942323
Yr25	13,517,387	421,486,688	12.4	0.54	0.15	2.49	45.63	25.3	63.41	50.63	68.78	21.86	0.921896
Yr26	8,936,915	430,423,616	14.4	0.55	0.13	2.15	52.09	24.5	62.30	47.97	66.55	22.80	0.895906
Yr27	4,734,489	435,158,112	16.0	0.55	0.12	1.91	60.89	23.5	61.11	45.78	64.26	25.52	0.86083
Yr28	2,067,905	437,226,016	19.3	0.55	0.10	1.64	66.12	22.2	58.43	42.89	60.50	27.50	0.815161
Yr29	648,561	437,874,560	26.5	0.50	0.09	1.45	63.94	20.0	53.25	38.96	54.58	26.57	0.735691
Yr30	91,702	437,966,272	33.5	0.46	0.08	1.40	58.27	17.8	48.23	36.10	48.64	24.22	0.654506

APPENDIX L
 Capital Cost Schedule by Year and an Example of Development Cost Calculation

COST SCHEDULE														
			Project Year Year		$\begin{gathered} 12 \\ 0 \end{gathered}$	13 0	$\begin{aligned} & 14 \\ & 0 \end{aligned}$	${ }_{0}^{15}$	$\begin{gathered} 16 \\ 0 \end{gathered}$	17	18 0	19	$\begin{aligned} & 20 \\ & 0 \end{aligned}$	$\begin{gathered} 21 \\ 0 \end{gathered}$
PHYsICALS	Unit													
Production Ore	tonnes			437,966,277	18,827,016	20,000,000	20,00,000	20,000,000	20,000,000	20,00,000	20,000,000	20,000,000	20,00,000	20,00,000
Production Incremental	tonnes							0		0	0			
Production Waste	tonnes				0	0	0	0	0	0	O	O		
Production Total	tonnes			437,87, ${ }^{\text {a }}$	18,827,016	20,000,000	20,000,000	20,000,000	20,000,000	20,000,000	20,00,000	20,000,000	20,000,000	20,000,000
					0.58	0.54	0.53	0.52	0.51	0.50	0.50	0.51	0.50	0.50
					18.37\%	17.54\%	17.10\%	16.59\%	16.11\%	15.84\%	15.97\%	16.09\%	16.05\%	16.18\%
					4.09	3.83	3.73	3.61	3.45	3.29	3.15	3.07	3.03	3.09
					16.53	16.53	17.04	17.79	19.07	21.58	24.66	27.43	28.87	31.35
Lateral Development	m			130,404	3,600	3,600	3,610	3,600	3,600	3,600	3,182	2,961	3,391	,500
Vertical Development	m			12,330	-		0	0	0	0	2,158	2,550	92	
Total Development	m			142,735	3,600	3,600	3,610	3,600	3,600	3,600	${ }_{5,339}$	5,511	3,483	3,600
CAPITAL COSTS - Capex		Accuracy (\%)												
In house														
Development Equipment			20\%	\$59,473,839	\$4,369,403	\$1,650,393	\$381,898	\$0	\$784,987	\$4,369,003	\$0	\$381,898	\$0	\$403,089
Production Equipment			20\%	\$139,759,500	\$6,70,500	\$3,720,000	\$3,720,000	\$12,93,000	\$9,209,500	\$3,720,000	\$3,720,000	\$3,720,000	\$6,920,000	\$6,79,500
Support Equipment			20\%	\$45,131,214	\$1,005,708	\$2,495,934	\$594,300	\$3,43,350	so	\$1,015,708	\$2,495,934	\$359,300	\$3,134,882	\$530,468
Stationary Equipment			20\%	\$543,696,100	\$21,00,000	\$21,00,000	\$21,00,000	\$21,00,000	\$21,100,000	\$3,577,000	so	so	\$1,060,000	\$57,827,000
Additional Equipment//nfrastructure			25\%	\$103,413,900	so	so	so	so	so	\$96,600	so	so	so	so
Contractor														
Development Equipment			\%	S0	so									
Production Equipment			\%	50	so									
Support Equipment			\%	50	\$0	\$0	so							
Stationary Equipment			0\%	50	50	S0	S0	so	so	S0	S0	S0	So	
Total in house captal costs			21\%	\$881,474,553	S33,094,611	\$28,86,327	\$25,96, 198	\$37,36, 350	S31,094,487	543,78,771	$56,215,934$	S4,461,198	S11,114,882	S65,47,057
TOTAL CAPTAL COSTS			-	so		so	so	50	so	so	50	so	50	so
			21\%	\$891,474,553	\$33,094,611	\$28,86, 327	\$25,96, 198	\$37,36, 350		\$43,78,771	56,215,934	\$4,461,198	\$11,114,882	\$65,47,057
Contractor			0\%	539,40, 50	\$0	\$0	\$0	so						
Variale Development Costs														
In house			18\%	\$505,661,529	\$23,06, ,30	\$20,082,188	\$22,420,096	\$20,93,841	\$11,680,311	\$12,050,084	\$20,74,094	\$23,04,040	\$10,31, ${ }^{\text {con }}$	\$10,710,971
Contractor			25\%	\$67,840,730	\$0	so	so	so	so	so	so	\$0	so	so
Labour														
In house			25\%	\$619,168,200 50	\$23,378,700	\$23,378,700 $\$ 0$	\$23,378,700 $\$ 0$	$\xrightarrow{523,378,700}$	$\underset{\text { S23,378,700 }}{\substack{\text { S0 }}}$	S23,378,700 50	S23,378,700 50	$\$ 23,378,700$ 50	$\$ 23,378,700$ $\$ 0$ 50	$\$ 23,378,700$ $\$ 0$
TTTAL IN HOUSE DEVELOPMENT COSTS			22\%	\$1,164,231,357	\$46,44, 730	\$43,46,888	\$45,798,96	\$44,29,541	\$35,059,011		544,15, 794	\$46,42, 740	\$33,693,307	\$34,08,6771
			25\%	\$67,840,730		so	so		so	so	so	so	50	50
			22\%	\$1,232,072,087	546,446,730	\$43,46,888	545,798,996	\$44,292,541	\$35,05,011	\$35,428,784	\$44,152,794	\$46,421,740	\$33,693,07	\$34,09,671
		Accuracy (\%)												
Fixed Production Costs						\$6,729,669	\$6,945,550	\$6,935,625	56,935,625	\$6,903,674	\$6,882,374	282,374	274	, 37
in house			${ }_{0 \%}^{22 \%}$	\$156,59, $\frac{899}{}$	${ }_{\text {56, }}^{5613,787}$	56,729,699	\$6,945,550	\$6,93, ${ }_{\text {S0 }}$	\$6,935,625	56,903,674	50,882,344	50,882,344	56,882,374	50,882,344
Variable Production Costs					7\%	7\%	7\%	7\%	7\%	7\%	7\%	7\%	7\%	7\%
${ }^{\text {In }}$ P house			24\%	\$890,682,885	\$38,056,151	\$40,393,617	\$41,632,083	\$41,692,711	541,697,998	\$41,692,711 44	\$41,692,711	\$40,400,087 448	\$40,401, 284	\$40,400,087
${ }_{\text {Percentage }}^{\text {Labour }}$ (${ }^{\text {a }}$														
${ }_{\text {l }}^{\text {In house }}$			25\%	$\$_{1,140,546,450}$	\$46,757,850	\$46,757,850	\$46,757,850	\$47,413,550	\$45,38, ${ }^{\text {,55 }}$	\$45,385,050	\$45,38, ${ }^{\text {,55 }}$	\$45,385,050	\$45,38, ${ }^{\text {,55 }}$	\$45,35, ${ }^{\text {a }}$ (
			\%		\$0	so		\$0	\$0	so	so	so	so	
				52.1\%	51\%	50\%	49\%	49\%	48\%	48\%	48\%	49\%	49\%	49\%
Total in house production costs			24\%	\$2,18,825,164	\$91,32, 788	\$93,88, 136	\$95,335,483	\$96,041,386	594,018,173	\$93,981,435	\$93,960,135	\$92,667,511	\$92,668,708	\$92,66, 511
TOTAL CONTRACTOR Production costs				501	50	${ }^{\text {S0 }}$	50	50	S0	50	50	50	50	50
TOTAL PRODUCTION COSTS			24\%	\$2,187,825,164	S91,327,788	\$93,88, 136	\$95,35, 483	\$96,041,386	¢94,018,173	\$93,981,435	S93,960, 335	\$92,667,511	¢92,668,708	\$92,667,511
			Total Costs ${ }^{\text {a }}$ (Accuracy (\%)											
TOTAL IN HOUSE COST TOTAL CONTRACTOR COST			${ }^{23 \%}$	\$4,243,531,074	\$170,869,129	\$166,208,351	\$166,830,477	\$177,694,277	\$160,171,671	\$173,188,930	\$144,328,862	\$143,55,449	\$137,476,897	S192,227,239
			${ }_{23 \%}^{25 \%}$		\$170,869,129	\$166,208,551	\$166,830,477 ${ }_{\text {S }}$		¢160,171,6011	[173,188,930 ${ }^{\text {¢ }}$	¢0	[143,50,449	S0 S137,47, 8 ¢	S0 $\$ 192,227,239$
TOTAL IN HOUSE CONTINGENCY TOTAL CONTRACTOR CONTINGENCY total contingency				$5967,416,874$	588.953804	\$378891,266	\$38,033,095	\$40,509764	536,515,057	\$39,482,660	\$32,903,300	\$32.725842	531,341227	909
				S16,960,182	53, 50	537,81,266	538,03, 50	\$40,50, 50	\$36,51, 50	50	\$3, 50	\$32,72, ${ }_{\text {S }}$ \%	\$0	54,82, \$0
				¢984,377,056	\$39,013,24	\$37,94, 870	\$38,090,914	\$40,571,349	\$36,50,569	\$39,542,683	\$32,95, 321	\$32,77,593	\$31,38,873	\$43,88, 530
TOTAL COST PER TONNE (ORE) - Capital \& Operating TOTAL COST PER TONNE (ORE) - Operating				\$12.09	\$11.15	\$10.21		\$10.91	59.84	\$10.64	58.86	58.82	\$8.44	\$11.81
				\$5.00	54.85	54.69	54.77	54.80	54.70	${ }_{54.70}$	54.70	54.63	54.63	54.63

COST SCHEDULE															
			Project Year Year		$\begin{gathered} 22 \\ 0 \end{gathered}$	$\begin{gathered} 23 \\ 0 \end{gathered}$	$\begin{gathered} 24 \\ 0 \end{gathered}$	$\begin{gathered} 25 \\ 0 \end{gathered}$	$\begin{gathered} 26 \\ 0 \end{gathered}$	$\begin{gathered} 27 \\ 0 \end{gathered}$	$\begin{aligned} & 28 \\ & 0 \end{aligned}$	$\begin{aligned} & 29 \\ & 0 \end{aligned}$	$\begin{gathered} 30 \\ 0 \end{gathered}$	$\begin{gathered} 31 \\ 0 \end{gathered}$	$\begin{aligned} & 32 \\ & 0 \end{aligned}$
PHYsICALS	Unit														
Production Ore	tonnes			437,966,277	20,00,000	20,000,000	20,00,000	20,00,000	19,999,998	20,000,000	20,000,000	19,029,966	16,919,538	13,517,387	8,936,915
Production Incremental	tonnes						0	0	\bigcirc	0	0	0	0	0	
Production Waste	tonnes				O	O	O	O	0	0	0	0	0	0	
Production Total	tonnes			437,87, ${ }^{\text {a }}$	20,000,000	20,00,000	20,000,000	20,000,000	19,999,998	20,000,000	20,00,000	19,02, 696	16,919,538	13,517,387	8,936
										26.03	26.50	26.48	26.04	25.30	24.52
					0.51	0.50	0.50	0.50	0.49	0.51	0.53	0.54	0.54	0.54	0.55
					16.24\%	16.18\%	15.99\%	16.02\%	15.78\%	16.06\%	15.98\%	15.81\%	15.60\%	14.75\%	13.43\%
					3.15	3.29	3.40	3.53	3.56	${ }^{3.83}$	${ }^{3.78}$	${ }^{3.38}$	2.88	2.49	2.15
					33.03	37.22	41.98	49.62	53.24	56.17	55.39	49.80	45.02	45.63	52.09
Lateral Development	m			130,404	2,569	0	0	0	0	0	0	0	0	0	0
Vertical Development	m			12,330		23	79	208	0	0	0	0	0	0	
Total Development	m			142,735	2,569	23	79	208	0	0	0	0	0	0	0
CAPITAL Costs - CAPEX		Accuracy (\%)													
In house															
Development Equipment			20\%	\$59,473,839	\$784,987	\$381,898	\$0	\$381,898	\$403,089	so	\$381,898	\$381,898	\$0	\$4,884,987	\$0
Production Equipment			20\%	\$139,759,500	\$3,720,000	\$3,720,000	\$3,720,000	\$6,920,000	\$9,209,500	\$3,720,000	\$3,720,000	\$3,720,000	\$9,420,000	\$6,920,000	so
Support Equipment			20\%	\$45,131,214	\$1,005,708	\$2,995,934	\$359,300	\$3,195,350	\$235,000	\$1,250,708	\$1,311,176	\$2,730,934	\$233,000	\$2,720,232	s0
Stationary Equipment			20\%	\$543,696,100	\$0	so	so	\$0	\$100,000	\$57,87,000	so	so	\$1,06,000	\$34,32,000	\$100,000
Additional Equipment//nfrastructure			25\%	\$103,413,900	\$0	\$0	so	\$0	so	so	so	so	so	\$0	so
Contractor															
Development Equipment			\%\%	50	\$0	so									
Production Equipment			0\%	50	\$0	so	\$0								
Support Equipment			0\%	50	\$0	\$0	so	so	so	\$0	\$0	so	so	\$0	\$0
Stationary Equipment			\%	50	50	S0	50	50	\$0	S0	S0	so	S0	so	
Total in house captal costs			21\%	\$881,474,553	\$5,520,695	56,597,832	54,079,300	\$10,497,248	59,947,589	\$62,847,708	\$5,413,074	$56,832,832$	\$10,715,000	548,85, 219	\$100,000
Total contractor capital costs			,	so	50	so	50	so	50	so	so	so	so	50	50
TOTAL CAPITAL COSTs			21\%	\$891,474,553	\$5,520,695	\$6,597,832	\$4,079,300	\$10,497,248	59,947,589	\$62,847,708	\$5,413,074	$56,832,832$	\$10,715,000	$548,852,219$	\$100,000
Fixed Development Costs															
Contractor			0\%	¢0	so	so	so	\$0	so	so	so	so	S0	so	\$0
Variable Development Costs															
In house			18\%	\$505,661,529	\$7,643,542	\$114,612	\$396,383	\$1,044,165	so	\$0	\$0	\$0	so	\$0	
Contractor			25\%	\$67,840,730	\$0	so	so	\$0	so						
Labour															
${ }_{\text {l }}^{\text {l }}$ ¢ house			25\%	\$619,168,200 50	\$23,074,500 50	\$965,400	\$965,400 S0	\$965,400 S0	\$965,400 50	\$965,400	\$965,400 50	\$965,400	\$965,400	\$965,400	\$965,400
Total in house development costs			22\%	\$1,164, 231,357	\$30,718,042	\$1,080,012	\$1,361,783	\$2,09,565	5965,400	\$965,400	\$965,400	\$965,400	\$965,400	5965,400	5965,400
TOTAL CONTRACTOR DEVELOPMENT COSTS			25\%	\$67,840,730			So	50	so	so	so	so	so	50	
TOTAL DEVELIPPMENT COSTS			22\%	\$1,232,072,087	\$30,718,042	\$1,880,012	\$1,361,783	\$2,009,565	\$965,400	\$965,400	\$965,400	\$965,400	\$965,400	\$965,400	5965,400
PRODUCTION COSTS - OPEX		Accuracy (\%)													
Fixed Production Costs															
${ }_{\text {l }} \mathrm{l}$ In house			$\underset{ }{22 \%}$	\$156,595,899	56,882,374	${ }_{\text {s6,624,467 }}^{\text {s0 }}$	\$6,624,467 ${ }_{\text {\$0 }}$	S6,624,467 \$0	S6, $24,4,467$ $\$ 0$	\$6,624,467 ${ }_{\text {s0 }}$	${ }_{\text {S6,624,467 }}^{\text {s0 }}$	$\underset{\text { s6,327,399 }}{\substack{\text { ¢ }}}$	56,327,399	\$5,815,507	$\underset{\substack{\text { \$5,402,38 }}}{\text { \$0 }}$
Percentage				7.2\%	7\%	7\%	7\%	7\%	7\%	8\%	8\%	8\%	8\%	9\%	11\%
Variable Production Costs															
${ }^{\text {In h house }}$ Percentage			24\%	$\frac{5890,682,815}{40.7 \%}$	$540,400,087$ 44%	\$40,400,087 43%	S40,401,284 43%	$540,400,087$ 46%	$540,400,083$ 46%	\$40,400,087 46%	\$40,350,041 47%	$\$ 38,384,471$ 47%	\$34,218,900	\$27,444,840	$\begin{aligned} & \$ 18,167,522 \\ & 37 \% \end{aligned}$
tabur															
In house			25\%	\$1,140,546,450	\$45,385,050	\$46,408,050	\$46,408,050	\$41,462,850	\$41,462,850	\$40,152,450	\$39,13,450	\$37,172,850	\$35,429,250	\$31,689,150	\$25,73, $\mathbf{S}^{\text {c50 }}$
${ }_{\text {Contractor }}^{\text {Percentage }}$			0\%		\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
				52.1\%	49\%	50\%	50\%	47\%	47\%	46\%	45\%	45\%	47\%	49\%	52\%
			24%	\$2,187,85,164	\$92,667,511	\$93,432,604	\$93,43, 5 ,81	S88,487,404	S88,487,400	S87,177,004	S86,112,958	S81,884,720	\$75,975,549	S $56,999,497$	\$49,302,840
TOTAL CONTRACTOR PRODUCTION COSTS				500	50	50	\$93438801	\$80	50	50	50	50	57597549	S0	50 54932840
TOTAL PRODUCTION COSTS			24\%	\$2,187,825,164	\$92,667,511	593,43, 604	¢93,43, 8 801	\$88,487,404	588,48,400	\$87,17,004	\$86,112,958	\$81, 884,720	\$75,97, 549	S64,94, 497	\$49,32, 840
Total costs Accuracy (\%)		Accuracy (\%)													
TTTAL In Houst cost			${ }_{25 \%}^{23 \%}$	\$4,243,531,074	\$128,900, 248	\$101,110,448	\$98,874,884	\$100,994,217	599,400,389	\$150,990,112	\$92,491,432	\$89,682,952	\$87,655,949	\$114,767,116	\$50,368,240
Total contractor cost			25\%	\$67,840,730	50	so	50	50	so	s0	so	so	so	50	
Total cost			23\%	\$4,311,371,804	\$128,906,248	\$101,110,448	\$99,874,884	\$100,994,217	599,400,389	\$150,990,112	\$92,491,432	\$88,682,952	\$87,65,949	\$114,767,116	\$50,368,240
TOTAL IN HOUSE CONTINGENCY TOTAL CONTRACTOR CONTINGENCY TOTAL CONTINGENCY				\$967,416,874	\$29,387,337	\$23,05,604	\$22,540,952	\$23,024,106	\$22,660,754	\$34,421,895	\$21,085,688	\$20,445,426	\$19,983,321	\$26,16,976	\$11,482,674
				\$16,960,182	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
				¢984,377,056	\$29,432,013	\$23,08, 547	\$22,575,220	\$23,059,108	\$22,695,204	\$34,474,225	\$21,117,743	\$20,476,508	\$20,013,701	\$26,203,75	\$11,500,131
TOTAL COST PER TONNE (ORE) - Capital \& Operating TOTAL COST PER TONNE (ORE) - Operating				\$12.09	\$7.92	56.21	56.07	56.20	56.10	59.27	55.68	55.79	56.36	\$10.43	56.92
				\$5.00	54.63	54.67	\$4.67	54.42	\$4.42	\$4.36	54.31	S4.30	54.49	54.80	\$5.52

APPENDIX M
 OPEX Calculation and Operating Cost by Year

At Golder Associates we strive to be the most respected global company providing consulting, design, and construction services in earth, environment, and related areas of energy. Employee owned since our formation in 1960, our focus, unique culture and operating environment offer opportunities and the freedom to excel, which attracts the leading specialists in our fields. Golder professionals take the time to build an understanding of client needs and of the specific environments in which they operate. We continue to expand our technical capabilities and have experienced steady growth with employees who operate from offices located throughout Africa, Asia, Australasia, Europe, North America, and South America.

Africa
Asia
Australasia
Europe
North America
South America

+ 27112544800
+ 862162585522
+61388623500
+ 35621423020
+ 18002753281
+ 552130959500
solutions@golder.com
www.golder.com

Golder Associates Ltd.
500-4260 Still Creek Drive
Burnaby, British Columbia, V5C 6C6

Canada

T: +1 (604) 2964200

[^0]: ${ }^{1}$ Geological resources presented in Table 1.1 of the Pre-feasibility Update report (Seabridge 2011).
 ${ }^{2}$ PCBC includes column mixing with dilution and shutting of columns (drawpoints) when NSR $<\$ 15.41$ so a portion of the diluted mineral inventory is not recovered.
 ${ }^{3}$ Block cave resources can be considered as Probable Mineral Reserves within the complete pre-feasibility study report.

[^1]: *The modelled quantity for this ramp was dictated by overall vent design and minimum airspeeds.

[^2]: l|bur1-s-filesrv2\final\2011\1439\11-1439-0002\1114390002-005-r-rev0\appendix h - ventilation\ventilation design calcs 30may_12.docx

